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Content
• Why	neutrino	astrophysics?

• Are	all	neutrino	energies	good	for	astronomy?

• Big	picture	of	detection	possibilities	and	perspectives.

• IceCube astrophysical	neutrino	detections.

• KM3NeT	and	the	near	future	perspectives	(also	for	you!).

Thanks	to	Chiara	Righi for	the	invitation!

2V.	Kulikovskiy	"Astrophysical	Neutrinos"	@	Sexten	2022



Why	Neutrino	Astronomy?

• Advantages:
• Photons:	interact	with	CMB	and	matter	(r~10	kpc @1	PeV).
• Protons:	interact	with	CMB	(r~10	Mpc @1020 eV)	
and	undergo	magnetic	fields	(Dq>1o,	E<0.5·1020 eV).

• Neutrons:	are	not	stable	(r~10 kpc @1019 eV).

• Drawback:	large	detectors	(~GTon)	are	needed.

Photon and proton mean free range pathNeutrino	Astronomy	is	a	quite	recent	and	very	promising	
experimental	field.
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Production	Mechanisms
p-p	interaction	is	likely	to	occur	when
density	of	gas	higher	than	density	of	radiation
(for	example	in	Starburst	Galaxies)

p-gamma interaction is likely to occur when
density of radiation higher than density of gas
(for example in Blazars)
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The	energy	and	flavour ratio	rules	are	not	exact:
• 1	neutrino	is	produced	in	2	body	decay,	2	neutrinos	are	produced	in	3	body	decay

• A certain amount of negative 
pions can be produced also in 
the proton-gamma interaction

Hummer et al., APJ 2010
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Why	high	energy	neutrinos?
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measured	CR	flux.
• CR	interaction	with	CMB/IMB.
• Depends	on	highest	CR	acceleration	energy	

(1020 eV?)
• Depends	on	ion	composition.
• …
• What	is	the	origin	of	CRs?
• What	is	the	origin	of	0.01-1PeV	nu?
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Why	high	energy	neutrinos?
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Cosmogenic	neutrino	flux	is	predicted	from	a	
measured	CR	flux.
• CR	interaction	with	CMB/IMB.
• Depends	on	highest	CR	acceleration	energy	

(1020 eV?)
• Depends	on	ion	composition.
• …
• What	is	the	origin	of	CRs?
• What	is	the	origin	of	0.01-1PeV	nu?
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Big	picture	of	possibilities

Ice Water Air Permafrost Salt Moon

light IceCube
ANTARES, KM3NeT,

Baikal,
P-ONE

ASHRA,	TRINITY,
POEMMA,	AUGER ? ? ?

radio
ARA,	ARIANNA,	ARIA,	
IceCube-Gen2	Radio,

RNO,	Radar
-

On mountain:
TAROGE,

TAROGE-M,
BEACON, GRAND,
On	balloon/satellite

ANITA,	PUEO

maybe maybe
NuMoon
LUNASKA,
RESUN	

sound SPATS	(IceCube)
SAUND, ACORNE,	

AMADEUS	
(ANTARES),	Baikal

? maybe maybe ?

For	acoustic	in	permafrost	&	salt,	please	see	R.	Lahmann review	at	ARENA2018.
AUGER	is	a	hybrid	EAS	detector	(water	Cerenkov	tanks,	fluorescence	detectors,	muon	detectors)	+radio,	+	HEAT.

This	talk	is	mostly	on	the	IceCube (and	MM)	results	and	KM3NeT	perspectives.
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Summary of	Perspectives
• SubPeV-PeV neutrino	observations	starts	to	be	a	routine	with	IceCube

• Extension	with	a	sparse	array	for	PeV energies.
• Moving	towards	>5km3 Global	Neutrino	Observatory.
• Still	the	best	technology	for	TeV-PeVs.	
• Angular	res.	0.1o (track)	– 1o (cascade)	in	water.
• Lower	energy	extensions	below	10	GeV.

• Radio	wins	for	E>PeV energy	effectiveness/cost.
• UHE	energy	extension	of	IC	(IC	Gen2-Radio)	is	a	radio	detector	that	will	merge	best	from	ARA	and	

ARIANNA	technologies.	The	best	for	E~10PeV	(2025+).
• Angular	resolution	is	not	great	for	MM	(<7O)?

• Similar	detector	in	Greenland	to	complete	the	view	(RNO-G)?
• Radar	technic	to	push	towards	lower	energies	(subPeV-PeVs)?
• Acoustic	is	still	not	explored	well.	Hybrid	detectors?

• Tau	neutrino	search	is	possible	with	CR	detectors	and	it	is	very	efficient	for	100	PeV-1	EeV:
• Mountain	antennas	are	competitive	with	in	ice	for	sensitivities.
• Imaging	Air	Shower	systems	on	satellites	(POEMMA)	are	promising	for	E~10PeV-10EeV.
• ANITA->PUEO	seems	to	be	the	best	in	next	future	for	E>10EeV	(2022).

• Moon observations	are	unbeatable	for	ZeV.	Signals	are	unknown	until	you	have	rich	fantasy.	Observation	
possibility	included	as	a	part	of	radio	observatories	(looking	forward	for	SKA).

bigger	mine	– more	gold

mastering	new	methods.

reusing	CR	detection	methods

ROAARRH!
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IceCube neutrino	detector
• 5160	digital	optical	modules	(DOMs)	
deployed	at	depths	between	~1.5-2.5	km.

• Single	8’’	PMT	technology.	
• Non	isotropic	light	propagation	with	high	
scattering.

• Stable	environment,	low	optical	background	
(K40).

• Denser	in-fill	for	O(10)	GeV	neutrinos	
(DeepCore).

• Surface	air	shower	array	(IceTop).
• Construction	finished	in	Dec	2010.
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Event	topologies	and	selections

• Suppresses	part	of	the	atm.	nu	
accompanied	with	muons	(shallower	
detector	would	be	better!).

• 6±3.4	muons	per	2	years	(662	days).

High	Energy	Starting	Events	(HESE)

Suppress	atm.	muon	background:	
• up-going	going	events.	

PeV nu-mus can’t	traverse	Earth!
• SE– starting	events.

Suppress	atm.	muon	background:	
• Cascade-like.
• SE– starting	events.

Suppress	atm nu	background:
• High	Energy	(HE).	Cosmic	spectrum	is	harder.
• Starting	inside	the	detector	(SE– starting	events). 12



Diffuse	flux	measurement	with	different	event	selections
• Some	tension	between	track	events	(Northern	Hemisphere,	>200	TeV,	harder	spectrum)	and	IC	HESE	(all	sky	
>30	TeV,	softer	spectrum).	

• Cascade	selection	(>TeV,	all	flavour,	all	sky)	somehow	in	between.
• Baikal	(preliminarily)	confirms	this	diffuse	flux	(25	tracks+cascades,	9.7	atm.	mu,	3.4	atm.	nu,	16	IC	E-2.46)	at	p-
value	0.0022	(3-sigma),	Zh.	Dzhilkibaev @	NEUTRINO2022.
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Can	p-p	sources	explain	IC	diffuse	flux?
• Star-forming	Galaxies	(SFG)	and,	generally,	p-p	
models	that	should	be	in	agreement	with	Extra-
Galactic	Background	in	0.05-1	TeV would	produce	
an	order	of	magnitude	lower	flux	then	IC	HESE.	The	
individual	γ-ray	luminosity	functions	are	
normalized	to	the	observed	infrared	(IR)	
luminosity	function	from	Herschel.

• Relaxing	the	γ-ray	luminosity	requirement	to	fit	
with	IR,	(multiple	class	of	the	sources	having	HE	
neutrino	emission),	one	can	explain	~100%	of	the	
IC	TGM	flux	and	~40%	of	the	IC	HESE	(+Gal	+atm
~94%),	and	~50%		of	the	IC	cascade	events.

• Hadronically powered	gamma-ray	galaxies	(starburst	
galaxy	NGC253,	Ultra-Lumious Infra	Red	Galaxy	ULIRG	
Arp220)	can	be	good	candidates.	IC	7	years	point-source	
sensitivity	is	~10	times	above	the	expected	nu-flux	from	
a	single	source.
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• How	many	such	PeVatrons are	detectable	by	CTA?
• 1e-3	Mpc-3 NGC253	like.	For	100	Mpc radius	~125	sources.
• 6.7e-6	Mpc-3 Arp	220	like.	For	100	Mpc radius	~0.8	sources.

Apparently,	no	neutrino	emission	is	found	from	75	ULRIGs	
(z<0.13)	in	IC	2022	analysis (7.5	years	of	data).

Point	search	with	10	years	of	data.	The	most	significant	source	in	the	Northern	hemisphere:	nearby	Seyfert galaxy	NGC	
1068	w/	significance	of	2.9σ.
GeV	gamma-ray	based	catalogue	search	inconsistent	with	background	w/	3.3σ (NGC	1068,	TXS	0506+056,	PKS	1424+240	
and	GB6	J1542+6129	stacked).

IceCube (ApJ, 2022) IceCube (PRL, 2020)

~100	Fnu/Fgamma?
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• Extreme	high	energy	neutrino	alert	from	IceCube followed	by	
detection	of	very	high	energy	photons	from	a	flaring	blazar
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IC170922A	coincidence	with	TXS	0506+056
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• Archival	search	found	neutrino	excess	around	2014	around	TXS	0506+056	
• 13	± 5	events	above	the	background	over	100	days:	significance	of	3.5σ.
• No	gamma	flare.	This	flare	has	different	mechanism	respect	to	the	one	from	IC170922A?!

IceCube, ApJL	920	L45	(2021)
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10 years multi-flare search from a catalog
4 best locations (flares): M87, TXS 0506+056, GB6 
J1542+6129, NGC 1068, corresponding to a post-trial p-
value of 3sigma (stacking). Only TXS has 2 flares. M87 
not seen in the time integrated search (short flare with 3 
nu neutrinos).

IceCube Science,	361	6398	(2018)
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Can	blazars	explain	IC	diffuse	flux?
• Resolved	blazars	cannot	contribute	more	than	20-25%	to	the	flux	of	HESE.
• Considering	unresolved	(more	faint	blazars)	the	high	energy	(Enu>1	PeV)	
part	can	be	explained	by	blazars.	

IceCube,	APJ	2017 A.	Palladino et.	Al	2019
Can	we	still	explain	majority	of	TGM	
with	unresolved	blazars?
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UL	from	the	stacking	analysis	(134	blazars)	
are	1.0%	of	the	diffuse	flux	(IC	2022).
As	you’ve	seen	in	G.	Principe	talk!



Tidal	Disruption	Events

• AT2019dsg+AT2019fdr with optical flux is a coincidence with  p-value=0.034% (3.4sigma),
• IceCube diffuse	flux	from	the	TDEs	detected	before	AT2019dsg	and	AT2019fdr	has	been	constrained	to	be	at	
most	∼1.3%	(∼26%)	in	the	jetted	(non-jetted)	TDE	case.	R.	Stein,	IC,	PoS ICRC2019	(2020)	1016

Observations, including a bright dust echo and soft late-
time X-ray emission support a TDE
origin of this flare. 

Coincidence with radio-emitting tidal disruption event, p-
value 0.5% (2.8sigma), considering brightness in 
bolometric energy flux as AT2019dsg is 0.2% (3.1sigma).
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Cherenkov	3D	arrays	(water/ice)

IceCube
GVD
KM3NeT/ARCA
P-ONE
GC/plane
TXS	0506+056

M.	Huber

• Transition	to	routine	detection	of	100TeV-PeV	neutrinos	is	happened	last	years	(IC,	ANTARES,	Baikal).
• Extensive	method	is	still	effective	to	learn	more!
• Collaboration	with	other	multi-messengers	is	the	key	strategy.
• >5	km3 GNO	global	observatory	in	future.	GNN	network	(IC,	ANTARES/KM3NeT,	Baikal-GVD)	is	active	since	
many	years.

• Golden	channel	– through-going	muons
• ”Upgoing”	since	only	nu	can	traverse	the	Earth	and	

produce	mu.
• High	energy	since	<10	TeV is	atmospheric	nu	

dominated.
• At	around	100	TeV,	less	than	20%	of	the	neutrinos	

with	next-to	vertical	direction	can	cross	the	Earth;	
at	1	PeV the	rate	reduces	to	5%.	

• Effective	band	is	20-30	degrees.
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• High	field	of	view	(depends	on	the	event	selection).
• No	manual	instrument	pointing	(but	for	non-pole	instruments	the	sky	visibility	varies	with	time).

• It	is	possible	to	enhance	the	triggering	for	some	regions	of	interest	(GC	for	example).



Geometries

ANTARES
depth	2.5	km

12	lines
25	sectors/line

KM3NeT/ARCA	block
(~ANTARES	spacing)
x100	Bigger	volume.

115	lines
18	DOMs/line

KM3NeT/ORCA	block
(~ANTARES	volume)
x3	denser	spacing

A. Nelles @ PAHEN

Baikal-GVD	block
16-18	clusters
Cluster:	288	OM	on	8	lines
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Status	of	current	water/ice	telescopes
• ANTARES	decommissioned	in	May	2022	after	14	years	of	operation.	
• KM3NeT/ARCA

• Since	beginning	of	July	KM3NeT/ARCA	is	taking	data	with	19	strings.	
• Thanks	to	recent	Italian	funding,	the	budget	for	the	first	block	realization	is	funded	
together	with	a	part	of	the	second	block.	Short	time	construction	(3	years)	and	
installation	are	foreseen.

• • 946 DOMs integrated (52 DUs worth), 37 DUs integrated.
• IceCube

• More	than	10	years	for	data	collected.
• Preparation	for	the	IcuCube-Upgrade	installation	(dense,	R&D	for	Gen2).	Pandemic	
delays	(drilling	in	2024-25,	deployment	in	2024-26).

• IceCube-Gen2	R&D	(x8	active	volume,	radio	array).
• Baikal

• 10	clusters,	5	laser	stations,	experimental	strings.
• Deployment	rate	– 2	clusters/year	GVD	(1	km3	)	in	2026.

• P-ONE
• Cabled	sea-bed,	prototype	lines	installed	(Ch.	Spannfellner et	al.	 PoS,	
ICRC2021:1197,	2021).
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IceCube-Gen2
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• Optical array: Eight times larger active volume compared 
to IceCube filled with improved optical module based on 
the R&D studies from IceCube Upgrade

• Surface air shower array: Matching with the optical array 
throughput, ~40 times higher coincident events

• Radio array: ~ 500 km2 area of the antenna array for the 
detection of EeV neutrinos N.	Park	@	NEUTRINO2022

23



ANTARES
• First	Under-Sea	neutrino	telescope
• Precursor	to	KM3NeT
• Decommissioned	3	weeks	ago	after

14	years	of	operation.	
• Competitive	results

• Northern	hemisphere
• Galactic	plane
• Dark	matter

24



ORCA

ARCA

Naples
Bari

Oscillation	Research
with	Cosmics	In	the	Abyss

Astroparticle	Research
with	Cosmics	In	the	Abyss

250	scientists
57 institutes
16 countries

KM3NeT	2.0:	Letter	of	Intent
J.	Phys.	G:	Nucl.	Part.	Phys.	43	(2016)	084001

2470m

3400m

KM3NeT
• Multi-site,	deep-sea	neutrino	telescope
• Selected	by	ESFRI	roadmap	
• Single	collaboration,	Single	technology	

25



KM3NeT	- production	ongoing
Amsterdam

Athens

Catania

Genova

Bologna

Erlangen
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Amsterdam

Athens

Catania

Genova

Bologna

Erlangen

KM3NeT	- production	ongoing
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Technology
Deployment	Vehicle

Digital	Optical	Module	(DOM)
‒ Multi-PMT	:	31	x	3”	PMTs
‒ Gbit/s	on	optical	fiber
‒ Positioning	&	timing

‒ Rapid	deployment
‒ Multiple	DUs	per	sea	campaign
‒ Autonomous/ROV	unfurling
‒ Reusable

~ 700 or 200  m
Detection	Unit	(DU)
‒ 18	DOMs
‒ Low-drag	design
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Cosmic	neutrino	sources	search

improved
standard

A	superior	direction	resolution	for	showers	is	expected	(due	to	the	isotropic	water	properties	and	low	scattering).
Same	physics	as	IceCube +	visibility	of	the	Galactic	Center	(plane)	with	the	upgoing track	events!	

track-like

shower-like

30



Common	data	analysis	with	CTA	- hadronic	model	testing
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Common	data	analysis	with	CTA
Hadronic	model	testing

Quantiles	(68%,	90%)	of	the	best	fit	values	
and	average	size	of	68%	credible	intervals.

2	input	scenarios	(purely	leptonic,	f=0,	purely	hadronic	f=1).
Purely	leptonic – Inverse	Compton	gamma	production.
Purely	hadronic	– pion	decay	(p-p).

Input	scenario

T.	Unbehaun et	al.	@	NEUTRINO2022

This analysis was performed using gammapy (driven by the CTA group @ ECAP).
ΔT

S



Neutrino	detector	IRFs

• First	implementations	by	KM3NeT	collaboration	(T.	Gal,	M.	Smirnov	et	al)	not	official	yet!	
https://gitlab.in2p3.fr/escape2020/virtual-environment/irf-from-km3net/

• Track	channel	only	(the	biggest	contribution	to	the	sensitivity	for	point	sources).
• numu +	anti-numuCC average	effective	area,	PSF	and	E	dispersion.
• Atmospheric	muon	background.
• Atmospheric	neutrino	background.
• Based	on	T.	Unbehaun et	al.	analyses,	extending	to	open	science.
• Future	development	in	the	framework	of	ESCAPE	&	EOSC-Future	initiatives.

• gammapy for	gamma:
• Effective	area
• Angular	PSF
• Energy	dispersion
• Background

• Neutrino	detection	features:
• Several	neutrino	types	(nu/anti-nu,	flavour)	and	
interaction	(CC,	NC,	Glashow).

• Several	neutrino	reconstructions	(track,	shower)	
and	event	selections	(track,	shower,	HESE,	
upgoing etc).

• Several	backgrounds	– atmospheric	muons,	
neutrinos.

• Variable	detector	configurations/efficiency?	(Also	
for	CTA?)
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Some	conclusions
• Diffuse	neutrino	flux	is	measured	by	several	detectors	and	in	several	event	
selections	(sensitive	to	different	flavours and	energy	ranges).

• This	is	not	the	cosmogenic	CR	flux.
• This	is	(probably)	not	the	“partner”	of	the	EBL	gamma	flux	(from	p-p	interactions).

• Several	sources	identification	(TXS	0506+056,	NGC	1068,	M87,	TXS	GB6	
J1542+6129,	PKS	1424+240).	They	are	of	different	types:	blazar	(BL	
Lac/FSRQ	?),	Starburst	galaxy...

• No	dominant	single	sources	and,	probably,	no	dominant	source	type	is	
responsible	for	this	flux.

• Current	detector	sensitivities	are	≲order	of	magnitude	below	expected	emissions	from	
single	(steady)	sources.	

• We	need	stacking/catalogues	search,	transient	searches.	Collaboration	with	MM	
partners	is	essential.

• Neutrino	detectors	are	excellent	for	understanding	source	acceleration	mechanisms.
• The	major	part	of	the expected neutrino sources	should	be	reachable	
with the next generation	detectors.

• EeV sensitive	detectors	have	access	to	the	guaranteed	cosmogenic	flux.
This	work	has	been	supported	by	European	Union’s	Horizon	2020	Programme under	the	AHEAD2020	project	(grant	agreement	n.	871158).
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