Extreme TeV Blazar: a stochastic acceleration model

Author: Alberto Sciaccaluga **Co-author**: Fabrizio Tavecchio

INAF Brera-Dipartimento di Fisica di Genova

20 July 2022

Contents

- Introduction
- 2 The model
- Numerical method
- 4 Results
- 5 Conclusions and future perspectives

Blazar

- AGN with a relativistic jet pointing toward the Earth
- The spectral energy distribution displays two broad peaks
- Blazars can be classified on the synchrotron peak frequency

Extreme TeV Blazar

- ullet The second SED peak beyond 1 ${
 m TeV}$
- A hard sub-TeV intrinsic spectrum
- The TeV emission is stable over years

- Many mechanisms have been proposed (e.g. multiple shocks, see Zech & Lemoine 2021)
- Thermal plasma: recollimation shock + turbulence
- Non-thermal particles: diffusive shock acceleration + stochastic acceleration
- One zone leptonic model: Synchrotron Self Compton model

- Many mechanisms have been proposed (e.g. multiple shocks, see Zech & Lemoine 2021)
- Thermal plasma: recollimation shock + turbulence
- Non-thermal particles: diffusive shock acceleration + stochastic acceleration
- One zone leptonic model:
 Synchrotron Self Compton model

Low magnetization

- Many mechanisms have been proposed (e.g. multiple shocks, see Zech & Lemoine 2021)
- Thermal plasma: recollimation shock + turbulence
- Non-thermal particles: diffusive shock acceleration + stochastic acceleration
- One zone leptonic model: Synchrotron Self Compton mode

- Many mechanisms have been proposed (e.g. multiple shocks, see Zech & Lemoine 2021)
- Thermal plasma: recollimation shock + turbulence
- Non-thermal particles: diffusive shock acceleration + stochastic acceleration
- One zone leptonic model: Synchrotron Self Compton model

- Many mechanisms have been proposed (e.g. multiple shocks, see Zech & Lemoine 2021)
- Thermal plasma: recollimation shock + turbulence
- Non-thermal particles: diffusive shock acceleration + stochastic acceleration
- One zone leptonic model: Synchrotron Self Compton model

See Tavecchio et al. in prep

Numerical method

$$\begin{cases} \frac{\partial f}{\partial t} = \frac{1}{p^2} \frac{\partial}{\partial p} \left[p^2 D_p \frac{\partial f}{\partial p} + p^2 \left(\frac{\partial p}{\partial t} \right)_{\text{rad}} f \right] + \frac{f}{t_{\text{esc}}} + I_f \\ \frac{\partial Z}{\partial t} = \frac{1}{k^2} \frac{\partial}{\partial k} \left(k^2 D_k \frac{\partial Z}{\partial k} \right) + \frac{Z}{t_{\text{dam}}} + \frac{I_W}{k^2} \text{ with } Z = \frac{W}{k^2} \end{cases}$$

- We must solve a system of two coupled Fokker-Planck equations
- We decided to use the robust implicit Chang-Cooper algorithm
- ullet Kolmogorov phenomenology $\implies D_k = D_k(k,W) \implies$ Non-linearity
- We need a trick (see Larsen et al. 1985)

1ES 0229+20

We apply our model to the prototypical extreme TeV blazar, i.e. 1ES 0229+20

- Downstream region radius $R = 1.2 \times 10^{16} \text{ cm}$
- Alfvén velocity $v_a = 2 \times 10^9 \text{ cm/s}$
- Mean magnetic field B = 15.9 mG
- Non-thermal particles power $P'_n = 7 \times 10^{39} \text{ erg/s}$
- Turbulence power $P'_W = 7 \times 10^{39} \text{ erg/s}$

Electrons and turbulence spectra

- ullet Peak at $\gamma \sim 10^6$ (when $t_{
 m acc} \sim t_{
 m cool}$)
- \bullet Cut-off at $\gamma\gtrsim 10^6$ (when $t_{\rm cool}\ll t_{\rm acc})$
- Cut-off at $\gamma \lesssim 10^4$ (when $t_{\sf esc} = R/c$)

Electrons and turbulence spectra

- \bullet Cut-off at $k \gtrsim 10^{-10} \ {
 m cm}^{-1}$ (when $t_{
 m dam} \ll t_{
 m cas}$)
- ullet Power law at $k \lesssim 10^{-10}~{
 m cm}^{-1}$ (when $t_{
 m cas} \ll t_{
 m dam}$)

Conclusions and future perspectives

Our model was able to reproduce the SED of the prototypical extreme TeV blazar 1ES 0229+200

- Caveats
 - Necessary comparison with other SEDs
 - Check with MHD simulations (see Costa slides)

- Improvements
 - Addition of IC cooling term (other non-linear term)
 - More accurate algorithm (e.g. Runge-Kutta Implicit-Explicit schemes)

