The extragalactic TeV sky: past, present, and future

> Elisa Prandini Padova University & INFN

Extragalactic TeV Sources

Catalogs and main info

Selected Highlights

Gamma ray propagation

Pictures from Giorgia Hofer https://www.giorgiahoferphotography.com/

sensitivity curves

From: https://www.cta-observatory.org/science/ctao-performance

Hands-on the extragalactic sources

TeVCat

- How many extragalactic sources are detected at TeV?
- Which kind of sources?
- Which was the first extragalactic source detected?
- What is the distance of the extragalactic TeV emitters?

SSDC

• How can I retrieve a spectral energy distribution from a specific source

Hands-on: How many extragalactic sources?

http://tevcat2.uchicago.edu/

Evolution over time: the kifune plot

Evolution over time: the kifune plot

- Large difference in the number of sources in the different energetic regimes!
- CTA is expected to exceed -1000 sources (many extragalactic)

D. Bose et al. 2022

Hands-on: Which kind of extragalactic sources?

http://tevcat2.uchicago.edu/

Type of sources

TeV extragalactic sources in a nutshell

Starburst galaxies

nearby galaxies with intense star formationTeV-detected: 2

Jetted Active Galactic Nuclei

Galaxies with an intense non-thermal emissionTeV-detected: 85

Gamma Ray Bursts

Most energetic bursting events in the UniverseTeV detected: 4

Starburst galaxies key features

Starbursts are galaxies with enhanced star-forming activity

Observables

- Non variable sources
- Nearby
- Spectral peak in the Fermi energy range

Astrophysics

- Physical emission scenario
- Relationship between star forming process and gammaray emission to extragalactic environment
 - **multimessenger potential** (CR, neutrinos)
- Gamma ray background

TeV-detected: 2 GeV detected: 11

Starburst galaxies

Starburst galaxies at TeV results

Deep exposures (not variable)

Combined HE and VHE spectra are used to constrain gamma-ray emission models

Starburst galaxies at TeV: future prospects

Starburst galaxies

From Peretti Gamma2022

See Alessio's presentation

GRBs at TeV

TeV-detected: 4 GeV detected: >6000

Gamma Ray Bursts

D. Khangulyan, Gamma 2022

- GRB160821B: 3σ detection of a nearby short GRB (z = 0.162) above 0.5 TeV 4h after the trigger (MAGIC Col, 2021)
- GRB180720B: 5σ detection of a long GRB from z = 0.65 above 0.1 TeV **10h** after the trigger (HESS Col, 2019)
- GRB190114C: $\sim 50\sigma$ detection of a long GRB from z = 0.42 above $0.2 \text{ TeV} \sim \text{min}$ after the trigger (MAGIC Col, 2019)
- GRB190829A: 20σ detection of a long GRB from z = 0.08 at energies 0.18 3.3 TeV 4-50h after the trigger (HESS Col, 2021)
- GRB201015A: > 3σ detection of a long GRB at z = 0.43 (MAGIC Col, Atel)
- GRB201216C: $> 5\sigma$ detection of a long GRB at z = 1.1 (MAGIC Col, Atel)

Active Galactic Nuclei

More at this school: F. Tavecchio; P. Cristarella Orestano; A. Costa; A. Sciaccaliuga; A. Franceschini

AGNs: key features

- Extremely **variable** sources
- Broadband emission from radio to TeV
 - Challenge: simultaneous MWL/MM observations needed to constrain models
- Strong multimessenger connection (neutrinos, cosmic rays)
- Radiogalaxies
 - Side view of the jet
 - Possibility of resolving extended emission
 - Only nearby objects possible (no boost)
 - few sources detected
- Blazars
 - Direct view in the jet
 - Boosted emission, variability
 - Affected by EBL absorption

AGNs at TeV: radiogalaxies

TeV-detected: 4-6 GeV detected: 41 (4LAC)

Name	Cross-ID	Туре	Distance	BH mass [10 ⁸ M _{sun}]
Cen A	NGC 5128,	FR I	3.7 Mpc	(0.5-1)
M87	NGC 4486, Virgo A	FR I	16 Мрс	(20-60)
NGC 1275	3C84, Perseus A	FR I	70 Мрс	3-4
IC 310	B0313+411	FR I/BL Lac	80 Mpc	3 [0.3?]
3C 264	NGC 3862	FR I	95 Мрс	4-5
PKS 0625-35	OH 342	FR I/BL Lac	220 Мрс	~10

Rieger & Levinson, 2019 (special issue)

AGNs at TeV: radiogalaxies

TeV-detected: 4-6 GeV detected: 41 (4LAC)

Name	Cross-ID	Туре	Distance	BH mass [10 ⁸ M _{sun}]
Cen A	NGC 5128,	FR I	3.7 Mpc	(0.5-1)
M87	NGC 4486, Virgo A	FR I	16 Мрс	(20-60)
NGC 1275	3C84, Perseus A	FR I	70 Мрс	3-4
IC 310	B03 3+4	FR I/BL Lac	80 Mpc	3 [0.3?]
3C 264	NGC 3862	FR I	95 Mpc	4-5
PKS 0625-35	OH 342	FR I/BL Lac	220 Мрс	~10

Rieger & Levinson, 2019 (special issue)

Possible scenarios for the origin of rapidly variable VHE

- stratified jet (left)
- jets-in-jet model (center)
- hadronic model (right)

AGNs at TeV: Cen A radiogalaxy

H.E.S.S.

58' 00.0' 0.30 (J2000) 0.25 -43° 00' 00.0" - 0.20 02' 00.0' -0.15 0.10 04' 00.0' 0.05 12.00 s 13 h 25 min 00.00 s 26 min 00.00 s 48.00 s 36.00 s BA (12000 Frequency (Hz) IC (CMB) IC (starlight IC (dust) -· IC (SSC — IC (total) - Svnc 10-12 10-13 E²dN/dE (erg 10-14 10-15 10-10-7 10-4 10 108 1011 10-1

Photon energy (eV)

-42° 56' 00.0"

- CenA: Closest TeV-detected AGN (EHT target)
- **Extended emission** detected by HESS: morphological studies (this is the only extragalactic source known to date with an extension at VHE)
- TeV unusual spectral hardening
- Multimessenger connections (cosmic rays)
 - CenA is a bright spot in P. Auger maps at the highest energies

Best-fit UHECR source models above 40 EeV, Pierre Auger Coll. 2022

√ Brightness temperature (10⁹ K)

Which blazars at TeV? The blazar sequence

TeV-detected: 81 GeV detected: thousands

- SED brightness anti-correlates with the peak position
- TeV detections are in line with the blazar sequence
 - Low energy peaked objects
 → flares (ToO)
 - HBLs are the large majority
 - Extreme HBLs: long exposures

Active Galactic Nuclei

SSDC: an overview of the spectral properties

You can build the *spectral energy distribution* of the **first detected blazar**: Markarian 421

https://www.ssdc.asi.it/ Space Science Data Cen	ter Aperula Spaniche Hadera	→ C tools.ssdc.asi.it/SED/
Home About SSDC News and Communication Quick Look Missions Multimission Archive Catalogs Helpdesk Privacy	Tools Links Bibliographic services SSDC Sky Explorer Y	Single Source List of Sources
	Swift Simulator NuSTAR Simulator SSDC Angular Distance Calculator SSDC Coordinate Conversion SSDC Date Conversion SSDC Photon Flux Conversion SSDC Photon Flux Conversion SSDC Pimms SSC/EC MATISSE ExoplAn3T GAIA Portal asPICtool SSDC SED Builder	Search by Name SSDC SIMBAD NED Search by Coordinates Coordinate system: Equatorial (J2000) ~ Coordinates: 148.961264, 69.678736 Explore Data Build SED

If you are already expert of SSDC, you might try a new tool under development: <u>https://firmamentoo.web.app/</u> ²⁴

The spectral energy distribution of the HBL Markarian 421

-i -10 MAGIC hi S 2 -11 CB (erg Ŧ vf(v) Log -16 -17 Creation date: 07-Jul-2022 08:42:24(UTC) -16 -15 -14 -13 -12 -11 -10 Log energy (GeV)

Main **observables**:

- Bright source
- Variable at all bands
- HBL: Peak location ~100 GeV

Main astrophysical investigations:

- 1. Spectral energy distribution
- 2. Temporal variations in flux and spectrum
- 3. Correlations (including delayed correlations) with the other bands

Where is the TeV emission originated? What is the role of hadrons?

MARKARIAN421 Ra=166.11392 deg Dec=38.20900 deg (NH=1.9E20 cm^-2)

MAGIC and FACT Coll. 2021

Main astrophysical investigations:

- 1. Temporal variations in flux and spectrum
- 2. Correlations (including delayed correlations) with the other bands
- 3. Spectral energy distribution and modeling

FSRQs from radio to VHE

B20218+35 Ra=35.27428 deg Dec=35.94668 deg (NH=5.6E20 cm^-2) -9 -10 -1) CTA NORTH -11 S Log vf(v) (erg cm^-2 -12 • • : -13 -14 -15 Creation date: 07-Jul-2022 10:27:05(UTC -16 17 18 8 9 10 11 12 15 16 19 20 21 22 23 24 25 26 Log frequency v (Hz)

Main observational properties:

- Bright at GeV, faint at TeV
- Observable when in **flare** at TeV
- Extremely distant objects

Main astrophysical investigations:

- The broadband emission. It is quite complex, with multiple zones participating in the overall SED
 - Jet
 - Disk
 - Corona
 - BLR and NLR
 - Infrared torus

The FSRQ QSO B0218+357

- Gravitationally lensed FSRQ
- One of the most distant TeV sources (z = 0.94)
- MWL monitoring: lensed, delayed emission after 11 days
- Broadband SED needs multiple components

The high-energy frontier extreme blazars

Observational properties

- Synchro peak at high energy
- Low overall luminosity
- Deep exposures of current generation of IACT or search for flares (only few sources variable)

- Extreme particle acceleration
- Standard SSC: too low B
- Hadronic models: very high B

An opportunity

- Cosmology (EBL; IGMF)
- Fundamental physics (axions)

The high-energy frontier: extreme blazars ongoing observations

Active Galactic Nuclei

30

Search for new, hard-TeV sources

Monitoring hard-TeV sources

ICRC 2021 – A. Brown

Future perspective with CTA: the extragalactic survey

CTA key science project: Extragalactic survey of ¼ of the extragalactic sky

- New detections
- Unbiased sample of sources
 - Luminosity function
 - Population study

Future perspective with CTA: AGN monitoring

- CTA key science project: long term monitoring of 14 sources
- Simulations and code development ongoing to optimize observation strategy and assess CTA capabilities
- CTA consortium paper in preparation on AGN variability studies

Gamma 2022 – F. Cangemi

Cosmology with gamma rays

- TeV interaction with of the extragalactic background light photons
 - Increases with the distance
 - Increases with the energy
- Extragalactic sources have an EBL imprint

EP 2020

Future perspective with CTA: EBL

CTA AGN programs:

- **long-term monitoring** of selected AGNs: that will be observed regularly with short snapshots
- high-quality spectra program: with deep observations of AGNs of different classes and at different distances
- blazar flares follow-up program: target VHE flares from AGNs, triggered either by external facilities or internally by the monitoring program performed with CTA. Crucial to probe highest redshifts.

Select AGNs with known redshift:

- detected with >5 sigma above $E(\tau=1)$;
- present in 3FHL;
- detected on daily scales with Fermi/LAT
- \rightarrow 48 sources in total in redshift range [0.05; 2]

ICRC 2021 - Ie. Vovk

Conclusions

- Last 20 years of VHE gamma-ray observations revolutionized our view of the extragalactic sky
- MWL, in many cases simultaneous observations are mandatory
- Detailed spectral and temporal studies needed to investigate the astrophysical environment, processes and propagation
- Next decades, with CTA, will be very exiting in terms of detailed measurements and possibly new discoveries

Extra material

RESOURCES

How can I know more about a source? **<u>TeVCat</u>** as a starting point

NED (Nasa Extragalactic Database) from an astronomical point of view

CDS (Centre de données astronomiques de Strasbourg) access to databases

<u>SSDC</u> access into archival data, including having an overview of the spectral properties