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Axions and axion-like particles
• QCD nonperturbative effects produce CP violation in the strong sector 

measured by the angle θ

• BUT experimentally, |θ| < 10-10 fine tuning needed  Strong CP problem

• Proposed solution  new Peccei-Quinn symmetry U(1)PQ for the Lagrangian

• Symmetry broken  new particle: the axion

• Axion mass and axion-two-photon coupling are related

• Axions interact with fermions and gluons 

• Axion-like particles have same properties but their mass ma and two-photon 
coupling gaγγ are unrelated



Axion-like particles (ALPs)
• Predicted by String Theory

• Very light particles (ma < 10-8 eV)

• Spin 0

• Interaction with two photons
(coupling gaγγ)

• Interactions with other particles 
negligible

• Possible candidate for dark matter

• Induce the change of the 
polarization state of photons 

Two photons

In an external B field

Photon-ALP oscillations
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Laγ = gaγγ E·B a



ALPs in astrophysical contest
• ALPs very elusive in laboratory experiments (low coupling)  astrophysical 

environment is the best opportunity to study ALPs and ALP effects (for free)

• Photon/ALP beam in the energy band E >> ma

• For E < 10 GeV negligible photon absorption due to EBL, BLR, …

• Photon-ALP interaction produces effective photon absorption

• For E > 10 GeV photons absorbed by EBL, BLR, …

• Photon-ALP oscillations increase medium transparency

• IMPLICATIONS for:
• Spectra of Active Galactic Nuclei (AGN)  HINT at ALP existence
• Propagation of photon/ALP beam in AGN jets, galaxy clusters, extragalactic space, 

Milky Way  HINT at ALP existence
• Transparency of the Universe
• Photon polarization
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ALP limits
 Lack of detection of ALPs from the Sun [1] and stellar evolution [2]

gaγγ < 0.66 x 10-10 GeV-1 for  ma < 0.02 eV

 Unobserved spectral alterations induced by ALPs in the Perseus
clusters [3]

gaγγ < 5 x 10-12 GeV-1 for  5 x 10-10 < ma < 5 x 10-9 eV

 Unobserved ALP-induced spectral modifications on photons from 
AGN in or behind galaxy clusters, see e.g. [4,5]

gaγγ < O(10-12) GeV-1 for  ma < O(10-12) eV

 *Lack of detection of gamma rays from supernova SN1987A [6]
gaγγ < 5.3 x 10-12 GeV-1 for  ma < 4.4 x 10-10 eV
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Anastassopoulos et al. 2017
Ayala et al. 2014
Ajello et al. 2016

Conlon et al. 2017
Sisk-Reynés et al. 2022
Payez et al. 2015 

[1]
[2]
[3]

[4]
[5]
[6]



 Photon-ALP conversion probability 
Pγa(E, ma, gaγγ, B)

 Highlighted zones predict spectral 
irregularities and polarization
features in observational data

 Constraints on gaγγ and ma but the 
firmest is gaγγ < 6.6 x 10-11 GeV-1 for 
ma < 0.02 eV (CAST collaboration, 2017)
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ALP-induced irregularities 
ALP mass & 

plasma effects
QED vacuum polarization 

& CMB effects

Weak 
mixing

Weak 
mixing

Strong 
mixing

BLUE AREA:
 Spectral/polarization effects 

investigated in:

 No/low EBL absorption

The CTA Consortium, JCAP 02, 048 (2021) [arXiv: 
2010.01349].

G. Galanti, arXiv:2202.11675.; G. Galanti, M. Roncadelli, 
F. Tavecchio, arXiv:2202.12286.

RED AREA:
 Spectral effects investigated in:

 Higher EBL absorption

G. Galanti, F. Tavecchio, M. Roncadelli, C. Evoli, 
MNRAS 487, 123 (2019) [arXiv: 1811.03548].

G. Galanti, F. Tavecchio, M. Landoni, MNRAS 491, 5268 
(2020) [arXiv:1911.09056].
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BMW = O(1) μG

Bjet = O(1) G
Bext = O(1) nG

γ

e+

e-

γ

γ

γ
a

a

γ: photon.
a: ALP

Milky Way:
G. Galanti, F. Tavecchio, M. Roncadelli, C. Evoli, 
MNRAS 487, 123 (2019) [arXiv: 1811.03548].

Blazar:
F. Tavecchio, M. Roncadelli, G. Galanti, Phys. 
Lett. B 744, 375 (2015) [arXiv: 1406.2303].

Extragalactic space:
G. Galanti and M. Roncadelli, Phys. Rev. D 98, 
043018 (2018) [arXiv: 1804.09443].

G. Galanti and M. Roncadelli, JHEAp, 20 1-17 
(2018) [arXiv: 1805.12055].

gaγγ: γγa coupling
E: γ electric field
B: external magnetic field
Laγ = gaγγ E·B a
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γSoft

absorption: γ + γSoft e+ + e-

γSoft: EBL, BLR

Galaxy cluster:
M. Meyer, D. Montanino, J. Conrad, JCAP 09, 
003 (2014) [arXiv: 1406.5972].

G. Galanti, M. Roncadelli, F. Tavecchio, arXiv: 
2202.12286.

Bclu = O(10) μG
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Active Galactic Nuclei (AGN)
 Super massive black holes (106 – 109 M⊙)
 Accretion disk
 Two collimated jets
 Photons produced at the jet base

BL Lacs:
• No broad line region (BLR)
• No dusty torus
• Absorption due to the extragalactic 

background light (EBL) for E > 100 GeV

Flat spectrum radio quasars (FSRQs):
• Absorption due to the BLR for E > 20 GeV
• Absorption due to the dusty torus for E > 

300 GeV
• Absorption due to the EBL for E > 100 GeV
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torus

BLR

γ
γ

e+

e-

γ(VHE) + γ(soft)  e+ + e-



ALPs in BL Lacs
• Photons produced at dVHE = 1016 cm 

from the centre
• Bjet = 0.1 – 1 G and scales as 1/distance
• Electron density ne = 5 x 104 cm-3 and 

scales as 1/distance2

• Lorentz factor Γ = 15
• Photon-ALP conversion inside Bjet

• ma < O(10-10 eV)
• Amount of ALPs produced in the 

source strongly depends on dVHE, Bjet, 
gaγγ = 1/M
F. Tavecchio, M. Roncadelli and G. Galanti, Photons to axion-like particles conversion in Active Galactic Nuclei, Phys. Lett. B 
744, 375 (arXiv: 1406.2303) (2015). 13



ALPs in FSRQs
• High BLR absorption no photons 

with E > 20 GeV predicted BUT
• Photons observed up to 400 GeV
• Why? Photon/ALP conversions?
• Bjet = 0.2 G and scales as 1/distance
• gaγγ = 10-11 GeV-1, ma < O(10-10 eV)
• BLR ne,BLR = 1010 cm-3

• Photon-ALP conversion before the 
BLR – reconversion outside BLR

• BLR absorption REDUCED
• Physically motivated flux (SED)
• First hint for ALP existence
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Conventional physics
γ-ALP conversion

BLR absorption

SED

F. Tavecchio, M. Roncadelli, G. Galanti and G. Bonnoli, Evidence for an axion-like 
particle from PKS 1222+216?, Phys. Rev. D, 86, 085036 (arXiv: 1202.6529) (2012). 



15



 Perseus cluster1

 NGC 1275 (central galaxy)  bright gamma-ray emitter
 Cluster central magnetic field Bclu,0 = O(10) μG
 Bclu ≥ 2 μG
 Turbulent Bclu profile
 Photon/ALP beam propagation in the Perseus Bclu and 

Milky Way BMW magnetic fields
 Extragalactic magnetic field Bext not considered
 EBL absorption (but negligible, redshift z ≈ 0.02)
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ALP irregularities in galaxy clusters? 

Ajello et al. 2016 [1] Similar strategy adopted in Abramowski et al. 2013



 Photon-ALP conversion probability 
Pγa(E, ma, gaγγ, Bclu)

 Highlighted zone predicts spectral 
irregularities in observational data

 Constraints on gaγγ and ma

17Ajello et al. 2016

ALP irregularities in galaxy clusters? (2) 

 Flux  Fobs = Pγγ(ma, gaγγ) Fem
 Statistically  no preference for 

photon-ALP conversion to fit data
 gaγγ < 5 x 10-12 GeV-1 for

5 x 10-10 < ma < 5 x 10-9 eV

Flux Fobs

ALP mass & 
plasma effect

QED vacuum polarization 
& CMB effects
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Extragalactic Background Light (EBL)

 From FIR to UV (0.005 eV
– 5 eV)

 VHE photon absorption: 
γVHE + γEBL e+ + e-

 VHE photon flux 
dimming

19

 Direct product of the stellar radiation and light
absorbed and reradiated by the dust during the 
whole cosmic evolution

Domìnguez et al. 2011
Gilmore et al. 2012
Franceschini & Rodighiero 2017

e.g.
Franceschini & Rodighiero 2017



Domain-like magnetic fields

• New model for astrophysical magnetic fields B

• Domain-like model but now with continuous components of B

• Useful for: extragalactic space, spiral and elliptical galaxies, radio lobes

• Ldom and φ are random variables

G. Galanti, M. Roncadelli, Behavior of axion-like particles in smoothed out domain-like magnetic fields, Phys. Rev. D 98, 
043018 (arXiv: 1804.09443) (2018). 20

• Norm ||B|| is constant in 
each domain of length Ldom

• B orientation angle φ varies
from a domain to the following 

• Old sharp model with 
discontinuous transitions



Propagation in the extragalactic space
• Extragalactic magnetic field Bext = O(1 nG)

• Ldom with distribution Ldom
-1.2, ‹Ldom› = 2 Mpc

• Last data on EBL

• CMB photon dispersion considered (∝ E)

• ξ = (BT,ext/nG)(gaγγ x 1011 GeV) = 0.5 – 5

• ma < O(10-10 eV)

• Redshift z = 0.02 – 2

G. Galanti, M. Roncadelli, Extragalactic photon–axion-like particle oscillations up to 1000 TeV, JHEAp, 20 1-17 (arXiv: 
1805.12055) (2018). 21

• Photon-ALP oscillations increase Universe transparency



Redshift z = 0.1

22G. Galanti, M. Roncadelli, Extragalactic photon–axion-like particle oscillations up to 1000 TeV, JHEAp, 20 1-17 (arXiv: 
1805.12055) (2018).



Redshift z = 0.5

23G. Galanti, M. Roncadelli, Extragalactic photon–axion-like particle oscillations up to 1000 TeV, JHEAp, 20 1-17 (arXiv: 
1805.12055) (2018).



Anomalous z dependence of Blazars

24G. Galanti, M. Roncadelli, A. De Angelis, G. F. Bignami, Hint at an axion-like particle from the redshift depencence of blazar
spectra, Mon. Not. R. Astron. Soc. 493, 1553 (arXiv: 1503.04436) (2020).

 We consider all BL Lacs with strong VHE spectrum:
 In flare
 E > 100 GeV
 redshift up to z = 0.6

 Emitted spectra  power law

 Observed spectrum  power law

 Emitted – observed spectrum relation

 We deabsorb the observed spectrum:
 if no ALPs  EBL absorption only
 with ALPs EBL absorption and photon-ALP oscillations



Anomalous z dependence of Blazars (2)

25G. Galanti, M. Roncadelli, A. De Angelis, G. F. Bignami, Hint at an axion-like particle from the redshift depencence of blazar
spectra, Mon. Not. R. Astron. Soc. 493, 1553 (arXiv: 1503.04436) (2020).

Conventional Physics (CP):

 Anomalous redshift
dependence of blazar
spectra

With ALPs:

 Anomaly SOLVED

emitted slopes

observed slopes

See also Alberto Franceschini’s talk on Thursday



Propagation in the extragalactic space (2)
• For E > 40 TeV only the new continuous Bext model gives 

physical results about the photon survival probability

• If photon-ALP conversion too efficient many photons 
(reconverted back from ALPs) are absorbed by the EBL

• Universe transparency still increased by photon-ALP 
oscillations even in the presence of CMB photon dispersion

• Second hint for ALP existence coming from the solution of 
the anomalous redshift dependence of blazar spectra

26

G. Galanti, M. Roncadelli, Behavior of axion-like particles in smoothed out domain-like magnetic fields, Phys. Rev. D 98, 
043018 (arXiv: 1804.09443) (2018).

G. Galanti, M. Roncadelli, A. De Angelis, G. F. Bignami, Hint at an axion-like particle from the redshift depencence of blazar
spectra, Mon. Not. R. Astron. Soc. 493, 1553 (arXiv: 1503.04436) (2020).

G. Galanti, M. Roncadelli, Extragalactic photon–axion-like particle oscillations up to 1000 TeV, JHEAp, 20 1-17 (arXiv: 
1805.12055) (2018).
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Propagation in the Milky Way and total 
effect
• Important only the regular component of the Milky Way 

magnetic field BMW

• BMW = 5 μG, coherence length lcoh = 10 kpc
• But detailed sky maps of BMW exist (Jansson & Farrar 2012)

• Combination of photon/ALP propagation in Bjet, Bext, BMW

• Exponentially truncated spectra
• Bjet = 0.5 G, Bext = 1 nG
• gaγγ = 10-11 GeV-1, ma = 10-10 eV
• dVHE = 3 x 1016 cm, ne = 5 x 104 cm-3

• Γ = 15
G. Galanti, F. Tavecchio, M. Roncadelli, C. Evoli, Photon-ALP oscillations from a blazar to us up to 1000 TeV, Mon. Not. R. 
Astron. Soc. 487, 123 (arXiv: 1811.03548) (2019). 28



Markarian 501

29
G. Galanti, F. Tavecchio, M. Roncadelli, C. Evoli, Photon-ALP oscillations from a blazar to us up to 1000 TeV, Mon. Not. R. 
Astron. Soc. 487, 123 (arXiv: 1811.03548) (2019).

DATA from HEGRA (Aharonian et al. 2001)



1ES 0229+200

30
G. Galanti, F. Tavecchio, M. Roncadelli, C. Evoli, Photon-ALP oscillations from a blazar to us up to 1000 TeV, Mon. Not. R. 
Astron. Soc. 487, 123 (arXiv: 1811.03548) (2019).

DATA from Fermi/LAT (Vovk et al. 2012) from HESS (Aharonian et al. 2007) 



BL Lac at redshift z = 0.6

31
G. Galanti, F. Tavecchio, M. Roncadelli, C. Evoli, Photon-ALP oscillations from a blazar to us up to 1000 TeV, Mon. Not. R. 
Astron. Soc. 487, 123 (arXiv: 1811.03548) (2019).



Propagation in the Milky Way and total 
effect (2)
• Conventional physics hardly explains the highest energy point in the 

spectra of Markarian 501 and of 1ES 0229+200

• photon/ALP oscillations are instead successful

• As the energy increases photon/ALP oscillation effect is more and more 
evident

• photon/ALP oscillations generate features in BL Lacs: (i) oscillatory
behavior in blazar spectra and (ii) photon excess at high energy (> 10 TeV)

• These features can be detected by the planned new observatories like the 
Cherenkov Telescope Array (CTA) and ASTRI

32
G. Galanti, F. Tavecchio, M. Roncadelli, C. Evoli, Photon-ALP oscillations from a blazar to us up to 1000 TeV, Mon. Not. R. 
Astron. Soc. 487, 123 (arXiv: 1811.03548) (2019).





 Galactic magnetic field BMW (Jansson & Farrar 2012) is important
 Select pulsars with distance > 4 kpc for sizable ALP effects
 Focus on pulsars from Fermi catalog (50 MeV – 200 GeV)
 Spectra modified by ALPs (gaγγ = 0.5 x 10-10 GeV-1; ma = 2 x 10-8 eV)

34

Photon-ALP conversion in the Galaxy

G. Galanti, P. Caraveo, in preparation.



 Distance is the key parameter

 Power law super exponential cutoff fit N exp[Γ ln(E/E0) 
– (E/Ecut)b] applied to emitted spectra (modified by Pγγ)

 Comparison with pulsars similar to those considered but at
different distances (similar emitted spectra are expected)

 Hint on the presence of ALPs if:
 Comparing similar pulsars at different distances should yield 

different spectral shapes as a function of distance
 farther pulsars should have spectra more modified than 

closer ones

 Without such correlation  hint against ALPs
35

Photon-ALP conversion in the Galaxy (2)

G. Galanti, P. Caraveo, in preparation.
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PSR J1823-3021A
 ALP effects for         

E > 1 GeV

 Tentative new 
heuristic fit “with 
ALPs” resulting in
 Γ = 1.33
 Ecut = 1100.8 MeV
 b = 0.53

 Small increase of Γ, 
small decrease of 
Ecut and b

G. Galanti, P. Caraveo, in preparation.



PSR J1823-3021A

P0 = 0.002 s
Edot = 2.4 x 1035

erg s-1

Age = 475 Myr
d = 3.2 kpc

P0 = 0.008 s
Edot = 2.9 x 1034

erg s-1

Age = 509 Myr
d = 1.8 kpc

P0 = 0.003 s
Edot = 2.2 x 1036

erg s-1

Age = 30 Myr
d = 5.5 kpc

P0 =  0.005 s
Edot = 8.3 x 1035

erg s-1

Age =  26 Myr
d =  7.6 kpc

37G. Galanti, P. Caraveo, in preparation.
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Photon-ALP conversion in the Galaxy (3)
 In the GeV energy range what matters for photon-ALP 

conversion is the transverse component of BMW only

 Best pulsars for ALP studies: distant, in the Galactic 
plane, towards the centre

 Possible improvement of the spectral fits (to be confirmed 
with a more ROBUST analysis)

 Possible existence of ALP hint from the behavior of pulsar 
with similar properties but at different distances (to be 
investigated further)

 Possible constraints on ALP parameter space (gaγγ, ma)
G. Galanti, P. Caraveo, in preparation.





Remarks – ALP spectral effects

40

ALP-photon interactions have deep astrophysical impact:

 Modification of AGN spectra
 In FSRQs ALPs explain why emission above 20 GeV: First HINT
 In BL Lacs ALPs predict observable peculiar features

 Increase of the Universe transparency
 Solve BL Lac spectra redshift dependence: Second HINT

 Blazar spectral features detectable by the CTA and ASTRI

 Possible additional information from pulsars

 Many of previous effects with the same model parameters (gaγγ, ma)  possible ALP 
existence??

 Astrophysical new data from observatories like the CTA, ASTRI Fermi, IAXO and 
laboratory experiments like ALPS II can shed light
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Photon polarization

42

 Photon-ALP beam described by the polarization density matrix        
ρ = |ψ〉〈ψ| (ψ photon-ALP state vector) 

 Stokes parameters I, Q, U, V  photonic part of ρ and denoted by ργ:

 Photon degree of linear polarization:

 Polarization angle:
g



ALPs measure initial photon polarization

43

 Photon conversion probability Pγa

 Photon survival probability Pγγ

 Initial degree of linear polarization ΠL

 Theorems state (hypothesis of no γγ
absorption for photons):
 Pγa ≤ (1 + ΠL)/2
 Pγ γ ≥ (1 – ΠL)/2
 ΠL = measure of the overlap between 

the values of Pγa and Pγ γ

 In the presence of ALPs:
 ΠL can be extracted from flux 

measurements!!! 

G. Galanti, Phys. Rev D 105, 083022 (2022) [arXiv: 2202.10315].

Photon emission from a blazar
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Photon-ALP beam from a galaxy cluster

45

GALAXY CLUSTER
 Diffuse emission in the cluster central region (rcore ~ 100 kpc)

 X-ray: Bremsstrahlung, initial ΠL,0 = 0 (Felten+1966)
 High-energy (HE) range: e.g. synchrotron (turbulent B), ΠL,0 = 0 (Timokhin+2004)

 Electron number density ne,clu (double) beta model (Hudson+2010)
 Magnetic field Bclu = O(10) μG, Kolmogorov-type turbulence, profile                  
∝ (ne,clu/ne,clu,0)ηclu, where ne,clu,0 is the central ne,clu and ηclu ~ 0.75 (Meyer+2014)

EXTRAGALACTIC SPACE
 10-7 nG < Bext < 1.7 nG with coherence O(1) Mpc (Pshirkov+2016)
 Bext ~ 1 nG with coherence O(1) Mpc favored (Rees & Setti, 1968; Kronberg+1999)
 Domain-like model (Galanti & Roncadelli, 2018)

MILKY WAY
 BMW map by Jansson & Farrar (Jansson & Farrar, 2012a,b)

PHOTON-ALP BEAM PROPAGATION
 Stochastic process  exact expression of Bclu, Bext unknown
  Several realizations of the propagation process   ΠL density probability



Galaxy cluster – general
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X-ray band:

 Initial ΠL,0 = 0

 gaγγ = 0.5 x 10-11 GeV-1

 ma < 10-14 eV

 ne,clu,0 = 0.5 x 10-2 cm-3

(non cool core)

 Most probable final
ΠL > 0.1

G. Galanti, arXiv: 2202.11675.



Galaxy cluster – general
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HE band: 

 Initial ΠL,0 = 0

 gaγγ = 0.5 x 10-11 GeV-1

 ma = 10-10 eV

 ne,clu,0 = 0.5 x 10-2 cm-3

(non cool core)

 Most probable final
ΠL > 0.1 (10 MeV),           
ΠL < 0.2 (100 MeV)

G. Galanti, arXiv: 2202.11675.



48G. Galanti, M. Roncadelli, F. Tavecchio, arXiv: 2202.12286.

Galaxy cluster – Perseus
ma < 10-14 eV ma < 10-14 eV ma = 10-10 eV

Models of ne,clu and Bclu: Churazov+2003; 
Bonafede+2010

Bclu,0 = 16 μG



49G. Galanti, M. Roncadelli, F. Tavecchio, arXiv: 2202.12286.

Galaxy cluster – Coma
ma < 10-14 eV ma < 10-14 eV ma = 10-10 eV

Models of ne,clu and Bclu: Briel+1992; 
Bonafede+2010

Bclu,0 = 4.7 μG



Galaxy cluster – Results
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X-ray band:
 Only ma < 10-14 eV for sizable conversion (weak mixing)

 ma < 10-14 eV disfavored but not excluded by ALP limits (e.g. 
Conlon+2017; Reynolds+2020; Sisk-Reynés+2022)

 Possible signal of new physics (ALPs) since final ΠL > 0.1
 Perseus better target than Coma

HE band:
 ma < 10-14 eV strong mixing

 Possible strong signal from Perseus: ΠL > 0.8 at and above 3 MeV
 Perseus better target than Coma

 ma = 10-10 eV weak mixing
 Possible signal: ΠL > 0.2 at 3 MeV
 Similar behavior from Perseus and Coma
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Photon-ALP beam from a blazar

52

BLAZAR (BL Lac) JET
 Emission at the jet base [O(1016-1017) cm from the centre]

 X-ray: electron synchrotron, initial ΠL,0 ~ 0.3 (Zhang+2014)
 High-energy (HE) range:

 Leptonic model (more likely): inverse Compton, initial ΠL,0 = 0 (Maraschi+1992)
 Hadronic model: e.g. proton synchrotron, initial ΠL,0 = 0.4 – 0.6 (Mannheim, 1993a,b)

 Electron number density ne,jet ∝ y-2, central ne,jet,0 = 5 x 104 cm-3 (Tavecchio+2010)
 Magnetic field Bjet ∝ y-1 with central value Bjet,0 (Begelman+1984)

 Bjet,0 = O(0.1-1) G (leptonic model)
 Bjet,0 = O(20) G (hadronic model) 

HOST GALAXY
 Domain-like model
 Bhost = 5 μG with coherence 150 pc (Moss & Shukurov, 1996)

GALAXY CLUSTER – EXTRAGALACTIC SPACE – MILKY WAY
 Like before



Blazar (leptonic) – general

53

X-ray band: 

 Initial ΠL,0 = 0.3

 gaγγ = 0.5 x 10-11 GeV-1

 ma < 10-14 eV

 ne,clu,0 = 5 x 10-2 cm-3

(cool core)

 Most probable final ΠL
= 0.3 with broadening 

G. Galanti, arXiv: 2202.11675.



Blazar (leptonic) – general

54

HE band: 

 Initial ΠL,0 = 0

 gaγγ = 0.5 x 10-11 GeV-1

 ma = 10-10 eV

 ne,clu,0 = 5 x 10-2 cm-3

(cool core)

 Most probable final
ΠL > 0.2 (10 MeV),      
ΠL > 0.8 (100 MeV)

G. Galanti, arXiv: 2202.11675.



55G. Galanti, M. Roncadelli, F. Tavecchio, in preparation.

Blazar – OJ 287 (preliminary)
ma < 10-14 eV

ΠL,0: Zhang & Böttcher, 2013



56G. Galanti, M. Roncadelli, F. Tavecchio, in preparation.

Blazar – OJ 287 (preliminary)
ma = 10-10 eV

ΠL,0: Zhang & Böttcher, 2013



Blazar – Results
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X-ray band:
 ma < 10-14 eV weak mixing

 ma < 10-14 eV disfavored but not excluded by ALP limits (e.g. 
Conlon+2017; Reynolds+2020; Sisk-Reynés+2022)

 Broadening of the initial ΠL,0

 ma = 10-10 eV weak mixing (conversion only in hadronic models)
 High vale of Bjet,0 ~ 20 G is mandatory to have ALP effects
 Possible signal: dimming of the initial ΠL,0 ~ 0.5 [preliminary]

HE band:
 ma < 10-14 eV strong mixing

 Possible strong signal: 0.4 < ΠL < 0.8 at and above 3 MeV
 ma = 10-10 eV weak mixing

 Possible strong signal: ΠL > 0.5 for E > (1-10) MeV





Remarks – ALP polarization effects
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 Photon-ALP interaction transforms flux-measuring observatories 
into polarimeters
 The only method to measure initial (emitted) photon polarization
 Extended energy band (no photon absorption, E < 100 GeV for z < 0.5)

 Photon-ALP interaction produces measurable modifications to 
final photon polarization
 In the X-ray band (detectable by IXPE, Polstar)
 In the HE band (detectable by COSI, e-ASTROGAM and AMEGO)

 Possible additional hints for ALP existence (two hints coming 
from spectral measurements)
 Signal of final ΠL > 0 from clusters robust in favor of ALPs since ΠL,0 = 0
 For blazars final ΠL > 0.5 explained also by hadronic emission model 
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DO ALPs EXIST?

 We have hints from astrophysical spectra
 We expect additional hints from photon polarization

FINAL  ANSWER:

 Within few years
 Confirmed or disproved:

 From new data by ASTRI and CTA
 Possible polarization data from IXPE, COSI, e-ASTROGAM
 From laboratory experiments such as ALPSII
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a

ALPs from Sun and stellar evolution
CAST EXPERIMENT:
 ALPs produced in the Sun by Primakoff

scattering: p + γ  p + a (p protons or charged 
particles)

 ALPs reconverted back to photons inside the B-
field of a magnet at LHC (Laγ = gaγγ E·B a)

 NO DETECTION gaγγ < 0.66 x 10-10 GeV-1 for  
ma < 0.02 eV

66Ayala et al. 2014

GLOBULAR CLUSTERS: 
 ALPs produced in stars by Primakoff scattering  source of stellar cooling 

(ALPs escape from the stellar core since gaγγ very low)
 Modification in the stellar evolution as a function of gaγγ and ma

 From observational data bounds on ALP parameters: gaγγ < 0.66 x 10-10 GeV-1

Anastassopoulos et al. 2017

Primakoff

ALP to photon reconversion



ALPs from supernovae?
 ALPs produced via Primakoff process in core-collapse supernova 

(protoneutron star phase)
 Reconverted back to photons inside the Milky Way magnetic field
 Photons from ALP reconversions supposed to be observed in 

coincidence with observation of neutrinos from SN1987A
 NO DETECTION strong bound on ALPs:

gaγγ < 5.3 x 10-12 GeV-1 for  ma < 4.4 x 10-10 eV

 BUT model oversimplified:
 Strong interactions not considered
 Strong magnetic field B = (1012 – 1016) G not considered (too strong B

may reduce ALP production – QED effects)
 Calculation almost performed as in the vacuum (instead the 

medium at twice the nuclear saturation density and at T ≈ 40 MeV)
 Derived bound cannot be assumed as fully solid
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