Emission processes in blazars

F. Tavechio INAF-OABrera

Sexten2022

Sexten - 19/7/2019

Blazars in a nutshell

SED dominated by the <u>relativistically boosted</u> non-thermal confinuum emission of the jet.

Special relativity at work

Doppler beaming v=0.5c v=0.99c v=0 $\delta = \frac{1}{\Gamma(1 - \beta \cos \theta_{\rm w})}$ Amplification $L_{\rm obs} = L' \delta^4$ $\delta \approx 10 - 20$ Blueshift $\nu_{obs} = \nu' \delta$ Shortening $t_{obs} = t'/\delta$

Jet physics

...

Particle acceleration Plasma and B-field physics Reconnection vs shock Hadronic vs leptonic emission Location of emission region

Propagation effects

Extragalactic background light Intergalactic magnetic field Hadronic beams LIV and ALPs-induced effects and other anomalies

The spectral energy distribution

Extended over the whole EM spectrum Extremely variable

Important observational effort

Abdo et al. 2011

Blazars: basic phenomenology

Blazars occur in two flavors:

FSRQ: high power, thermal optical components (broad lines)

BL Lacs: low power, almost purely non-thermal components

The "blazar sequence"

Fossati et al. 1998 Donato et al. 2002 Ghisellini et al. 2009

But see several papers by Giommi & Padovani

Blazars in a nutshell

Producing the jet

McKinney, Tchekhovskoy, and Blandford 2012

Producing the jet

McKinney, Tchekhovskoy, and Blandford 2012

A (very) simple model

Hadron not important for the emission (but not for energetics!)

Inverse Compton

In principle, in this simple version of the Synchrotron-Self Compton (SSC) model, all parameters can be constrained by quantities available from observations:

Blazars in a nutshell

Application: BL Lacs

Application: BL Lacs

FSRQs: the "canonical" scenario

Dermer et al. 2009 Ghisellini, FT 2009 Sikora et al. 2009

4C454.3

UHECR IceCube Neutrinos

Hadrons are accelerated to very-high and ultra-high energy somewhere in the extragalactic space

Jets offer ideal conditions (B, radius, power)

В

Lepto-hadronic models

Cerruti et al. 2015

Lepto-hadronic models

MAGIC Coll. 2018

Lepto-hadronic models

Zech et al. 2017

PKS 2155-304

Scenario for "extreme Bl Lacs"

Extreme BL Lacs

after Costamante et al. 2001

Bonnoli et al. 2015

Tavecchio et al. 2019

Tavecchio et al. 2019

Variability

Time dependent models

Time dependent models

Final thoughts

Jets are very complex systems but ...

(Leptonic)One zone models are surprisingly successful!

We can obtain rather interesting clues one particle acceleration, evolution etc...

Lepto-Hadronic models suggested by neutrino data but still need improvements