Ground－based gamma－ray astronomy with LHAASO

G．Di Sciascio

INFN－Roma Tor Vergata，Italy
IHEP－Chinese Academy of Sciences，Beijing，China（PIFI program）
disciascio＠roma2．infn．it

SEXTEN CENTER
Summer School on Gamma－Ray Astrophysics
Sesto－Sexten（Italy）July 18－22， 2022

All-particle Energy Spectrum

All-particle Energy Spectrum

A closer look to the knee region

A closer look to the knee region

Open questions in Cosmic Ray Physics

Much of CR research in the past century has been devoted to answering a set of classical questions:
(1) Which classes of sources contribute to the CR flux in different energy ranges? How many types of sources provide a significant contribution to the overall CR flux?
(2) Which sources are capable of reaching the highest particle energies and how?
(3) Which are the relevant processes responsible for CR confinement in the Galaxy?
(4) Where is the transition between Galactic and EG-CRs and how can we explain the well-known features such as knee, second knee, ankle?
(5) What is the origin of the difference between the chemical composition of CRs and the solar one?

A description

The CR spectrum can be described as an ensemble of adjacent energy intervals, where the energy distribution is a simple power law, separated by "spectral features", that is narrow regions where the slope (or spectral index) of the flux undergoes a rapid change.

The features can be softenings or hardenings of the spectrum, and appear as "knee-like" or "ankle-like" in the usual log-log graphic representation of the spectrum.

$$
\phi(E)=K_{0}\left(\frac{E}{E_{0}}\right)^{-\alpha_{1}}\left[1+\left(\frac{E}{E_{b}}\right)^{\frac{1}{w}}\right]^{-\left(\alpha_{2}-\alpha_{1}\right) w}
$$

The absolute flux K_{0} and the spectral index α_{1} quantify the power law. The flux above the cut-off energy E_{b} is modeled by a second and steeper power law. The parameters α_{2}, the slope beyond the knee, and $w>0$, the smoothness of the transition from the first to the second power law, characterize the change in the spectrum at the cut-off energy. A value $w=0$ corresponds to a steep transition that soften with increasing values?

The knee region by selected experiments

Fits to the all-particle spectra in the knee region

Table 1: Fits to the all-particle CR spectra in the energy range $8 \cdot 10^{4}$ to $2 \cdot 10^{9} \mathrm{GeV}$.
(a) Parameters for the first Knee.

Experiment	$E_{b 1}(\mathrm{PeV})$	α_{1}	α_{2}	w_{1}
TALE	4.26 ± 1.65	2.76 ± 0.18	3.11 ± 0.07	0.07 ± 0.18
IceTop	3.30 ± 1.23	2.48 ± 0.08	3.12 ± 0.12	0.30 ± 0.46
Tunka-133	4.18 ± 0.83	2.76 ± 0.09	3.20 ± 0.04	0.15 ± 0.16
ARGO-YBJ/Tibet AS γ	3.72 ± 0.03	2.66 ± 0.01	3.13 ± 0.01	0.11 ± 0.01
Kascade-Grande	2.10 ± 0.87	2.47 ± 0.04	3.16 ± 0.14	0.60 ± 0.51

(b) Parameters for the ankle feature.

Experiment	$E_{b 2}(\mathrm{PeV})$	α_{2}	α_{3}	w_{2}
TALE	16.61 ± 8.36	3.11 ± 0.05	2.93 ± 0.05	0.07 ± 0.05
IceTop	18.66 ± 6.65	3.12 ± 0.12	2.92 ± 0.05	0.05 ± 0.05
Tunka-133	18.70 ± 3.88	3.20 ± 0.04	2.96 ± 0.05	0.17 ± 0.45
ARGO-YBJ/Tibet AS γ	43.8 ± 4.81	3.13 ± 0.01	2.86 ± 0.05	0.01 ± 0.01
Kascade-Grande	18.01 ± 17.4	3.16 ± 0.14	2.83 ± 0.45	0.66 ± 1.74

(c) Parameters for the second Knee.

Experiment	$E_{b 3}(\mathrm{PeV})$	α_{3}	α_{4}	w_{3}
TALE	104.5 ± 40.0	2.93 ± 0.05	3.18 ± 0.06	0.02 ± 0.02
IceTop	168.4 ± 17.4	2.92 ± 0.05	3.50 ± 0.40	0.25 ± 0.16
Tunka-133	238.2 ± 56.8	2.96 ± 0.05	3.34 ± 0.19	0.05 ± 0.50
Kascade-Grande	274.5 ± 122	2.83 ± 0.45	3.20 ± 0.13	2.47 ± 0.97

Galactic CRs: mainstream interpretation

- CRs below $10^{17} \mathrm{eV}$ are predominantly Galactic.
- Standard paradigm: Galactic CRs accelerated in SN shocks via 1^{0} order Fermi mechanism
- Somehow released into the ISM, CRs are diffusively confined within a magnetized Galactic halo
- CRs reside from some time before escaping the Galaxy

- Galactic CRs are scrambled by galactic magnetic field over very long time \rightarrow arrival direction mostly isotropic

Galactic CRs: mainstream interpretation

- CRs below $10^{17} \mathrm{eV}$ are predominantly Galactic.
- Standard paradigm: Galactic CRs accelerated in SN shocks via 1^{0} order Fermi mechanism
- Somehow released into the ISM, CRs are diffusively confined within a magnetized Galactic halo
- CRs reside from some time before escaping the Galaxy

- Galactic CRs are scrambled by galactic magnetic field over very long time \rightarrow arrival direction mostly isotropic

Galactic CRs: mainstream interpretation

- CRs below $10^{17} \mathrm{eV}$ are predominantly Galactic.
- Standard paradigm: Galactic CRs accelerated in SN shocks via 1^{0} order Fermi mechanism
- Somehow released into the ISM, CRs are diffusively confined within a magnetized Galactic halo
- CRs reside from some time before escaping the Galaxy

- Galactic CRs are scrambled by galactic magnetic field over very long time
\rightarrow arrival direction mostly isotropic
- Transition to extragalactic CRs occurs somewhere between 10^{17} and $10^{19} \mathrm{eV}$

The 'knee' in the $C R$ energy spectrum

- Why should we study CRs at the knee?
$\star E_{\text {knee }} \rightarrow$ most extreme Galactic accelerators of CR protons

The 'knee' in the $C R$ energy spectrum

- Why should we study CRs at the knee?
$\star E_{\text {knee }} \rightarrow$ most extreme Galactic accelerators of CR protons

LSA energy dependence: IceCube/IceTop

G. Di Sciascio - INFN Roma Tor Vergata

LSA energy dependence: IceCube/IceTop

G. Di Sciascio - INFN Roma Tor Vergata
[IceCube \& IceTop'16]
Sesto-Sexten, July

The origin of the 'knee'

In 1961 B. Peters postulated a rigidity cutoff model.

$$
E_{\max } \approx Z e \cdot L \cdot B
$$

$$
\rightarrow E_{\text {total }}(\text { knee }) \sim \mathbb{Z} \times R(\text { knee })
$$

- Not only does the spectrum become steeper due to such a cutoff but also heavier
- $<\mathrm{A}>$ should begin to decrease again for $\mathrm{E}>30 \times \mathrm{E}_{\text {knee }} \approx 100 \mathrm{PeV}$

The standard model

The standard model

Conflicting results: ARGO-YBJ and Tibet AS γ

Conflicting results: ARGO-YBJ and Tibet AS γ

The ARGO-YBJ light knee

Knee region: quite confusing situation

All-particle and $(\mathrm{p}+\mathrm{He})$ energy spectra

Maximum energy: in numbers...

Gamma - Cosmic Ray connection

Gamma - Cosmic Ray connection

TeV Cosmic Rays?

Satellites and
\rightarrow Photons $>100 \mathrm{GeV}$! Cherenkov Telescopes

Gamma - Cosmic Ray connection

Air shower arrays

Production mechanisms for gamma rays

$$
\mathrm{py} \rightarrow \Delta^{+} \rightarrow\left\{\begin{array}{l}
\mathrm{p} \pi^{0} \rightarrow \mathrm{p} \mathrm{y} \mathrm{y} \\
\mathrm{n} \pi^{+} \rightarrow n \mu^{+} v_{\mu} \rightarrow n \mathrm{e}^{+} v_{\mathrm{e}} \bar{v}_{\mu} v_{\mu}
\end{array}\right.
$$

$$
\mathrm{pp} \rightarrow\left\{\begin{array}{l}
\pi^{0} \rightarrow \mathrm{y} v \\
\pi^{+} \rightarrow \mu^{+} v_{\mu} \rightarrow \mathrm{e}^{+} \mathrm{v}_{\mathrm{e}} v_{\mu} \bar{v}_{\mu} \\
\pi \rightarrow \mu^{-} \bar{v}_{\mu} \rightarrow \mathrm{e}^{-} \bar{v}_{\mathrm{e}} \bar{v}_{\mu} v_{\mu}
\end{array}\right.
$$

Inverse Compton

Proton-Proton Interactions

Production mechanisms for gamma rays

$$
\mathrm{py} \rightarrow \Delta^{+} \rightarrow\left\{\begin{array}{l}
\mathrm{p} \pi^{0} \rightarrow \mathrm{p} \mathrm{y} \mathrm{y} \\
\mathrm{n} \pi^{+} \rightarrow \mathrm{n} \mu^{+} v_{\mu} \rightarrow n e^{+} v_{\mathrm{e}} \bar{v}_{\mu} v_{\mu}
\end{array}\right.
$$

$$
\mathrm{pp} \rightarrow\left\{\begin{array}{l}
\pi^{0} \rightarrow \mathrm{y} \mathrm{y} \\
\pi^{+} \rightarrow \mu^{+} v_{\mu} \rightarrow \mathrm{e}^{+} \mathrm{v}_{\mathrm{e}} \mathrm{v}_{\mu} \bar{v}_{\mu} \\
\pi^{-} \rightarrow \mu^{-} \bar{v}_{\mu} \rightarrow \mathrm{e}^{-} \overline{\mathrm{v}}_{\mathrm{e}} \overline{\mathrm{v}}_{\mu} \mathrm{v}_{\mu}
\end{array}\right.
$$

Inverse Compton

Production mechanisms for gamma rays

$\mathrm{py} \rightarrow \Delta^{+} \rightarrow\left\{\begin{array}{l}\mathrm{p} \pi^{0} \rightarrow \mathrm{pryy} \\ \mathrm{n} \pi^{+} \rightarrow n \mu^{+} v_{\mu} \rightarrow n e^{+} v_{e} \bar{v}_{\mu} v_{\mu}\end{array}\right.$

$$
\mathrm{pp} \rightarrow\left\{\begin{array}{l}
\pi^{0} \rightarrow \mathrm{yy} \\
\pi^{+} \rightarrow \mu^{+} v_{\mu} \rightarrow \mathrm{e}^{+} \mathrm{v}_{\mathrm{e}} \mathrm{v}_{\mu} \bar{v}_{\mu} \\
\pi^{-} \rightarrow \mu^{-} \bar{v}_{\mu} \rightarrow \mathrm{e}^{-} \bar{v}_{\mathrm{e}} \bar{v}_{\mu} v_{\mu}
\end{array}\right.
$$

Proton-Proton Interactions

From particle to photon spectra

Hadronic: proton spectrum $E^{-2} \rightarrow$ p-p interaction \rightarrow gamma-ray spectrum E^{-2}
Leptonic: electron spectrum $E^{-2} \rightarrow$ inverse Compton scattering \rightarrow gamma-ray spectrum $E^{-1.5}$

$$
E_{p, e}^{-\delta} \rightarrow E_{\gamma}^{-\alpha}
$$

$\begin{array}{lll}\text { p-p interactions } & \alpha=\delta & E_{\gamma} \approx 0.1 \times E_{p} \\ \text { bremsstrahlung } & \alpha=\delta & E_{\gamma} \approx E_{e} \\ \text { inverse Compton } & \alpha=\frac{\delta+1}{2} & E_{\gamma} \approx 1\left(\frac{E_{e}}{20 \mathrm{TeV}}\right)^{2} \mathrm{TeV}\end{array}$

Complex scenario: each source is individual and has a unique behaviour. In general one expects a combination of leptonic and hadronic emission!
Multi-wavelength observations crucial but high energy spectra similar.

From particle to photon spectra

Hadronic: proton spectrum $E^{-2} \rightarrow$ p-p interaction \rightarrow gamma-ray spectrum E^{-2}
Leptonic: electron spectrum $E^{-2} \rightarrow$ inverse Compton scattering \rightarrow gamma-ray spectrum $E^{-1.5}$

$$
E_{p, e}^{-\delta} \rightarrow E_{\gamma}^{-\alpha}
$$

Complex scenario: each source is individual and has a unique behaviour. In general one expects a combination of leptonic and hadronic emission!
Multi-wavelength observations crucial but high energy spectra similar.

Data above 50 TeV are very important...

...to discriminate between Leptonic/Hadronic emission of photons

- Leptonic emission:

1) Thomson regime $E_{e} \epsilon \ll 4 m_{e}^{2} \quad(\varepsilon=$ seed photon energy $)$ Constant cross section: Thomson cross section Electron spectrum $E^{-\delta}$
\rightarrow Gamma ray spectrum $E^{-\alpha}, \alpha=\frac{\delta+1}{2}$
2) Klein-Nishina regime

The cross section decreases
Photon index $\alpha=\delta+1$
In case of CMB seed photons, the KN regime starts below 100 TeV

Inverse Compton is suppressed by the Klein-Nishina effect

- Hadronic emission:
π^{0} decay from proton/nuclei interactions with the ambient nuclei
There is NO suppression at high energy as IC, unless the parent proton spectrum has a cutoff

Data above 50 TeV are very important...

...to discriminate between Leptonic/Hadronic emission of photons
\checkmark Leptonic emission:

1) Thomson regime $E_{e} \epsilon \ll 4 m_{e}^{2} \quad(\varepsilon=$ seed photon energy $)$ Constant cross section: Thomson cross section Electron spectrum $E^{-\delta}$
\rightarrow Gamma ray spectrum $E^{-\alpha}, \alpha=\frac{\delta+1}{2}$
2) Klein-Nishina regime The cross section decreases Photon index $\alpha=\delta+1$ In case of CMB seed photons, th starts below 100 TeV

- Hadronic Gammaray π^{0} decay fr impo fuclei interactions with the ambient nuclei
There is NO suppression at high energy as IC, unless the parent proton spectrum has a cutoff
\star A power law spectrum reaching 100 TeV without a cutoff is a strong indication of the hadronic origin of the emission

Gamma-ray detectors

Gamma-ray detectors

Gamma-ray detectors

LHAASO layout

- $1.3 \mathrm{~km}^{2}$ array, including 5195 scintillator detectors $1 \mathrm{~m}^{2}$ each, with 15 m spacing.
- An overlapping $1 \mathrm{~km}^{2}$ array of 1171 , underground water Cherenkov tanks $36 \mathrm{~m}^{2}$ each, with 30 m spacing, for muon detection (total sensitive area $\approx 42,000 \mathrm{~m}^{2}$).

- A close-packed, surface water Cherenkov detector facility with a total area of $80,000 \mathrm{~m}^{2}$.
- 18 wide field-of-view air Cherenkov (and fluorescence) telescopes.
- Neutron detectors

The LHAASO site

The experiment is located at 4400 m asl $\left(600 \mathrm{~g} / \mathrm{cm}^{2}\right)$ in the Haizishan (Lakes' Mountain) site, Sichuan province

Coordinates: $29^{\circ} 21^{\prime} 31^{\prime \prime} \mathrm{N}, 100^{\circ} 08^{\prime} 15^{\prime \prime} \mathrm{E}$

700 km to Chengdu

50 km to Daocheng City (3700 m asl, guest house)
10 km to the highest airport in the world

LHAASO Sky >100 TeV with half array

Detection of $>1 \mathrm{PeV}$ photons from Crab

Electron accelerator over 22 energy decades
Mechanism: Inverse Compton on 2.7 K CMBR: direct relation $E_{e} \sim 2.15\left(\frac{E_{\gamma}}{1 \mathrm{PeV}}\right)^{0.77}$

$$
E_{\gamma}=1.1 \mathrm{PeV} \rightarrow E_{e} \sim 2.5 \mathrm{PeV}
$$

$\log _{10}(E / \mathrm{TeV})$	$\mathrm{N}_{\text {on }}$	N_{b}
$2.0-2.2$	55	1.413
$2.2-2.4$	23	0.459
$2.4-2.6$	6	0.176
$2.6-2.8$	3	0.045
$2.8-3.0$	1	0.008
$3.0-3.2$	1	0.000

Science, 373 (2021) 425

0.9 PeV photon from the Crab

Observed by 3 LHAASO detectors: WCDA, KM2A and WFCTA

Excellent Energy Intercalibration

$$
\begin{array}{ll}
\text { KM2A } & 0.88 \pm 0.11 \mathrm{PeV} \\
\text { WFCTA } & 0.92_{-0.20}^{+0.28} \mathrm{PeV}
\end{array}
$$

c FoV of WFCTA Telescope 10

- Telescope 10
- Scintillator Counter

O Muon Detector
Science, 373 (2021) 425

LHAASO: γ-ray sources above 100 TeV

- High statistical significance: $>7 \sigma$

Nature 594: 33-36 (2021)

- High statistics: 543 HE photons vs 65 CR bkg
- High flux at 100 TeV
- Maximum energy: 1.4 PeV

Source name	RA ${ }^{\circ}$)	dec. $\left(^{\circ}\right.$)	Significance above 100 TeV ($\times \sigma$)	$E_{\text {max }}(\mathrm{PeV})$	Flux at 100 TeV (CU)
LHAASO J0534+2202	83.55	22.05	(178)	0.88 ± 0.11	(100().14)
LHAASO J1825-1326	276.45	-13.45	(16.4)	0.42 ± 0.16	(3.57().52)
LHAASO J1839-0545	279.95	-5.75	7.7	0.21 ± 0.05	0.70(0.18)
LHAASO J1843-0338	280.75	-3.65	8.5	$0.26-0.10^{+0.16}$	0.73(0.17)
LHAASO J1849-0003	282.35	-0.05	10.4	0.35 ± 0.07	074(0.15)
LHAASO J1908+0621	287.05	6.35	17.2	0.44 ± 0.05	1.36().18)
LHAASO J1929+1745	292.25	17.75	7.4	$0.71-0.07{ }^{+0.16}$	0.38(0.09)
LHAASO J1956+2845	299.05	28.75	7.4	0.42 ± 0.03	0.41(0.09)
LHAASO J2018+3651	304.75	36.85	10.4	0.27 ± 0.02	0.50(0.10)
LHAASO J2032+4102	308.05	41.05	10.5	1.42+ 0.13	0.54(0.10)
LHAASO J2108+5157	317.15	51.95		0.43 ± 0.05	038(0.09)
LHAASO J2226+6057	336.75	60.95	(13.6)	0.57 ± 0.19	1.05().16)

Celestial coordinates (RA, dec.); statistical significance of detection above 100 TeV (calculated using a point-like template for the Crab Nebula and LHAASO J2108+5157 and 0.3° extension templates for the other sources); the corresponding differential photon fluxes at 100 TeV ; and detected highest photon energies. Errors are estimated as the boundary values of the area that contains $\pm 34.14 \%$ of events with respect to the most probable value of the event distribution. In most cases, the distribution is a Gaussian and the error is 1σ.

SNRs are likely not the main sources of PeV CRs in our galaxy.

No young SNRs (Cas A, Tycho)
None of these sources can be clearly described with hadronic mechanisms operating in SNR

Residual CR background $>100 \mathrm{TeV}$ and exposure

source	Number of on-source events	number of background events	exposure (hr)
LHAASO J0534+2202	67	5.5	2236.4
LHAASO J1825-1326	61	3.2	1149.3
LHAASO J1839-0545	26	4.2	1614.5
LHAASO J1843-0338	30	4.3	1715.4
LHAASO J1849-0003	36	4.8	1865.3
LHAASO J1908+0621	74	5.1	2058.0
LHAASO J1929+1745	29	5.8	2282.6
LHAASO J1956+2845	34	6.1	2461.5
LHAASO J2018+3651	42	6.3	2610.7
LHAASO J2032+4102	45	6.7	2648.2
LHAASO J2108+5157	30	6.4	2525.8
LHAASO J2226+6057	60	6.2	2401.3

Above 400 TeV , KM2A measures γ-rays essentially background-free

 CR rejection power 10^{-4} at 100 TeV and 10^{-5} at 1 PeV
Muon-poor technique

Impressive background rejection capability!

Cosmic ray rate before cut

Gamma-ray rate
Cosmic ray rate after cut

LHAASO-KM2A

	ARGO	AS+MD	HAWC	KM2A	CTA
Area	$\mathbf{6 , 5 0 0} \mathrm{m}^{\mathbf{2}}$	$\mathbf{5 0 , 0 0 0} \mathrm{m}^{\mathbf{2}}$	22,500 m^{2}	$1 \mathrm{~km}^{2}$	$10 \mathrm{~km}^{2}$
$\sigma_{\theta}(\mathbf{d e g})$	0.2-0.5	0.2-0.5	0.1-0.5	0.1-0.5	0.05
BG rejection power		10^{4}	100	10^{4}	100
Duty Cycle	>90\%	>90\%	>90\%	>90\%	10\%
FOV (sr)	2	2	2	2	0.015
Sensitivity (c.u.) @ 100 TeV		0.25		0.01	0.3
Energy resolution	30\%	30\%	>50\%	30\%	15\%

KM2A Energy and Angular Resolutions

```
* \(\boldsymbol{\theta}<\mathbf{2 0} 0^{\circ}\) : 24\% @ \(20 \mathrm{TeV}, \mathbf{1 3 \%}\) at 100 TeV
\(\star 0.25^{\circ}-0.30^{\circ}\) at 100 TeV
```


Chinese Physics C 45: 025002 (2021)

Very important to measure cutoffs of PeVatrons!

Opening the PeV γ-ray sky to observations

- background-free detection of extended 1 deg sources of $>100 \mathrm{TeV}$
- gamma-rays of strength 0.1 Crab by KM2A with a rate $1 \mathrm{ph} / 100 \mathrm{~h}$
- Exposure / year: > 2000 km² hr (CTA: 100 km²hr)

This achievement is the result of the combination of:
(1) a $1-\mathrm{km}^{2}$ detection area providing adequate UHE photon statistics;
(2) suppression of the CR background at the level of 10^{-5}, enabling background-free detection of γ-rays above 100 TeV ;
(3) KM2A - PSF: 25^{\prime} at $20 \mathrm{TeV} 12^{\prime}$ at 100 TeV ;
(4) an energy resolution of $<20 \%$ constraining the spillover that mainly occurs in the neighbouring energy channels with a width of $\Delta(\log E)=0.2$.

SEDs of 3 most powerful sources

Very steep spectra $\Gamma \approx 3$

Klein-Nishina regime???

Fit with log-parabola function $\left(\frac{E}{10 \mathrm{TeV}}\right)^{-a-b \cdot \log \left(\frac{E}{10 \mathrm{TeV}}\right)}$ with $\Gamma(E)=a+b \cdot \log (E)$

The first SNR as PeVatron?

LHAASO J1908+0621 = SNR G40.5-0.5 + GMC ?

One of the most intriguing sources in the Galactic plane. MGRO J1908+06 spatially associates with an IceCube hotspot of neutrino emission. Although the hotspot is not significant yet, this suggests a possible hadronic origin of the observed gamma-ray radiation.

Highest energy photon $0.45 \mathrm{PeV}=>\mathrm{Ep}>2 \mathrm{PeV}$ confirmation of association with G40.5-0.5 would be the first evidence of a SNR operating as PeVatron
soon LHAASO will announce detection of UHE γ-rays from W51 and γ Cygni => new developments are anticipated with exciting implications

Potential TeV counterparts

LHAASO Source	Possible Origin	Type	Distance (kpc)	Age (kyr) ${ }^{\text {a }}$	$L_{s}(\mathrm{erg} / \mathrm{s})^{\text {b }}$	Potential TeV Counterpart ${ }^{\text {c }}$
LHAASO J0534+2202	PSR J0534+2200	PSR	2.0	1.26	4.5×10^{38}	Crab, Crab Nebula
LHAASO J1825-1326	PSR J1826-1334	PSR	$3.1 \pm 0.2^{\text {d }}$	21.4	2.8×10^{36}	HESS J1825-137, HESS J1826-130, 2HWC J1825-134
	PSR J1826-1256	PSR	1.6	14.4	3.6×10^{36}	
LHAASO J1839-0545	PSR J1837-0604	PSR	4.8	33.8	2.0×10^{36}	2HWC J1837-065, HESS J1837-069, HESS J1841-055
	PSR J1838-0537	PSR	$1.3{ }^{\text {e }}$	4.9	6.0×10^{36}	
LHAASO J1843-0338	SNR G28.6-0.1	SNR	9.6 ± 0.3^{f}	$<2^{f}$	-	HESS J1843-033, HESS J1844-030, 2HWC J1844-032
LHAASO J1849-0003	PSR J1849-0001	PSR	7^{9}	43.1	9.8×10^{36}	HESS J1849-000, 2HWC J1849+001
	W43	YMC	5.5^{h}	-	-	
LHAASO J1908+0621	SNR G40.5-0.5	SNR	$3.4{ }^{i}$	$\sim 10-20^{j}$		MGRO J1908+06, HESS J1908+063, ARGO J1907+0627, VER J1907+062, 2HWC 1908+063
	PSR 1907+0602	PSR	2.4	19.5	2.8×10^{36}	
	PSR 1907+0631	PSR	3.4	11.3	5.3×10^{35}	
LHAASO J1929+1745	PSR J1928+1746	PSR	4.6	82.6	1.6×10^{36}	$\begin{aligned} & \text { 2HWC J1928+177, 2HWC J1930+188, } \\ & \text { HESS J1930+188, VER J1930+188 } \end{aligned}$
	PSR J1930+1852	PSR	6.2	2.9	1.2×10^{37}	
	SNR G54.1+0.3	SNR	$6.3_{-07}^{+0.8 d}$	$1.8-3.3^{k}$	-	
LHAASO J1956+2845	PSR J1958+2846	PSR	2.0	21.7	3.4×10^{35}	2HWC J1955+285
	SNR G66.0-0.0	SNR	$2.3 \pm 0.2^{\text {d }}$	-	-	
LHAASO J2018+3651	PSR J2021+3651	PSR	$1.8{ }_{-1.4}^{+1.7 l}$	17.2	3.4×10^{36}	MGRO J2019+37, VER J2019+368, VER J2016+371
	Sh 2-104	H II/YMC	$3.3 \pm 0.3^{m} / 4.0 \pm 0.5^{n}$	-	-	
LHAASO J2032+4102	Cygnus OB2	YMC	$1.40 \pm 0.08^{\circ}$	-	-	TeV J2032+4130, ARGO J2031+4157, MGRO J2031+41, 2HWC J2031+415, VER J2032+414
	PSR 2032+4127	PSR	$1.40 \pm 0.08^{\circ}$	201	1.5×10^{35}	
	SNR G79.8+1.2	SNR candidate	-	-	-	
LHAASO J2108+5157	-	-	-	-	-	-
LHAASO J2226+6057	SNR G106.3+2.7	SNR	0.8^{p}	$\sim 10^{p}$	-	VER J2227+608, Boomerang Nebula
	PSR J2229+6114	PSR	0.8^{p}	$\sim 10^{p}$	2.2×10^{37}	

The only firmly identified source is the Crab Nebula

LHAASO and ASTRI/CTA

The LHAASO angular resolution at PeV is about 0.2 deg

Crab apart, the majority of remaining sources represent diffuse γ-ray structures with angular extensions up to 1°, and all of them are located along the Galactic plane

> LHAASO has not observed PeVatrons but 'regions' emitting PeV gamma rays!

We need to improve the angular resolution to identify the emission zones.

Strong complementarity with Cherenkov Telescopes to improve the source identification

In addition, the effective area must increase of a factor of 10 because Super-PeVatrons emitting photons up to the 10 PeV range are expected, in particular in the South!

Homework for SWGO!

ASTRI is arriving!

Observations of ASTRI\&CTA and eROSITA could be very helpful in localisation of PeVatrons inside the LHAASO UHE gamma-ray sources with high precision

ASTRI combined with LHAASO would be the most powerful tool for UHE gamma-ray astronomy in the coming years!

ASTRI very important for precise identification of PeV sources and information about their morphology

S. Vercellone 2022

The max photon energy event

Nature 594: 33-36 (2021)

- $1.42 \pm 0.13 \mathrm{PeV}$ from the Cygnus region
- Chance probability due to cosmic ray background 0.028%

The Cygnus Cocoon by ARGO

The Cygnus Cocoon is a superbubble surrounding a region of OB2 massive star formation

The Cocoon, which seems to be related to the combination of many powerful SNR and stellar-wind shocks, has been detected at TeV energies by ARGO-YBJ for the first time.

This observation confirms a long-standing hypothesis that massive-star forming regions can accelerate particles to relativistic energies.

Spectrum of ARGO J2031+4157: $\frac{d N}{d E} \propto E^{-2.62 \pm 0.27}$
Combined Fermi-LAT\&ARGO spectrum: $\frac{d N}{d E} \propto E^{-2.16 \pm 0.04}$

The Cygnus Cocoon by HAWC up to 200 TeV

1343 days of measurements
Extension: $2.13^{\circ} \pm 0.15^{\circ}$ (stat.) $\pm 0.06^{\circ}$ (syst.)

The TeV measurements provide direct evidence that the Cygnus Cocoon accelerates CR protons above 100 TeV .

The leptonic origin of the γ-ray radiation is disfavored, as uniquely responsible for the GeV and TeV flux observed.

The measured flux is likely originated by hadronic interactions.

Power law spectrum

$$
\begin{aligned}
& d N / d E=N_{0}\left(E / E_{0}\right)^{\Gamma} \\
& \Gamma=-2.64_{-0.05}^{+0.05}(\text { stat. })_{-0.03}^{+0.09}(\text { syst. })
\end{aligned}
$$

Radial distribution of $C R$ density

in extended regions around Cygnus Cocoon, Westerlund 1 Cocoon and in the CMZ of the Galactic Center

γ-ray luminosities of CR protons

Radial distribution of CR protons

The density of CR protons responsible for γ-rays, declines as $1 / r$ up to $\approx 50 \mathrm{pc}$ from the stellar clusters Cyg OB2 and Westerlund 1.
$1 / r \rightarrow$ continuous accelerator!

Massive Stars as PeVatrons

$$
\begin{aligned}
& \text { What do we expect? } \\
& \qquad \begin{array}{ll}
1 / r & \rightarrow \text { continuous source } \\
1 / r^{2} & \rightarrow \text { wind or ballistic motion } \\
\text { constant } & \rightarrow \text { burst like source }
\end{array}
\end{aligned}
$$

The $1 / r$ decrement of the $C R$ density with the distance from the star cluster is a distinct signature of continuous injection of $C R s$ and their diffusion through ISM.

The analysis of γ-ray data show that the hard energy spectra of parent protons continue up to $\sim 1 \mathrm{PeV}$, and the efficiency of conversion of kinetic energy of powerful stellar winds can be as high as 10%.

This implies that the population of young massive stars can provide production of CRs at a rate of up to $10^{41} \mathrm{erg} / \mathrm{s}$, which is sufficient to support the flux of Galactic CRs without invoking other source populations.

What's next?

After the observation of more than 15γ-sources above 100 TeV in the Northern hemisphere, an all-sky detector in the Southern hemisphere should be a high priority!

We expect Super-PeVatrons well beyond the PeV in the Inner Galaxy!

\rightarrow we need a detector able to measure energy spectra up to 10 PeV

2 different approaches:

SWGO: HAWC-based layout with only water Cherenkov detectors

STACEX: RPC carpet above a water Cherenkov pond for muon detection + scintillator array to have statistics at PeV

Much smaller full coverage core detector

SWGO: a water Cherenkov based array

STACEX

Sensitivity of the "core" detector

Conclusions

LHAASO is the most ambitious experiment to study Galactic Cosmic Rays being able to deal with all the main open problems of Cosmic Ray physics at the same time.

First year operation with half array opened the PeV gamma-sky to observations for the first time!

The recent detections by LHAASO
directly demonstrate the presence of electron and proton PeVatrons in the Milky Way The Galaxy is full of PeVatrons!
Are the galactic proton PeVatrons linked to SNRs or YMCs or Sgr A* or all of of them?

- observations with LHAASO, eRosita, CTA/ASTRI and SWGO will tell us

CTA-South and SWGO in the Southern Hemisphere will explore the Inner Galaxy looking for Super-PeVatrons up to 10 PeV

> The next challenge is to search for Super-PeVatrons in the Inner Galaxy!

LHAASO vs other EAS arrays

Experiment	$\mathrm{g} / \mathrm{cm}^{2}$	Detector	$\Delta \mathrm{E}$ (eV)	e.m. Sensitive Area $\left(\mathrm{m}^{2}\right)$	Instrumented Area $\left(\mathrm{m}^{2}\right)$	Coverage
ARGO-YBJ	606	RPC/hybrid	$3 \cdot 10^{11}-10^{16}$	6700	11,000	
BASJE-MAS	550	scint./muon	$6 \cdot 10^{12}-3.5 \cdot 10^{16}$		0.93	
TIBET AS γ	606	scint./burst det.	$5 \cdot 10^{13}-10^{17}$	380	10^{4}	
CASA-MIA	860	scint./muon	$10^{14}-3.5 \cdot 10^{16}$	1.6×10^{3}	3.7×10^{4}	2.3×10^{5}
KASCADE	1020	scint./mu/had	$2-90 \cdot 10^{15}$	5×10^{2}	4×10^{4}	7×10^{-2}
KASCADE-Grande	1020	scint./mu/had	$10^{16}-10^{18}$	370	5×10^{5}	7×10^{-2}
Tunka	900	open Cher. det.	$3 \cdot 10^{15}-3 \cdot 10^{18}$	-	10^{6}	-
IceTop	680	ice Cher. det.	$10^{16}-10^{18}$	4.2×10^{2}	10^{6}	4×10^{-4}
LHAASO	600	Water C scintill/muon/hadron Wide FoV Cher. Tel.	$10^{12}-10^{17}$	5.2×10^{3}	1.3×10^{6}	4×10^{-3}
				$(\mathrm{KM2A)}$		

		μ Sensitive Area $\left(\mathrm{m}^{2}\right)$	Instrumented Area $\left(\mathrm{m}^{2}\right)$	Coverage
LHAASO	4410	4.2×10^{4}	10^{6}	4.4×10^{-2}
TIBET AS γ	4300	4.5×10^{3}	3.7×10^{4}	1.2×10^{-1}
KASCADE	110	6×10^{2}	4×10^{4}	1.5×10^{-2}
CASA-MIA	1450	2.5×10^{3}	2.3×10^{5}	1.1×10^{-2}

\uparrow LHAASO Muon detector area: $4.2 \times 10^{4} \mathrm{~m}^{2}+8 \times 10^{4} \mathrm{~m}^{2}(\mathrm{WCDA}) \approx 10^{5} \mathrm{~m}^{2}!!!$

Water Cherenkov Detector Array

3 Arrays
 1: 22,500 m ${ }^{2}$ 8"PMTs
 2: 22,500 m ${ }^{2} 20$ "PMTs 3: 33,000 m² 20"PMTs

Water Cherenkov Detector Array

To enlarge the dynamic range, a 1.5 -inch PMT is placed aside each large PMT in one of the two smaller ponds.

To extend the dynamic range, a dynode of the PMT is also used for signal output together with the anode.

The anode signal is split into two parts for time and charge measurements, respectively, while the dynode signal is used only for charge measurement of large signals.

LHAASO: KM2 A array

Electromagnetic particle detectors

16 wavelength-shifting fibers (2.7 m in length and 1.5 mm in diameter) are embedded in 32 grooves (each 1.8 mm in depth and 1.6 mm in width) of each tile to collect scintillation light generated by charged particles and guide the scintillation light to a 1.5 -inch PMT.

Effective Area: $1 m^{2}$
Detection Efficiency ($>5 \mathrm{MeV}$): $>95 \%$
Dynamic Range: 1-104 particles
Time Resolution: < 2 ns
Particle counting resolution: 25% at 1 particle, 5% at 10^{4} particles
PMT: 1.5 inch

The average single rate of an ED is $\approx 1.7 \mathrm{kHz}$ with a threshold of $1 / 3$ particle

Water Cherenkov Muon Detector

The average single rate of an MD is $\approx 8 \mathrm{kHz}$ with a threshold of 0.4 particles

Item	Value
Area	$\mathbf{3 6} \mathbf{~ m}^{2}$
Detection efficiency	$>\mathbf{9 5 \%}$
Purity of \mathbf{N}_{μ}	$>95 \%$
Time resolution	$<\mathbf{1 0} \mathbf{~ n s}$
Dynamic range	$\mathbf{1 - 1 0 , 0 0 0}$ particles
Particle counting resolution	$\mathbf{2 5 \%}$ @ $\mathbf{1}$ particle
Aging (<20\%)	$>\mathbf{5 \%}$ 10,000 particles
Spacing	$\mathbf{3 0} \mathbf{~ m}$
Total number of detectors	$\mathbf{1 2 2 1}$

Wide FoV Cherenkov Telescope Array

Parameter	Requ i rement
Mirror area	$>5 \mathbf{~ m}^{2}$
Number of pixels	$\mathbf{1 0 2 4}$ pixels
Pixel size	$\sim 0.5^{\circ} /$ pixel
Field of view	$\mathbf{1 6}^{\circ} \times \mathbf{1 6}^{\circ}$
Dynamic range	$\mathbf{1 0} \mathbf{~ p e - 3 2 0 0 0 ~ p e ~}$
Resolution	$<5 \% @ 1000$ pe
Elevation angle adjustment range	$\mathbf{0}^{\circ}-\mathbf{9 0}^{\circ}$,
adjustment precision: $<\mathbf{0 . 1} \mathbf{1}^{\circ}$	

Energy range: $30 \mathrm{TeV}-200 \mathrm{PeV}$

16 telescopes by the end of 2021

