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How do we localize damages when surface failure/delamination occurs?

Example of damages in CCT5 (Nb;Sn)*

s :

Microscope photos of CCT Sub2**

-

*D. Arlb‘é'léez, 2022, “l‘\'l'bSSn CCT overview,” US- **]. L. R. Fernandez et al., " ssemy and chanical Analysis of the
MDP Collaboration Meeting Canted-Cosine-Theta Subscale Magnets," IEEE Transactions on Applied

Superconductivity, vol. 32, no. 6, Sep. 2022, Art no. 4006505.

Cracking and delamination of the impregnation materials lead to extended training and degradation of the
magnet performance.

There have been various approaches to solving interface problems such as the replacement of epoxy and
the improvement of design/modeling.

Need for In situ evaluation of the impregnation damage
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RF based reflectometry can measure the electrical properties of material

Transmission line theory Reflections for various termination*
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* Tektronix application notes, "TDR Impedance Measurements:
A Foundation for Signal Integrity."
(Concucton mpregnation CCT subscale can be considered as a transmission line
Insulation . . . .
‘ =  Coil (+), Mandrel (-), Resin/Epoxy/Wax (insulation)
Mandrel
(Outer

N clectrode) = We can evaluate and localize the impregnation damage by applying
\ electrical signals to magnets
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Electrical reflectometry
(Transmission lines)

001 Experimental setup for CCT subscale

002 Impregnation damage monitoring for subscale 5
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Applying electrical reflectometry to CCT subscale

TDR results: voltage tab short

Experimental setup CCT subscale (Nb3;Sn)
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Why TDR can be useful for magnet diagnostics,

although SC magnet is not a good transmission lines?

Series inductance/resistance discontinuity TDR results
between two Voltage taps
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= TDR can detect and localize the impedance variations of CCT subscale

Magnets are not good transmission lines, but we can still apply RF-based reflectometry methods
» Need to improve impedance mismatch & connectors
* Need to improve resolution and sensitivity
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Impregnation damage monitoring for subscale 5

Type of reflectometry signal Experimental setup (VNA)

Time Domain

Reflectometry Reflectometry differs in thetype e I
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How can we improve the TDR application to monitor SC magnets

with high accuracy & resolution in a real-time manner?

» Contactless monitoring technigue via inductive coupler can be used for the real-time monitoring.
= Signal Processing (time-frequency analysis, ML, etc.) can improve the accuracy and resolution.

» SC magnets with no insulation/transmission line: RF TDR sensors* and waveguides can be alternatives.

*M. Marchevsky, G. S. Lee, R. Teyber and S. Prestemon, "Radio Frequency-Based Diagnostics for Superconducting
Magnets," IEEE Transactions on Applied Superconductivity, vol. 33, no. 5, Aug. 2023, Art no. 9000206

Application of inductive coupler** Waveguides
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**Y. H. Lee, et al., IEEE Transactions on Industrial Electronics, (Torsional mode)

vol. 69, no. 9, pp. 9494-9503, Sep. 2022.
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Acoustic reflectometry
(Waveguides)

001 Quench localization for HTS conductors

002 Time-frequency analysis
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Having a good waveguide is important for

obtaining accurate and reliable measurements in acoustic reflectometry

Pipe inspection* SuperPower REBCO conductor / CFS VIPER cables**
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= ** Zachary S Hartwig et al 2020 Supercond. Sci. Technol. 33 11LTO01,

* Guidedave (BS, Inc.) "Time—Frequency-Based Quench Detection for HTS VIPER Cable Using Torsional
Acoustic Wave," IEEE Sensors Journal, vol. 22, no. 22, pp. 21846-21854, Nov. 2022.

-
4.0mm
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-

= Discontinuities in waveguides include mechanical damage, thermal effects (thermal load and thermal expansion)

= How do we achieve a reliable quench detection and localization capability for magnets that are not good wavequides?
1. The voltage tabs, clamping structures, and joints can be used as discontinuities for obtaining reflected signals
in real operating conditions.

2. Non-leaky acoustic waveguides

v' M. Marchevsky and S. Prestemon, "Distributed thermometry for superconducting magnets using non-leaky acoustic
waveguides", Supercond. Sci. Technol., vol. 36, no. 4, Feb. 2023.
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Time-frequency based acoustic reflectometry

for localizing the quench and improving spatial resolution
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» Shear-Horizontal Acoustic wave: Tape type structure, Non-dispersive

= Quench detection/localization technique based on the reflection of waves at the discontinuity
= Acoustic reflectometry can detect the heat location and strength

»  Atime—frequency-based phase delay was extracted from the acoustic signal to monitor
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The performance of quench detection/localization depends on

which time-frequency distribution is used

Time-frequency distribution-based monitoring method

Wigner-Ville distribution vs Chirp-let transform
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» The reliability of the monitoring index derived from the Wigner-Ville distribution can be reduced owing to cross-terms
» Chirp-let transform: TF analysis method with a relatively low impact on cross-terms
» Analysis in time-frequency domain improves the accuracy and resolution (better than 1% of the sample length) of reflectometry
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Conclusions

* The reflectometry method can provide information on the quench detection of the SC
magnet; impregnation damage/change

* RF reflectometry has potential to identify locations of the gradual impedance variation
during the training process.

« Analysis in the time-frequency domain improves the accuracy and spatial resolution of
reflectometry.

« “Impregnation damage monitoring for the Nb3Sn Canted-Cosine-Theta magnets using
time-domain reflectometry” will be presented (oral) - MT28
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