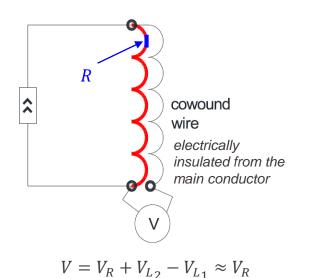


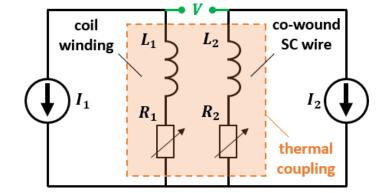
This work has been carried out within the framework of the EUROfusion Consortium, via the Euratom Research and Training Programme (Grant Agreement No 101052200 — EUROfusion) and funded by the Swiss State Secretariat for Education, Research and Innovation (SERI). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union, the European Commission, or SERI. Neither the European Union nor the European Commission nor SERI can be held responsible for them.

Temperature-based quench detection methods via integrated superconducting wires and thermocouple chains

IDSM workshop April 2023


SWISS PLASMA CENTER

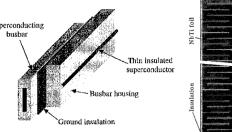
EPFL Outline


- 1. Superconducting quench detection wires (SQD)
 - State of the art
 - Candidate materials
 - Experimental demonstration in SULTAN
 - Further development
- 2. Thermocouple chain
 - Detection concept
 - First test results
- 3. Summary

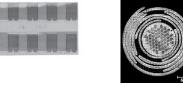
EPFL Superconducting quench detection wires (SQD)

https://doi.org/10.1109/TPS.2022.3212554

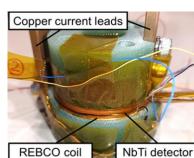
- Inductive compensation is not perfect
- Slow rise of resistive component in HTS
 How to improve detection sensitivity?

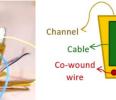

- Electrically insulated from the main conductor, thus operated independently at current *I*₂,
- In thermal contact with the main conductor: $T_1(x) \approx T_2(x)$

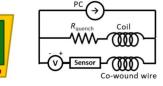
$$V = V_{R_2} - V_{R_1} + V_{L_2} - V_{L_1} \approx V_{R_2} (\gg V_{R_1})$$
, assuming

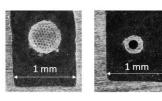

- $T_c(B_{max})$ of detection wire > T quench,
- High voltage along normal zone of the wire due to the absence of low resistivity protection material (copper or silver), and eventually higher operating current (*I*₂).

EPFL Background

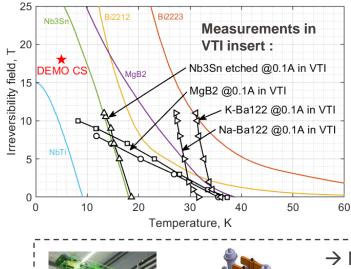

Year	Application	SQD type	busbar		
2000, 2014 10.1109/77.828253 10.1109/TASC.2013.2286813	Detector magnets	Nb-Ti wire or foil			
2016, 2021 https://cds.cem.ch/record/2228249/files/CERN-THESIS-2016-142.pdf https://patents.google.com/patent/WO2021173216A1	HTS cables	LTS wires			
2019 10.1109/TASC 2019 2900633	HTS pancakes	Nb-Ti wire			
2021 10.1109/TASC.2021.3059602	CCT coils	Nb ₃ Sn wire			
2022 https://doi.org/10.1109/TASC.2022.3171185	General	LTS wires			
2022, 2023 (this work) https://doi.org/10.1109/TASC 2022.3140706 https://iopscience.iop.org/article/10.1088/1361-6668/acb17b	Fusion conductors	Nb ₃ Sn, MgB ₂ , IBS wires			

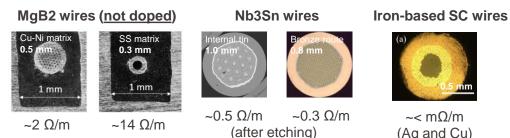




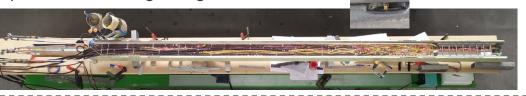


Electrically insulated Thermally conducted





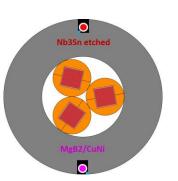
EPFL SQD wires: material selection for fusion conductors

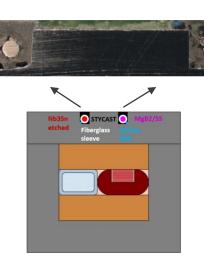

- T quench ~15 to 25 K for HTS fusion conductors, thus broad, but still limited choice to fulfill the $T_c(B_{max})$ target
- V sqd ~ 1 V/m in order to ensure superior performance

internal CERNOX

> https://doi.org/ 10.1109/TASC

.2021.3063997

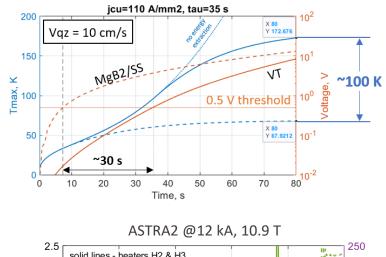

- \rightarrow New tool 'quench experiment' in the SULTAN test facility, i.e.
- Direct current drive up to 15 kA / 10 V
- Temperature from ~5 K up to ~300 K
- Helium cooling 1 10 g/s at ~10 bar
- A pair of 3.6 m-long straight conductors:

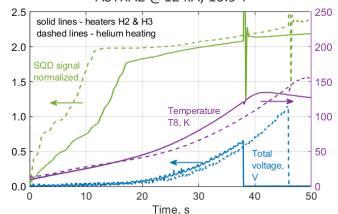


SQD wires: expected & measured performance

Conductors for quench experiment in SULTAN:

2 m-long SQD wires

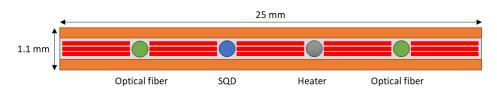




SQD integration in the conductor jacket \rightarrow simple, robust and eventually sufficiently sensitive for the SQD operation at 0.1 A

 \rightarrow Summary on conductor stability and quench propagation

EPFL Quench experiment on long lengths


Task challenges:

- HTS conductor development
- Ultra-thin SQD wires
- Embedded optical fibers

Copper pre-tinning & Cable soldering

Laminated stacked-tape soldered conductor (LASSO)

K, self-field

• Initial Ic reduction ~12% due to self-field effect

2000

LASSO 5348 soft copper

Current, A

Rinf

R50

R40 R30 R20

1500

Electric field, μ V/cm

3

1000

• By mistake, hard-way deformation at R40 \rightarrow 15% lc drop

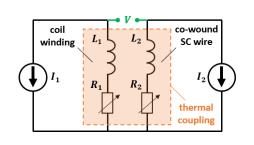
2500

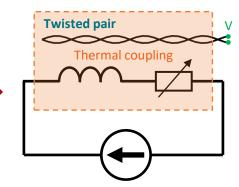
• Annealed copper to reduce shear stress on ReBCO

Ic bending test at 77 K, self-field

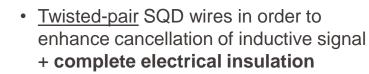
EPFL Quench experiment on long lengths

Ultra-thin Nb₃Sn SQD wires:


- a) Bronze-route '1st stack' (19 Nb rods in bronze matrix) OD 3.6 mm by **JASTEC**
 - → Wire drawing down to OD 0.2 mm by external company and also at EPFL-SPC
- b) Internal-tin etched wire (3000 filaments)
 OD 0.25 0.30 mm by WST


Embedded optical fibers...

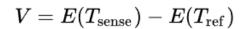
15 T insert SULTAN QE insert: pancake coils JORDI stand: x-coil dipole

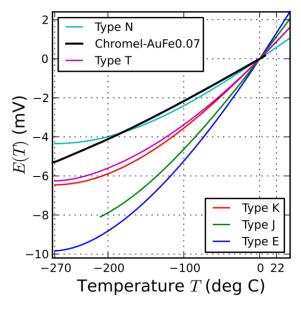

EPFL Detection by a twisted pair

Conventional thermocouple: response on ΔT only at the ends

→ Multiple TC connected in series: response on Δ T **along the length**

• As an alternative, twisted-pair made of distributed thermocouples?


- Welded or soldered joints
- Continuous response on temperature rise, but discrete sensing locations (i.e. opposite to SQD with continuous spatial sensing at a certain T threshold)


EPFL Thermocouple materials

ANSI Code	ANSI MC 96.1 Color Coding		Alloy Combination		Maximum T/C Grande temp.	EMF(mv)Over	IEC 584-3	IEC Code
	Thermocouple	Extension	+ Lead	- Lead	range	Max.temp.range	Color Coding	ILO OUDE
к		E	NICKEL- CHROMIUM Ni-Cr	NICKEL- ALUMINUM Ni-Al	-270 to 1372 °C -454 to 2501 °F	-6.458 to 54.886		к
J		Ê	IRON Fe (magnetic)	CONTANTAN COOPER- NICKEL Cu-Ni	-210 to 1200°C -346 to 2193°F	-8.095 to 69.553	(B)	J
		(jet	COPPER Cu	CONTANTAN COOPER- NICKEL Cu-Ni	-270 to 400°C -454 to 752°F	-8.258 to 20.872	Car.	Т
Е		(Cet	NICKEL- CHROMIUM Ni-Cr	CONTANTAN COOPER- NICKEL Cu-Ni	-270 to 1000 °C -454 to 1832 °F	-9.835 to 76.373	Ca:	Е
N	(Cet.	NICROSIL Ni-Cr-Si	NISIL Ni-Si-Mg	-270 to 1300°C -450 to 2372°F	-4.345 to 47.513	Get-	N
S	NONE ESTABLISHED		PLATINUM- 10% RHODIUM Pt-10%Rh	PLATINUM Pt	-50 to 1768 °C -58 to 3214'F	-0.236 to 18.693	Contraction of the second	S
R	NONE ESTABLISHED	(Bit	PLATINUM- 13% RHODIUM Pt-13%Rh	PLATINUM Pt	-50 to 1768°C -58 to 3214°F	-0.226 to 21.101	Contraction of the second	R
в	NONE ESTABLISHED		PLATINUM- 30% RHODIUM Pt-30%Rh	PLATINUM-6% RHODIUM Pt-6%Rh	0 to 1820°C 32 to 3308°F	0 to 13.820	Gê.	в

https://en.wikipedia.org/wiki/Thermocouple

Quench detection by superconducting wires and thermocouple chains

Type K further studied:

- + Chromel Ni₉₀Cr₁₀
- Alumel Ni₉₅Al₂Mn₂Si₁

→ OD 0.2 mm, 20 m length procured (10 \$/m by a Swiss company, but down to ~0.1 \$/m for a km-long order in China)

EPFL Test samples

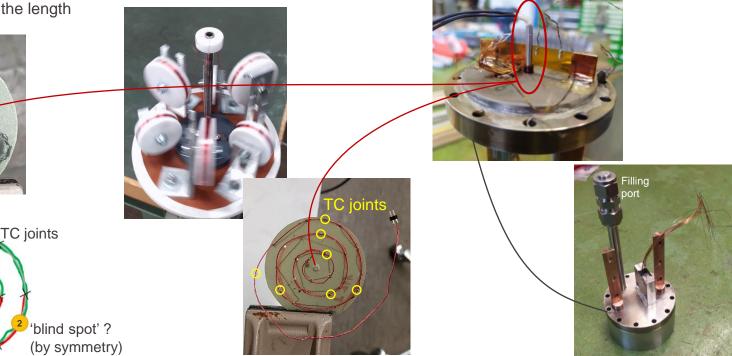
Sample 1:

Manual wire twisting

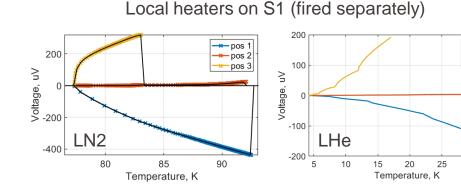
Heater + CERNOX

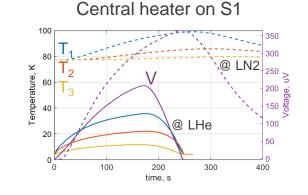
at each

position

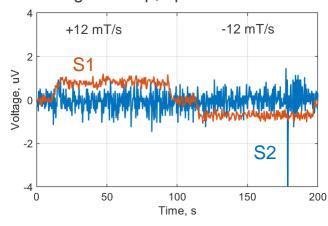

- 9 TC joints at ~2.5 cm distance, ~25 cm length in spiral shape
- Heaters and temperature sensors at 3 locations along the length

Sample 2:


- 6-around-1 return wire wrapping (semi-automated)
- 7 TC joints at 5 cm distance, ~40 cm length in spiral shape


Test insert:

- Central cartridge heater
- Impregnation by 62% aqueous glycerol in a steel container



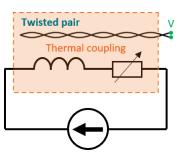
EPFL Voltage response at 77 K and 4.2 K

Magnet ramp, operation at 4.2 K

• Voltage response rate (V/K) varies along the length periodically with altering polarity.

pos 1

pos 2


pos 3

30


- Symmetric temperature distribution centered at a blind spot of a symmetric thermocouple chain cannot be detected. In real cases, detection signal is determined by the hottest joint (e.g. see response on the central heater).
- Inductive voltage not observed on S2 at ~12 mT/s also using longer integration time (0.1 uV voltage resolution). Assuming negligible inductive contribution, absolute response can be arbitrarily amplified for the desired sensitivity.

- EPFL Summary
 - Temperature-based quench detection, nearly immune to mechanical strain and EM noise, is being developed at SPC using superconducting wires and thermocouple chains.
 - SQD wires can be tuned to a large extent for specific application requirements. Ultimately, one can always use the same sc material for SQD as in the main winding and increase the voltage response by higher current and elimination of low resistivity protection material.
 - Thermocouple chains offer continuous response on temperature, but long-length manufacturing of a short-segment chain of joints requires further development.
 - Both can be used in a twisted-pair configuration to exclude electrical contact with the main winding, enhance noise cancellation and allow signal amplification.

THANK YOU FOR YOUR ATTENTION!

13