

Fiber optic mesh for 2D strain characterization

S. Krave, M. Baldini 23 May 2022

Introduction

Per the previous talk by Maria, we working on applying fiber optic strain and temperature sensors to superconducting magnets.

- Maria was approached to see if a fiberoptic strain sensor could be used to validate a pi tape measurement of shell strain during QXFA helium vessel welding
- It is likely that this could have been handled well with a couple strain gages
 - Singular strain gages are boring and prone to errors from application, interpretation or mechanical inconsistencies.
- To be rather conservative and have a few additional measurement points, we decided to use two 10 m fibers, sampled at 0.62mm gage pitch for ~32,000 "gages" instead
 - How much information can we squeeze out of this technology?

Killing a fly with a sledgehammer

Fiber-optic sensors offer "gigantic" measurement bandwidth

- Luna Rayleigh system will sample 32000 gages 12.5 times per second
 - ~384000 16ish bit strain measurements per second
 - 768 KB/s/ (12Mbps, ~2 streaming movies on Netflix)

How can we best utilize this bandwidth?

- Most applications to this point have used the fibers in a 1-dimensional fashion
- Extending to higher dimensionality better utilizes the capabilities of the system

Initial Concept: Finding a bigger fly

The "goal" of the measurement is to determine the average azimuthal strain in the shell.

- Measurements through time add an additional dimension
- Longitudinal strain is also likely to occur in this situation.
 - Add an additional direction of the fiber to better characterize the strain on the surface
 - However, this is not a well-defined unidirectional load case, so we are still missing information

Isometric Generic Strain Sensing

- Adding a 3rd direction of strain measurement allows full resolution of the 2D strain state of the surface. (Principle strains magnitude and orientation)
- For a single fiber, the system lets you map start and end points of gage sections
- Define gage segment orientation
- Interpolate X-Y grid at moderate resolution for each gage direction
- Plot each gage direction
- Calculate strain state between interpolated data
- Repeat above through time steps, either with decimation, filtering or individually as desired.

Defining a pattern

- Shell Diameter is ~620mm
 - ¼ symmetry, instrument ~486 mm of arc length
 - 4 vertical sections of 121mm, segment length of 121/(sqrt(3)/2) = 141 mm
 - 4 x 6 x '/'
 - 4 x 5 x '\'
 - (4 x 5 +1 x 6)x '-'
 - 55 total segments, 7.56m
- 115mm long segments to cover 4X18 degrees of shell
 - 6.325m
 - Maybe we can do another refinement

Template drawn for laying out gages

- Pattern above drawn in cad and printed 1:1 for positioning
- Holes punched at each crossover location to mark on shell
- Played a quick game of connect the dots on the shell, 1st with a marker, then with the fiber
- Fiber taped at edges, painted with araldite two part epoxy then taped along length.
- After epoxy curing, points were located by cold cotton swab

Fiber Installation on Shell

- Fibers were installed on both upper and lower shell halves
- Installation went smoothly, perhaps 8 hours labor after template provided
 - Not bad considering usually around 1 hour per individual gage
- Broke lower fiber on insertion into welding tooling
- As far as instrumentation goes, fibers are quick to install and mostly noninvasive
- There was a concern voiced about strain at crossover regions, but our data has no evidence of discontinuities.

Preview of a dataset

- There are lots of ways to present the data from these sensors, hopefully we can present it in an easy to interpret fashion
- Data a short time after the 1st pass is shown.
- Weld is at roughly -100 mm
- Note: We ran out of fiber just before the end so we didn't have longitudinal coverage from ~350 to 600mm on the Y=0 segment

• Tare data from this pass is used to normalize later plots

After obtaining strain measurements in 3 directions, each direction is interpolated onto a rectangular grid

- Interpolation only valid within area bounded by points with all directions measured
- Principal strain calculated on grid
- X strain is the 0° orientation fiber
- Y strain is calculated as $\frac{2}{3}(60^\circ + 120^\circ 0.5 * 0^\circ)$

After loading the dataset, most operations are linear and calculate very quickly. (sub ms per sample)

ular grid
bounded by points
$$\varepsilon_{p1} = \frac{\varepsilon_A + \varepsilon_B + \varepsilon_C}{3} + \frac{\sqrt{2}}{3}\sqrt{(\varepsilon_A - \varepsilon_B)^2 + (\varepsilon_B - \varepsilon_C)^2 + (\varepsilon_C - \varepsilon_A)^2}$$

Minimum Principal Strain

 $\begin{cases} \varepsilon_{\chi} = \frac{2}{3} \left(\varepsilon_{\alpha} - \frac{1}{2} \varepsilon_{b} + \varepsilon_{c} \right) \\ \varepsilon_{y} = \varepsilon_{b} \end{cases}$

 $\varepsilon_{xy} = \frac{1}{\sqrt{2}} (\varepsilon_a - \varepsilon_c)$

$$\varepsilon_{p2} = \frac{\varepsilon_A + B + \varepsilon_C}{3} - \frac{\sqrt{2}}{3}\sqrt{(\varepsilon_A - \varepsilon_B)^2 + (\varepsilon_B - \varepsilon_C)^2 + (\varepsilon_C - \varepsilon_A)^2}$$

Principal Stresses:

Maximum Principal Stress

Three-Element Rectangular Rosette

$$\sigma_{p1} = \frac{E}{3} \left[\frac{\varepsilon_A + \varepsilon_B + \varepsilon_C}{1 - \nu} + \frac{\sqrt{2}}{1 + \nu} \sqrt{\left(\varepsilon_A - \varepsilon_B\right)^2 + \left(\varepsilon_B - \varepsilon_C\right)^2 + \left(\varepsilon_C - \varepsilon_A\right)^2} \right]$$

Minimum Principal Stress

$$60^{\circ} \sigma_{p2} = \frac{E}{3} \left[\frac{\varepsilon_A + \varepsilon_B + \varepsilon_C}{1 - \nu} - \frac{\sqrt{2}}{1 + \nu} \sqrt{\left(\varepsilon_A - \varepsilon_B\right)^2 + \left(\varepsilon_B - \varepsilon_C\right)^2 + \left(\varepsilon_C - \varepsilon_A\right)^2} \right]$$

Case 2: 60° strain rosette, the middle of which is aligned with the y-axis, i.e., $\alpha = 30^\circ$, $\beta = \gamma =$

Treating the tan⁻¹ as a single-valued function, the angle counterclockwise from gage A to the axis containing ϵ_{p1} or σ_{p1} is given by:

$$\theta_p = \frac{1}{2} \tan^{-1} \left[\frac{\sqrt{3}(\varepsilon_C - \varepsilon_B)}{2\varepsilon_A - \varepsilon_B - \varepsilon_C} \right]$$

Pass 1 Video Principal

- Fiber strain shown by colored lines following layout.
- Principal Stress calculated as a function of all 3 strain directions.
- Vectors indicate direction of principal stress, which is primarily azimuthal
- Welding occurs from left to right, and strain map reflects this.
- After an initial strain wave (from the welder passing the gage area, high azimuthal strain is measured, especially near the weld location at ~ -100 in Y. as the shell cools, this redistributes around the skin. The 2nd pass animation shows this more clearly as this dataset was interrupted.
- Note: The actual sample rate was 0.52 Samples/Second for all data

Principal Strain, Fast Video

Pass 1 Video Azimuthal

• Azimuthal stress is calculated from 60° and 120° fibers

Pass 2 Video Principal

Pass 2 Video Azimuthal

1st Pass

End of weld Azimuthal

Time vs average Azimuthal.

Azimuthal strain calculated by all points shown
in grid

1st Pass after cooling some more

2nd Pass

2ns pass recorded following day

Before Pass 3, ignore timestamp, had to patch data together

- Avgy = 79.7379 με
- avgX = -14.3207 με
- avgXY = -39.1052 με

3rd pass recorded later same day as pass 2

Measured values agree with calculated values.

Average Strains

All samples stitched together

- Missing 3rd pass as fiber broke after taking tare
- Tare value from 3rd pass normalized to pre-weld tare included as final point
- Axial Strain = -14.3207
- Azimuthal Strain = 78.7379
- Shear Strain = -39.1052
- All gages together give a gage area of
 - .2246 m² Azimuthal
 - .2119 m² for Principal and others
- Compare to standard 062 gage of 3*10⁻⁶ m² or ~100,000 times large gage area

Before welding. None of these contours would be visible as we zeroed data before welding

After welding, a noticeable bump can be seen on the station 4 inspection location at the same azimuthal position of the bump in the strain map.

Moving Forward: Gauges on Magnets

- Can we Validate FEA in mid-section?
- Fiber installation was fairly easy
- Visualize strain distribution in coil end
- Choose fiber size to allow at least some quenches to be captured at high sample rate >50 Hz, potentially at reduced N channels
- Can we see problems form in real time?
 - Pole Debonding
 - Wedge discontinunity

Distributed fiber sensors: azimuthal strain map

Sensors have been installed on a short QXF coil (along with other piles of diagnostics). Will be tested sometime after the AUP magnet

Fiber Grid Conclusions and notes

- Fiber sensors are easy to install with a low profile
- The fiber grid is an extremely powerful tool for characterizing strain on surfaces
- Fairly large fiber datasets can be represented in a clear and intuitive fashion
- Computation and analysis of datasets can be reasonably fast with some optimization (easily over 1000 samples/second) at maximum sample rate

Thank you!

