

Michael Daly :: Paul Scherrer Institute, in collaboration with EMPA Dübendorf and UTwente

Using acoustic signals with post-mortem analysis for material research & development

4th IDSM workshop 2023 - Paestum, Italy

Work supported by the Swiss State Secretariat for Education, Research and Innovation SERI. Acknowledgements to USMDP and LBNL for supplying the Nb₃Sn cable

- Context of work
- Experimental details
- Experimental results:
 - Post-mortem analysis
 - AE signals:
 - 1Mhz
 - 100kHz
- Concluding remarks

PSI's BOX Program

- Reproduce conductor behaviour in High Field Magnets (Nb₃Sn, NbTi):
 - High forces in strong magnetic field (7.5 T to 11 T) at 4.2 K and high currents
 - Failure modes: cracking, debonding, stick slip-motion, sliding
- ... to reduce magnet training and operational limitation
 - Training quenches
 - Fatigue (cyclic and thermal)
 - Operational stability
- Requirements:
 - Cost-effective (actual cost: 5k 15k€ /test)
 - Fast turn-around (4 8 weeks)
 - Reproducible
 - Assess various fabrication methods, tooling, materials and instrumentation
 - Improve our understanding by "simplifying" behaviour

- BOnding eXperiment Samples (UTwente: 7.5 T solenoidal field at 4.2 K)
 - Conductor (Nb₃Sn: QXF 0.85mm RRP 108/127, 21 strand cable)
 - Aluminium bronze or Stainless steel former
 - Undergoes required heat treatment (max 665 C) and impregnation
 - Intrumentation:
 - Vtaps at each bend and on leads, x2 Acoustic Sensors, and current monitoring
 - Targeted NDE and destructive analysis

ID	Identifying feature	Conductor
BOX 1	Mix 61 with Mica	Nb₃Sn
BOX 2	Mix 61 - Rep CD1 mag	Nb₃Sn
BOX 3	Mix 61 Rep CD1 improved adhesion	Nb₃Sn
BOX 4	Non-impregnated	Nb₃Sn
BOX 5	"Kirby"/CERN CCT ("RED")	Nb-Ti
BOX 6	Paraffin Wax 1	Nb₃Sn
BOX 7	CERN CCT Kapton ONLY ("PURPLE")	Nb-Ti
BOX 8	MY750 (Baseline)	Nb₃Sn
BOX 9	Paraffin Wax 2	Nb₃Sn
BOX 10	CTD-701X	Nb₃Sn
BOX 11	CTD-101K (baseline)	Nb₃Sn
BOX 12	CTD-101K no 2 (Reproducibility)	Nb₃Sn
BOX 13	Teflon Coating "BLACK"	Nb-Ti
BOX 14	Ceramic Coating Stycast (Failed)	Nb₃Sn
BOX 15	Weakened CTD-101K	Nb₃Sn
BOX 16	Ceramic Coating Stycast	Nb₃Sn
BOX 17	Sedimented Particles with CTD-101K	Nb₃Sn
BOX 18	Double fibre glass with CTD-101K	Nb₃Sn
BOX 19	Higher toughness CryoSet2M	Nb₃Sn
COMP 1	Paraffin Wax 1	Nb₃Sn
COMP 2	Paraffin Wax 2	Nb₃Sn
COMP 3	CTD-101K - 01	Nb₃Sn
COMP 4	СТД-101К - 02	Nb₃Sn
COMP 5	Paraffin Wax (Improved filling)	Nb₃Sn

ID	Identifying feature	Conductor
BOX 1	Mix 61 with Mica	Nb₃Sn
BOX 2	Mix 61 - Rep CD1 mag	Nb₃Sn
BOX 3	Mix 61 Rep CD1 improved adhesion	Nb₃Sn
BOX 4	Non-impregnated	Nb₃Sn
BOX 5	"Kirby"/CERN CCT ("RED")	Nb-Ti
BOX 6	Paraffin Wax 1	Nb₃Sn
BOX 7	CERN CCT Kapton ONLY ("PURPLE")	Nb-Ti
BOX 8	MY750 (Baseline)	Nb₃Sn
BOX 9	Paraffin Wax 2	Nb₃Sn
BOX 10	CTD-701X	Nb₃Sn
BOX 11	CTD-101K (baseline)	Nb₃Sn
BOX 12	CTD-101K no 2 (Reproducibility)	Nb₃Sn
BOX 13	Teflon Coating "BLACK"	Nb-Ti
BOX 14	Ceramic Coating Stycast (Failed)	Nb₃Sn
BOX 15	Weakened CTD-101K	Nb₃Sn
BOX 16	Ceramic Coating Stycast	Nb₃Sn
BOX 17	Sedimented Particles with CTD-101K	Nb₃Sn
BOX 18	Double fibre glass with CTD-101K	Nb₃Sn
BOX 19	Higher toughness CryoSet2M	Nb₃Sn
COMP 1	Paraffin Wax 1	Nb₃Sn
COMP 2	Paraffin Wax 2	Nb₃Sn
COMP 3	СТД-101К - 01	Nb₃Sn
COMP 4	СТД-101К - 02	Nb₃Sn
COMP 5	Paraffin Wax (Improved filling)	Nb₃Sn

BOX Post-mortem

Destructive

Non-Destructive

- Face imaging pre- and post-testing
- Dye penetrant on surface
 - Fluorescent and red dye

BOX Post-mortem

Defect characterization

ID	Defect Type
0	Crack a > 2500 μm
1	1500 μm < a < 2500 μm
2	250 μm < a < 1500 μm
3	a < 250 µm
4	Void > 500 μm
5	150 μm < Void < 500 μm
6	Void < 150 μm
7	Crack-like gap w/ Wire
8	Void-like gap w/ Wire
9	Wall Debonding

BOX sample Filled Systems Series

Single BOX data summary

 Post-mortem data specific to each BOX and each segment with location of defects and knowledge of quench segment.

Acoustic Sensors

- Aims:
 - Help assess BOXs as an R&D device (Failure analysis: Cracking, debonding, stick-slip)
 - To use as a monitoring and diagnostic device for magnets.
- Design based on LBNL's Maxim Marchevsky's design
 - MOSFET (3N163) and Piezo rings purchased from Supplier in USA
- Screwed unto BOX using stainless steel screw
- Spring washer and copper washer interface with BOX
- Data recorded on Yokogawa DL850EV oscilloscope:
 - Full ramp approx. 2mins
 - Full ramp recorded at 100 kHz
 - 250 ms before and after quench recorded at 1 MHz

- -1 MHz data \approx 24MB; 100 kHz data \approx 400MB
- 608 Quenches (QIDs)
- >1000 ramps (incl cyclic ramps)
- 360 GB of raw data

500 ms

3E+05

4E+05

5E+0 Index

current and acoustic sensor

"Expectations vs Reality" (1 MHz data)

- Does an acoustic event precede or proceed a quench?
 - Did a crack or movement release sufficient energy to quench ?

"Expectations vs Reality" (1 MHz data)

20 ms prior to Quench

2 ms prior to Quench

700

- Earlier events seem more energetic than later events.
- Background noise artificially increases energy levels

- In some cases, piezo sensors pick up excess background noise (increased sensitivity).
- Filters and offsets cannot always compensate.

- Energy levels for 100 kHz:
 - Captures the complete ramp to quench
- Uses a combination of AE data and vtap data to determine T0 of quench and thresholds
 - Threshold is specific to sample
- Scattered Results depend on a number of parameters:
 - Filters
 - Threshold
 - Offset
 - And, piezo sensitivity

- Energy levels for 100 kHz:
 - Captures the complete ramp to quench
- Uses a combination of AE data and vtap data to determine T0 of quench and thresholds
 - Threshold is specific to sample
- Scattered Results depend on a number of parameters:
 - Filters
 - Threshold
 - Offset
 - And, piezo sensitivity

- Energy levels for 100 kHz:
 - Captures the complete ramp to quench
- Uses a combination of AE data and vtap data to determine T0 of quench and thresholds
 - Threshold is specific to sample
- Scattered Results depend on a number of parameters:
 - Filters
 - Threshold
 - Offset
 - And, piezo sensitivity

- Energy levels for 100 kHz:
 - Captures the complete ramp to quench
- Uses a combination of AE data and vtap data to determine T0 of quench and thresholds
 - Threshold is specific to sample
- Scattered Results depend on a number of parameters:
 - Filters
 - Threshold
 - Offset
 - And, piezo sensitivity

- Energy levels for 100 kHz:
 - Captures the complete ramp to quench
- Uses a combination of AE data and vtap data to determine T0 of quench and thresholds
 - Threshold is specific to sample
- Scattered Results depend on a number of parameters:
 - Filters
 - Threshold
 - Offset
 - And, piezo sensitivity

- Energy levels for 100 kHz:
 - Captures the complete ramp to quench
- Uses a combination of AE data and vtap data to determine T0 of quench and thresholds
 - Threshold is specific to sample
- Scattered Results depend on a number of parameters:
 - Filters
 - Threshold
 - Offset
 - And, piezo sensitivity

- Energy levels for 100 kHz:
 - Captures the complete ramp to quench
- Uses a combination of AE data and vtap data to determine T0 of quench and thresholds
 - Threshold is specific to sample
- Scattered Results depend on a number of parameters:
 - Filters
 - Threshold
 - Offset
 - And, piezo sensitivity

- More refined Analysis (Code improvements)
 - Adaptive thresholds
 - How to use both AE 1 and AE 2 to compensate
- Detection:
 - Do we have vtap signals with AE events?
- Correlate with experimental conditions & material properties:
 - Forces at quenching currents
 - MQE evaluation
 - Observed defects
 - Material Properties (CTE, K_{IC}...)
- Wavelet analysis
 - Early events and precursors
- In-situ calibration with inducers/waveform generator

- More refined Analysis (Code improvements)
 - Adaptive thresholds
 - How to use both AE 1 and AE 2 to compensate
- Detection:
 - Do we have vtap signals with AE events?
- Correlate with experimental conditions & material properties:
 - Forces at quenching currents
 - MQE evaluation
 - Observed defects
 - Material Properties (CTE, K_{IC}...)
- Wavelet analysis
 - Early events and precursors
- In-situ calibration with inducers/waveform generator

Courtesy of Oliver. Kirby

- More refined Analysis (Code improvements)
 - Adaptive thresholds
 - How to use both AE 1 and AE 2 to compensate
- Detection:
 - Do we have vtap signals with AE events?
- Correlate with experimental conditions & material properties:
 - Forces at quenching currents
 - MQE evaluation
 - Observed defects
 - Material Properties (CTE, K_{IC}...)
- Wavelet analysis
 - Early events and precursors
- In-situ calibration with inducers/waveform generator

Concluding remarks

- BOX is used to benchmark and assess:
 - Materials (resins, fillers, wax), coatings and processes
- Acoustic Sensors can complement diagnostics and analysis of samples
 - Energy levels:
 - Some Quenches show clear precursors
 - Noise of samples
 - Some indication that noise levels and quantity of events correlate to performance of BOXs
- Some correlation possible with post-mortem analysis and material properties.
- Nevertheless, further work required to better differentiate between acoustic phenomenons (normalising, offsets thresholding).

Wir schaffen Wissen – heute für morgen

• PSI Team:

Michael Daly, Bernhard Auchmann, André Brem, Christoph Hug, Serguei Sidorov

• UTwente Team: Anna Kario, Simon Otten, Herman Ten Kate, Marc Dhallé

• EMPA Acoustic Analysis Support: Axel Heussel, Reto Pieren

