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PSI’s BOX Program
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• Reproduce conductor behaviour in High Field Magnets (Nb3Sn, NbTi):
− High forces in strong magnetic field (7.5 T to 11 T) at 4.2 K and high currents
− Failure modes: cracking, debonding, stick slip-motion, sliding

… to reduce magnet training and operational limitations:
− Training quenches
− Fatigue (cyclic and thermal)
− Operational stability

• Requirements: 
− Cost-effective (actual cost: 5k – 15k€ /test) 
− Fast turn-around (4 - 8 weeks)
− Reproducible
− Assess various fabrication methods, tooling, materials and instrumentation
− Improve our understanding by “simplifying” behaviour
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• BOnding eXperiment Samples (UTwente: 7.5 T solenoidal field at 4.2 K)
− Conductor (Nb3Sn: QXF 0.85mm RRP 108/127, 21 strand cable)
− Aluminium bronze or Stainless steel former
− Undergoes required heat treatment (max 665 C) and impregnation
− Intrumentation:
− Vtaps at each bend and on leads, x2 Acoustic Sensors, and current monitoring

− Targeted NDE and destructive analysis

BOX Samples
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BOX Samples Results 
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ID Identifying feature Conductor
BOX 1 Mix 61 with Mica Nb3Sn
BOX 2 Mix 61 - Rep CD1 mag Nb3Sn
BOX 3 Mix 61 Rep CD1 improved adhesion Nb3Sn
BOX 4 Non-impregnated Nb3Sn
BOX 5 “Kirby”/CERN CCT (“RED”) Nb-Ti
BOX 6 Paraffin Wax 1 Nb3Sn
BOX 7 CERN CCT Kapton ONLY (“PURPLE”) Nb-Ti
BOX 8 MY750 (Baseline) Nb3Sn
BOX 9 Paraffin Wax 2 Nb3Sn

BOX 10 CTD-701X Nb3Sn
BOX 11 CTD-101K (baseline) Nb3Sn
BOX 12 CTD-101K no 2 (Reproducibility) Nb3Sn
BOX 13 Teflon Coating “BLACK” Nb-Ti
BOX 14 Ceramic Coating Stycast (Failed) Nb3Sn
BOX 15 Weakened CTD-101K Nb3Sn
BOX 16 Ceramic Coating Stycast Nb3Sn
BOX 17 Sedimented Particles with CTD-101K Nb3Sn
BOX 18 Double fibre glass with CTD-101K Nb3Sn
BOX 19 Higher toughness CryoSet2M Nb3Sn
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BOX Post-mortem
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Destructive

• Face imaging pre- and post-testing
• Dye penetrant on surface
− Fluorescent and red dye
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BOX Post-mortem
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Defect characterization
ID Defect Type

0 Crack a > 2500 µm

1 1500 µm < a < 2500 µm

2 250 µm < a < 1500 µm

3 a < 250 µm

4 Void > 500 µm

5 150 µm < Void < 500 µm

6 Void < 150 µm

7 Crack-like gap w/ Wire

8 Void-like gap w/ Wire

9 Wall Debonding

Courtesy of Oliver. Kirby



BOX sample “Fingerprinting”
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Stycast Sedimentation Cryoset 2M

Weak CTD101KCTD101K - 2CTD101K - 1

Mix61 MY 750 CTD701X

Courtesy of Oliver. Kirby



BOX sample CTD-101 K Series
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Stycast Sedimentation Cryoset 2M

Weak CTD101KCTD101K - 2CTD101K - 1

Mix61 MY 750 CTD701X

Courtesy of Oliver. Kirby



BOX sample “Tough” Resin Series
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Stycast Sedimentation Cryoset 2M

Weak CTD101KCTD101K - 2CTD101K - 1

Mix61 MY 750 CTD701X

Courtesy of Oliver. Kirby



BOX sample Filled Systems Series
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Stycast Sedimentation Cryoset 2M

Weak CTD101KCTD101K - 2CTD101K - 1

Mix61 MY 750 CTD701X

Courtesy of Oliver. Kirby



• Post-mortem data specific to each BOX and each segment with location of defects and 
knowledge of quench segment.

Single BOX data summary
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• Aims: 
− Help assess BOXs as an R&D device (Failure analysis: Cracking, debonding, stick-slip)
− To use as a monitoring and diagnostic device for magnets.

Acoustic Sensors
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• Design based on LBNL’s Maxim Marchevsky’s
design
− MOSFET (3N163) and Piezo rings purchased 

from Supplier in USA
• Screwed unto BOX using stainless steel screw
• Spring washer and copper washer interface with 

BOX
• Data recorded on Yokogawa DL850EV oscilloscope:
− Full ramp approx. 2mins
− Full ramp recorded at 100 kHz
− 250 ms before and after quench 

recorded at 1 MHz



− 1 MHz data ≈ 24MB; 100 kHz data ≈ 400MB
− 608 Quenches (QIDs)
− >1000 ramps (incl cyclic ramps)
− 360 GB of raw data

AE Acquired Data
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Current ramp 200 A/s

Vtaps

AE 500 ms

500 ms



• Does an acoustic event precede or proceed a quench?
− Did a crack or movement release sufficient energy to quench ?

“Expectations vs Reality” (1 MHz data)
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Wax 1 Q1MY750 Q7

5 ms

2 ms prior to Quench



“Expectations vs Reality” (1 MHz data)
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2 ms prior to Quench20 ms prior to Quench



• Earlier events seem more energetic than later events.
• Background noise artificially increases energy levels

Energy levels Comparisons (1 MHz data)
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• In some cases, piezo sensors pick up excess background noise (increased sensitivity).
• Filters and offsets cannot always compensate.

Energy levels Comparisons (1 MHz data)
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• Energy levels for 100 kHz:
− Captures the complete ramp to quench

• Uses a combination of AE data and vtap
data to determine T0 of quench and 
thresholds
− Threshold is specific to sample

• Scattered Results depend on a number of 
parameters:
− Filters
− Threshold
− Offset 
− And, piezo sensitivity

Energy levels Comparisons (100 kHz data)
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CTD-101K - 2
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Weak CTD-101K

Next day test
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Offset used!
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Offset used!
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Offset used!
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Offset used!



• More refined Analysis (Code improvements)
− Adaptive thresholds
− How to use both AE 1 and AE 2 to compensate

• Detection:
− Do we have vtap signals with AE events?

• Correlate with experimental conditions & material 
properties:
− Forces at quenching currents
− MQE evaluation
− Observed defects
− Material Properties (CTE, KIC…)

• Wavelet analysis
− Early events and precursors

• In-situ calibration with inducers/waveform generator

Future plans
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VTap
Signal VTap

Oscillation

Only AE



Future plans
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• BOX is used to benchmark and assess:
− Materials (resins, fillers, wax), coatings and processes

• Acoustic Sensors can complement diagnostics and analysis of samples
− Energy levels: 
 Some Quenches show clear precursors

− Noise of samples
Some indication that noise levels and quantity of events correlate to performance

of BOXs

• Some correlation possible with post-mortem analysis and material properties.

• Nevertheless, further work required to better differentiate between acoustic
phenomenons (normalising, offsets thresholding).

Concluding remarks
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Wir schaffen Wissen – heute für morgen

• PSI Team: 
Michael Daly, Bernhard 
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• EMPA Acoustic Analysis 
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