Machine learning for Quantum Noise Discrimination

 Machine Learning at GGI

Quantum Machine Learning

Quantum Machine Learning

Introduction

Paper in review: Stefano Martina, Stefano Gherardini and Filippo Caruso. Machine learning classification of non-Markovian noise disturbing quantum dynamics
\checkmark We consider a Quantum Random Walker on a complex graph

- perturbed by noise
\checkmark Discriminate quantum noise, by measuring only walker populations
- Support Vector Machines
- Neural Networks and Recurrent Neural Networks
\checkmark The dynamic parameters are crucial to the classification capacity
> short evolution time / high frequency \longrightarrow easy
- long evolution time / low frequency \longrightarrow hard
\checkmark Over 90\% accuracy in classification between
- two IID noises
= two coloured noises
- one IID VS one coloured noises

Introduction

Paper in review: Stefano Martina, Stefano Gherardini and Filippo Caruso. Machine learning classification of non-Markovian noise disturbing quantum dynamics
\checkmark We consider a Quantum Random Walker on a complex graph

- perturbed by noise
\checkmark Discriminate quantum noise, by measuring only walker populations
- Support Vector Machines
- Neural Networks and Recurrent Neural Networks

```
\checkmark The dynamic parameters are crucial to the classification capacity
    * short evolution time / high frequency }\longrightarrow\mathrm{ easy
    * long evolution time / low frequency }\longrightarrow\mathrm{ hard
\checkmark Over 90% accuracy in classification between
    * two IID noises
    * two coloured noises
    * one IID VS one coloured noises
```


Introduction

Paper in review: Stefano Martina, Stefano Gherardini and Filippo Caruso. Machine learning classification of non-Markovian noise disturbing quantum dynamics
\checkmark We consider a Quantum Random Walker on a complex graph

- perturbed by noise
\checkmark Discriminate quantum noise, by measuring only walker populations
- Support Vector Machines
- Neural Networks and Recurrent Neural Networks
\checkmark The dynamic parameters are crucial to the classification capacity
- short evolution time / high frequency \longrightarrow easy
- long evolution time / low frequency \longrightarrow hard
\checkmark Over 90\% accuracy in classification between
- two IID noises
- two coloured noises
- one IID VS one coloured noises

Introduction

Paper in review: Stefano Martina, Stefano Gherardini and Filippo Caruso. Machine learning classification of non-Markovian noise disturbing quantum dynamics
\checkmark We consider a Quantum Random Walker on a complex graph

- perturbed by noise
\checkmark Discriminate quantum noise, by measuring only walker populations
- Support Vector Machines
- Neural Networks and Recurrent Neural Networks
\checkmark The dynamic parameters are crucial to the classification capacity
- short evolution time / high frequency \longrightarrow easy
- long evolution time / low frequency \longrightarrow hard
\checkmark Over 90% accuracy in classification between
- two IID noises
- two coloured noises
\longrightarrow easier
- one IID VS one coloured noises

Setting definition

Example

\checkmark Example of populations with $t_{15}=0.1$

	$\mathcal{P}_{t_{k}}^{(35)}$	$\mathcal{P}_{t_{k}}^{(36)}$	$\mathcal{P}_{t_{k}}^{(37)}$	$\mathcal{P}_{t_{k}}^{(38)}$	$\mathcal{P}_{t_{k}}^{(39)}$	$\mathcal{P}_{t_{k}}^{(40)}$
t_{0}	0.00	0.00	0.00	0.00	1.00	0.00
t_{1}	0.00	0.00	0.00	0.00	0.99	0.00
t_{2}	0.00	0.00	0.00	0.00	0.93	0.00
t_{3}	0.00	0.00	0.01	0.01	0.85	0.01
t_{4}	0.00	0.01	0.01	0.01	0.78	0.01
t_{5}	0.01	0.01	0.01	0.01	0.69	0.01
t_{6}	0.01	0.02	0.01	0.01	0.63	0.00
t_{7}	0.01	0.02	0.01	0.01	0.57	0.00
t_{8}	0.01	0.02	0.01	0.01	0.52	0.00
t_{9}	0.02	0.02	0.01	0.01	0.45	0.00
t_{10}	0.02	0.02	0.02	0.02	0.37	0.01
t_{11}	0.01	0.02	0.02	0.03	0.29	0.01
t_{12}	0.01	0.01	0.03	0.04	0.20	0.02
t_{13}	0.01	0.01	0.04	0.04	0.14	0.01
t_{14}	0.01	0.02	0.04	0.05	0.08	0.01
t_{15}	0.01	0.02	0.04	0.05	0.06	0.01

Example of populations with $t_{15}=1$

	$\mathcal{P}_{t_{k}}^{(35)}$	$\mathcal{P}_{t_{k}}^{(36)}$	$\mathcal{P}_{t_{k}}^{(37)}$	$\mathcal{P}_{t_{k}}^{(38)}$	$\mathcal{P}_{t_{k}}^{(39)}$	$\mathcal{P}_{t_{k}}^{(40)}$
t_{0}	0.00	0.00	0.00	0.00	1.00	0.00
t_{1}	0.02	0.02	0.01	0.01	0.45	0.00
t_{2}	0.01	0.01	0.02	0.03	0.05	0.02
t_{3}	0.00	0.00	0.00	0.00	0.13	0.02
t_{4}	0.02	0.01	0.01	0.01	0.12	0.02
t_{5}	0.01	0.01	0.03	0.03	0.06	0.01
t_{6}	0.01	0.01	0.01	0.01	0.01	0.00
t_{7}	0.04	0.03	0.01	0.06	0.11	0.00
t_{8}	0.04	0.00	0.03	0.11	0.11	0.03
t_{9}	0.03	0.00	0.03	0.01	0.01	0.10
t_{10}	0.05	0.01	0.01	0.04	0.08	0.04
t_{11}	0.01	0.03	0.02	0.00	0.08	0.02
t_{12}	0.00	0.05	0.02	0.04	0.00	0.06
t_{13}	0.01	0.03	0.00	0.02	0.05	0.07
t_{14}	0.00	0.00	0.00	0.01	0.12	0.00
t_{15}	0.00	0.00	0.01	0.04	0.10	0.01

Support Vector Machines

Multi Layer Perceptron

$$
\hat{y} \equiv \sigma\left(\mathbf{w}^{T} \cdot \mathbf{x}+b\right)
$$

Multi Layer Perceptron

$$
\mathbf{h}[0] \equiv \mathbf{x}
$$

$$
\hat{y} \equiv \sigma\left(\mathbf{w}^{T} \cdot \mathbf{x}+b\right)
$$

$$
\mathbf{h}[/] \equiv \sigma\left(W[I]^{T} \cdot \mathbf{h}[I-1]+\mathbf{b}[/]\right)
$$

$$
\hat{\mathbf{y}} \equiv \mathbf{h}[L]
$$

Loss

Categorical Cross Entropy

$$
\ell(\hat{\mathbf{y}}, \mathbf{y})=-\sum_{j=1}^{O} y^{(j)} \log \hat{y}^{(j)}
$$

\checkmark Common used in classification tasks
\checkmark Measure distance between two probability distributions

- $\hat{\mathbf{y}}$ needs to be a probability distributions
- obtained with softmax function:

Loss

Categorical Cross Entropy

$$
\ell(\hat{\mathbf{y}}, \mathbf{y})=-\sum_{j=1}^{O} y^{(j)} \log \hat{y}^{(j)}
$$

\checkmark Common used in classification tasks
\checkmark Measure distance between two probability distributions

- $\hat{\mathbf{y}}$ needs to be a probability distributions
- obtained with softmax function:

$$
\sigma^{(i)}(\mathbf{z}) \equiv \frac{e^{z^{(i)}}}{\sum_{j=1}^{O} e^{z^{(i)}}}
$$

Unidirectional Recurrent Neural Network (RNN)

\checkmark Used on sequential data
\checkmark Processed iteratively by non-linear function r

- r parametrized with shared set of weights θ_{r}
- \mathbf{h}_{t} sort of memory
$\checkmark \mathbf{h}_{\tau}$ representation of all the sequence
- In classification \mathbf{h}_{τ} can be processed by MLP f

Unidirectional RNN

$$
\mathbf{h}_{t}=r\left(\mathbf{x}_{t}, \mathbf{h}_{t-1} ; \theta_{r}\right)
$$

$$
\hat{\mathbf{y}}=f\left(\mathbf{h}_{\tau} ; \theta_{f}\right)
$$

\checkmark Used on sequential data
\checkmark Processed iteratively by non-linear function r

- r parametrized with shared set of weights θ_{r}
- \mathbf{h}_{t} sort of memory
$\checkmark \mathbf{h}_{\tau}$ representation of all the sequence
- In classification \mathbf{h}_{τ} can be processed by MLP f

Unidirectional RNN

$$
\begin{aligned}
& \mathbf{h}_{t}=r\left(\mathbf{x}_{t}, \mathbf{h}_{t-1} ; \theta_{r}\right) \\
& \hat{\mathbf{y}}=f\left(\mathbf{h}_{\tau} ; \theta_{f}\right)
\end{aligned}
$$

\checkmark Used on sequential data
\checkmark Processed iteratively by non-linear function r

- r parametrized with shared set of weights θ_{r}
- \mathbf{h}_{t} sort of memory
$\checkmark \mathbf{h}_{\tau}$ representation of all the sequence
- In classification \mathbf{h}_{τ} can be processed by MLP f

GRU/LSTM

RNN

GRU/LSTM

Bidirectional RNN with aggregation

Aggregation

Attention mechanism

Standard

$$
\mathbf{a}=\mathbf{h}_{t}[L] \oplus \tilde{\mathbf{h}}_{1}[L]
$$

Max pooling

$$
\begin{aligned}
\mathbf{u}_{t} & =\mathbf{h}_{t}[L] \oplus \tilde{\mathbf{h}}_{t}[L] \\
\mathbf{a}^{(j)} & =\max _{t} \mathbf{u}_{t}^{(j)}
\end{aligned}
$$

$$
\mathbf{u}_{t}=\mathbf{h}_{t}[L] \oplus \widetilde{\mathbf{h}}_{t}[L]
$$

$$
\mathbf{v}_{t}=\tanh \left(\mathbf{W}^{T} \cdot \mathbf{u}_{t}+\mathbf{b}\right)
$$

Aggregation

Attention mechanism

Standard

$$
\mathbf{a}=\mathbf{h}_{t}[L] \oplus \tilde{\mathbf{h}}_{1}[L]
$$

Max pooling

$$
\begin{aligned}
\mathbf{u}_{t} & =\mathbf{h}_{t}[L] \oplus \tilde{\mathbf{h}}_{t}[L] \\
\mathbf{a}^{(j)} & =\max _{t} \mathbf{u}_{t}^{(j)}
\end{aligned}
$$

Aggregation

Attention mechanism

Standard

$$
\mathbf{a}=\mathbf{h}_{t}[L] \oplus \widetilde{\mathbf{h}}_{1}[L]
$$

Max pooling

$$
\begin{aligned}
\mathbf{u}_{t} & =\mathbf{h}_{t}[L] \oplus \widetilde{\mathbf{h}}_{t}[L] \\
\mathbf{a}^{(j)} & =\max _{t} \mathbf{u}_{t}^{(j)}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{u}_{t} & =\mathbf{h}_{t}[L] \oplus \widetilde{\mathbf{h}}_{t}[L] \\
\mathbf{v}_{t} & =\tanh \left(\mathbf{W}^{T} \cdot \mathbf{u}_{t}+\mathbf{b}\right) \\
\alpha_{t} & \equiv \frac{e^{\left\langle\mathbf{v}_{t}, \mathbf{c}\right\rangle}}{\sum_{j=1}^{\tau} e^{\left\langle\mathbf{v}_{j}, \mathbf{c}\right\rangle}} \\
\mathbf{a} & \equiv \sum_{t=1}^{\tau} \alpha_{t} \mathbf{u}_{t}
\end{aligned}
$$

Results

		$t_{15}=0.1$			$t_{15}=1$		
		IID	NM	VS	IID	NM	VS
	SVM	97.0	82.3	96.5	50.3	51.2	49.5
$\mathcal{P}_{t_{15}}$	MLP	96.9	80.7	96.6	49.5	50.7	50.2
	SVM	96.4	80.1	96.3	73.6	61.9	75.0
	GRU	96.5	91.5	96.7	90.5	73.3	88.2
	LSTM	96.8	90.4	96.4	88.6	70.3	86.3
\mathcal{P}	bi-GRU	96.6	92.2	96.6	91.0	74.6	90.6
	bi-LSTM	96.7	89.7	96.5	90.8	70.6	87.2
\mathcal{P}	bi-GRU-att	97.0	91.6	96.1	90.9	73.4	87.9
	bi-LSTM-att	96.9	87.9	96.3	89.0	71.6	87.4
	bi-GRU-max	96.6	92.6	96.6	91.8	76.1	90.4
	bi-LSTM-max	96.6	91.4	96.3	91.4	74.9	89.0

Results

		$t_{15}=0.1$			$t_{15}=1$		
		IID	NM	VS	IID	NM	VS
	SVM	97.0	82.3	96.5	50.3	51.2	49.5
$\mathcal{P}_{t_{15}}$	MLP	96.9	80.7	96.6	49.5	50.7	50.2
	SVM	96.4	80.1	96.3	73.6	61.9	75.0
	GRU	96.5	91.5	96.7	90.5	73.3	88.2
	LSTM	96.8	90.4	96.4	88.6	70.3	86.3
\mathcal{P}	bi-GRU	96.6	92.2	96.6	91.0	74.6	90.6
	bi-LSTM	96.7	89.7	96.5	90.8	70.6	87.2
$\mathcal{P}_{\text {+ }}$	bi-GRU-att	97.0	91.6	96.1	90.9	73.4	87.9
	bi-LSTM-att	96.9	87.9	96.3	89.0	71.6	87.4
	bi-GRU-max	96.6	92.6	96.6	91.8	76.1	90.4
	bi-LSTM-max	96.6	91.4	96.3	91.4	74.9	89.0

Results

		$t_{15}=0.1$			$t_{15}=1$		
		IID	NM	VS	IID	NM	VS
	SVM	97.0	82.3	96.5	50.3	51.2	49.5
$\mathcal{P}_{t_{15}}$	MLP	96.9	80.7	96.6	49.5	50.7	50.2
	SVM	96.4	80.1	96.3	73.6	61.9	75.0
	GRU	96.5	91.5	96.7	90.5	73.3	88.2
	LSTM	96.8	90.4	96.4	88.6	70.3	86.3
\mathcal{P}	bi-GRU	96.6	92.2	96.6	91.0	74.6	90.6
	bi-LSTM	96.7	89.7	96.5	90.8	70.6	87.2
	bi-GRU-att	97.0	91.6	96.1	90.9	73.4	87.9
	bi-LSTM-att	96.9	87.9	96.3	89.0	71.6	87.4
	bi-GRU-max	96.6	92.6	96.6	91.8	76.1	90.4
	bi-LSTM-max	96.6	91.4	96.3	91.4	74.9	89.0

Results

		$t_{15}=0.1$			$t_{15}=1$		
		IID	NM	VS	IID	NM	VS
$\mathcal{P}_{t_{15}}$	SVM	MLP	97.0	82.3	96.5	50.3	51.2
	96.9	80.7	96.6	49.5	50.7	50.2	
	SVM	96.4	80.1	96.3	73.6	61.9	75.0
	GRU	96.5	91.5	96.7	90.5	73.3	88.2
	LSTM	96.8	90.4	96.4	88.6	70.3	86.3
$\mathcal{P}_{t_{0}}$,	bi-GRU	96.6	92.2	96.6	91.0	74.6	90.6
\ldots,	bi-LSTM	96.7	89.7	96.5	90.8	70.6	87.2
$\boldsymbol{P}_{\boldsymbol{t}_{15}}$	bi-GRU-att	97.0	91.6	96.1	90.9	73.4	87.9
	bi-LSTM-att	96.9	87.9	96.3	89.0	71.6	87.4
	bi-GRU-max	96.6	92.6	96.6	91.8	76.1	90.4
	bi-LSTM-max	96.6	91.4	96.3	91.4	74.9	89.0

Results

		$t_{15}=0.1$			$t_{15}=1$		
		IID	NM	VS	IID	NM	VS
	SVM	$\underline{97.0}$	82.3	96.5	50.3	51.2	49.5
$\mathcal{P}_{t_{15}}$	MLP	96.9	80.7	$\underline{96.6}$	49.5	50.7	50.2
	SVM	96.4	80.1	96.3	73.6	61.9	75.0
	GRU	96.5	91.5	$\underline{96.7}$	90.5	73.3	88.2
	LSTM	96.8	90.4	96.4	88.6	70.3	86.3
$\mathcal{P}_{t_{0}}$,	bi-GRU	96.6	92.2	96.6	91.0	74.6	90.6
\ldots,	bi-LSTM	96.7	89.7	96.5	90.8	70.6	87.2
$\mathcal{P}_{t_{15}}$	bi-GRU-att	$\mathbf{9 7 . 0}$	91.6	96.1	90.9	73.4	87.9
	bi-LSTM-att	96.9	87.9	96.3	89.0	71.6	87.4
	bi-GRU-max	96.6	$\mathbf{9 2 . 6}$	96.6	91.8	76.1	90.4
	bi-LSTM-max	96.6	91.4	96.3	91.4	74.9	89.0

Results

		$t_{15}=0.1$			$t_{15}=1$		
		IID	NM	VS	IID	NM	VS
$\mathcal{P}_{t_{15}}$	SVM	$\underline{97.0}$	$\underline{82.3}$	96.5	$\underline{50.3}$	$\underline{51.2}$	49.5
	MLP	96.9	80.7	$\underline{96.6}$	49.5	50.7	$\underline{50.2}$
	SVM	96.4	80.1	96.3	73.6	61.9	75.0
	GRU	96.5	91.5	$\underline{96.7}$	90.5	73.3	88.2
$\mathcal{P}_{t_{0}}$,	bi-GRU	96.8	90.4	96.4	88.6	70.3	86.3
\ldots,	bi-LSTM	96.6	92.2	96.6	91.0	74.6	$\underline{90.6}$
$\mathcal{P}_{t_{15}}$	bi-GRU-att	$\underline{97.7}$	89.7	96.5	90.8	70.6	87.2
	bi-LSTM-att	96.9	87.9	96.1	90.9	73.4	87.9
	bi-GRU-max	96.6	$\underline{92.6}$	96.6	89.0	71.6	87.4
	bi-LSTM-max	96.6	91.4	96.3	$\underline{91.4}$	$\underline{76.1}$	90.4
			74.9	89.0			

Used circuit

Martina, S., Buffoni, L., Gherardini, S., \& Caruso, F. (2022). Learning the noise fingerprint of quantum devices. Quantum Machine Intelligence, 4(1), 1-12.

\checkmark We add a temporal dimension

- The circuit is reneated 3 times
, The measurements are after each CNOT and Toffoli for a total of 9 steps.

Used circuit

Martina, S., Buffoni, L., Gherardini, S., \& Caruso, F. (2022). Learning the noise fingerprint of quantum devices. Quantum Machine Intelligence, 4(1), 1-12.

\checkmark We add a temporal dimension
\checkmark The circuit is repeated 3 times
\checkmark The measurements are after each CNOT and Toffoli for a total of 9 steps

FAST dataset

\checkmark Temporally close executions
$\checkmark 7$ different IBM NISQ devices
\checkmark For each device 2000 sequences of 9 steps

- each one is a distribution probability obtained running 1000 shots of the circuit

FAST dataset

\checkmark Temporally close executions
$\checkmark 7$ different IBM NISQ devices
\checkmark For each device 2000 sequences of 9 steps

- each one is a distribution probability obtained running 1000 shots of the circuit

FAST dataset

\checkmark Temporally close executions
$\checkmark 7$ different IBM NISQ devices
\checkmark For each device 2000 sequences of 9 steps

- each one is a distribution probability obtained running 1000 shots of the circuit

Binary device classification

\checkmark Using FAST dataset
\checkmark For each pair of devices

- the task is to find the used device from the measurement probabilities

Both considering single and incremental steps
\checkmark Trained SVM classifiers

- $60 \%-20 \%-20 \%$ train, validation and test split
- kernels linear, RBF and polynomial with degree 2, 3 and 4

Binary device classification

\checkmark Using FAST dataset
\checkmark For each pair of devices

- the task is to find the used device from the measurement probabilities
\checkmark Both considering single and incremental steps
\checkmark Trained SVM classifiers
- $60 \%-20 \%-20 \%$ trair, validation and test split
- kernels linear, RBF and polynomial with degree 2, 3 and 4

Binary device classification

\checkmark Using FAST dataset
\checkmark For each pair of devices

- the task is to find the used device from the measurement probabilities
\checkmark Both considering single and incremental steps
\checkmark Trained SVM classifiers
- $60 \%-20 \%-20 \%$ train, validation and test split
- kernels linear, RBF and polynomial with degree 2, 3 and 4

Binary device classification

\checkmark Using FAST dataset
\checkmark For each pair of devices

- the task is to find the used device from the measurement probabilities
\checkmark Both considering single and incremental steps
\checkmark Trained SVM classifiers
- $60 \%-20 \%-20 \%$ train, validation and test split
- kernels linear, RBF and polynomial with degree 2, 3 and 4

Machines	Athens			Bogota			Casablanca			Lima			Quito			Santiago		
	k	$\alpha(k)$	$\alpha([1, k])$	k	$\alpha(k)$													
	1	0.915	0.915															
	2	0.944	0.975															
	3	0.999	1.000															
	4	0.954	0.999															
Bogota	5	0.981	0.999															
	6	0.989	1.000															
	7	0.949	1.000															
	8	0.990	1.000															
	9	0.991	1.000															
	1	0.895	0.895	1	0.831	0.831												
	2	0.740	0.921	2	0.932	0.959												
	3	0.968	0.983	3	0.943	0.995												
	4	0.994	0.998	4	0.960	0.999												
Casablanca	5	0.969	0.999	5	0.889	0.998												
	6	0.988	1.000	6	0.811	1.000												
	7	0.869	1.000	7	0.830	0.999												
	8	0.906	1.000	8	0.818	0.999												
	9	0.927	1.000	9	0.782	1.000												
	1	0.879	0.879	1	0.772	0.772	1	0.724	0.724									
	2	0.762	0.915	2	0.983	0.984	2	0.869	0.887									
	3	0.999	1.000	3	0.989	0.999	3	0.951	0.966									
	4	1.000	1.000	4	0.996	1.000	4	0.829	0.975									
Lima	5	0.999	1.000	5	0.787	1.000	5	0.814	0.993									
	6	0.999	1.000	6	0.996	1.000	6	0.990	0.999									
	7	0.940	1.000	7	0.795	1.000	7	0.882	0.999									
	8	0.784	1.000	8	0.912	1.000	8	0.823	0.999									
	9	0.978	1.000	9	0.950	1.000	9	0.879	0.999									
	1	0.685	0.685	1	0.815	0.815	1	0.834	0.834	1	0.725	0.725						
	2	1.000	1.000	2	1.000	1.000	2	1.000	1.000	2	1.000	1.000						
	3	1.000	1.000	3	0.990	1.000	3	1.000	1.000	3	1.000	1.000						
	4	0.998	1.000	4	1.000	1.000	4	1.000	1.000	4	1.000	1.000						
Quito	5	0.993	1.000	5	0.787	1.000	5	0.881	1.000	5	0.714	1.000						
	6	0.966	1.000	6	0.983	1.000	6	0.979	1.000	6	1.000	1.000						
	7	0.948	1.000	7	0.965	1.000	7	0.940	1.000	7	0.978	1.000						
	8	0.998	1.000	8	0.969	1.000	8	0.959	1.000	8	0.991	1.000						
	9	0.988	1.000	9	0.891	1.000	9	0.864	1.000	9	0.953	1.000			4 $\square^{\text {b }}$		$\checkmark 4$	三

Multiclass device classification

\checkmark Not considering pairs, but a multiclass setting (one-vs-rest)

Machines	k	$\alpha(k)$	$\alpha([k-1, k])$	$\alpha([k-2, k])$	$\alpha([k-3, k])$	$\alpha([k-4, k])$	$\alpha([1, k])$
Athens	1	0.529					0.529
\& Bogota	2	0.691	0.850				0.850
\& Casablanca	4	0.920	0.896	0.975	0.983		
\& Lima	5	0.680	0.955	0.991	0.992	0.992	
\& Quito	6	0.789	0.946	0.988	0.997	0.995	0.992
\& Santiago	7	0.776	0.941	0.974	0.993	0.998	0.998
\& Yorktown	8	0.703	0.911	0.960	0.982	0.998	0.999
	9	0.681	0.871	0.952	0.970	0.986	0.999
Average		0.740	0.929	0.977	0.988	0.994	

Time classification

$\checkmark 2$ runs of FAST dataset on the same machine but with 24 hours gap

Machine	k	$\alpha(k)$	$\alpha([1, k])$
	1	0.882	0.882
	2	0.815	0.917
	3	0.757	0.948
	4	0.974	0.994
Casablanca	5	0.969	1.000
	6	0.895	0.999
	7	0.917	0.999
	8	0.859	0.999
	9	0.721	0.999

SLOW dataset

\checkmark Temporally delayed executions (at least 2 minutes between each 1000 shots batch)
$\checkmark 2$ different IBM NISQ devices
\checkmark For each device 2000 sequences of 9 steps

- each one is a distribution probability obtained running 1000 shots of the circuit

Time window classification

\checkmark in 1 machine of SLOW dataset
\checkmark discriminate between the first window of 200 runs and the subsequent windows

[1,200$]$ vs		$\begin{gathered} {[201,400]} \\ \alpha(k) \\ \hline \end{gathered}$	$\begin{gathered} {[401,600]} \\ \alpha(k) \\ \hline \end{gathered}$	$\begin{gathered} {[601,800]} \\ \alpha(k) \\ \hline \end{gathered}$	$\begin{gathered} {[801,1000]} \\ \alpha(k) \\ \hline \end{gathered}$	$\begin{gathered} {[1001,1200]} \\ \alpha(k) \\ \hline \end{gathered}$	$\begin{gathered} {[1201,1400]} \\ \alpha(k) \\ \hline \end{gathered}$	$\begin{gathered} {[1401,1600]} \\ \alpha(k) \\ \hline \end{gathered}$	$\begin{gathered} {[1601,1800]} \\ \alpha(k) \\ \hline \end{gathered}$	$\begin{gathered} {[1801,2000]} \\ \alpha(k) \\ \hline \end{gathered}$
Machines	k									
Belem	1	0.838	0.975	0.975	0.950	0.938	0.938	0.750	0.950	0.963
	2	0.812	0.850	0.912	0.875	0.975	0.925	0.800	0.863	0.875
	3	0.688	0.812	0.688	0.738	0.650	0.500	0.738	0.613	0.700
	4	0.738	0.800	0.700	0.750	0.700	0.713	0.863	0.875	0.875
	5	0.662	0.700	0.800	0.800	0.725	0.863	0.762	0.838	0.812
	6	0.700	0.700	0.938	0.950	0.838	0.762	0.800	0.750	0.800
	7	0.675	0.850	0.887	0.975	0.912	0.887	0.713	0.875	0.950
	8	0.775	0.800	0.900	0.912	0.938	0.988	0.787	0.938	0.938
	9	0.750	0.900	0.912	0.988	0.850	0.838	0.787	0.812	0.838
Average		0.738	0.821	0.857	0.882	0.837	0.824	0.778	0.835	0.861
[1,200] vs		[201, 400]	[401, 600]	[601,800]	[801, 1000]	[1001, 1200]	[1201, 1400]	[1401, 1600]	[1601, 1800]	[1801, 2000]
Machines	k	$\alpha([1, k])$								
Belem	1	0.838	0.975	0.975	0.950	0.938	0.938	0.750	0.950	0.963
	2	0.850	0.963	0.988	0.975	1.000	0.950	0.825	0.988	0.988
	3	0.887	0.975	0.988	0.975	0.988	0.988	0.850	1.000	0.988
	4	0.850	0.950	1.000	0.988	0.988	0.975	0.975	0.988	1.000
	5	0.850	0.963	1.000	0.988	0.988	0.975	0.963	1.000	1.000
	6	0.850	0.988	0.988	0.988	1.000	0.988	0.975	1.000	0.988
	7	0.863	0.988	1.000	0.988	1.000	1.000	0.988	1.000	1.000
	8	0.850	1.000	1.000	0.988	1.000	1.000	0.975	1.000	1.000
	9	0.875	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

\checkmark in same machine as previous slide
$\checkmark \alpha([1,9])$ discriminating the first window of 200 runs from another window sliding in time

Robustness in time

\checkmark Both machines of SLOW dataset

$\checkmark \alpha([1,9])$ discriminating the used machine
\checkmark Train on the window in row index; test on window in column index

	1	2	3	4	5	6	7	8	9	10
1	1.000	1.000	0.995	0.925	0.880	0.865	0.995	1.000	1.000	1.000
2	1.000	1.000	0.995	0.925	0.920	0.910	0.980	1.000	1.000	1.000
3	1.000	1.000	1.000	0.970	0.950	0.950	0.980	1.000	1.000	1.000
4	1.000	0.980	0.995	1.000	1.000	1.000	1.000	1.000	1.000	1.000
5	0.980	0.935	0.955	0.995	1.000	0.995	1.000	1.000	1.000	1.000
6	0.995	0.995	0.995	1.000	1.000	1.000	1.000	1.000	1.000	1.000
7	1.000	1.000	0.995	0.985	1.000	0.990	1.000	1.000	1.000	1.000
8	1.000	1.000	0.995	0.995	1.000	0.990	0.995	1.000	1.000	1.000
9	1.000	1.000	0.995	0.995	0.970	0.960	1.000	1.000	1.000	1.000
10	1.000	1.000	0.995	0.995	0.995	0.995	0.995	1.000	1.000	1.000

Thante youl Questions?

Qubit

\checkmark Classic bit can take one value between 0 and 1
\checkmark A qubit can take one of infinite values

- in Hilbert vector space with basis of two elements $|0\rangle$ and $\mid 1$

A qubit is in sunernosition $|\Omega|,\rangle=\alpha|0\rangle+\beta|1\rangle$

- Where amplitudes α and β are complex numbers such that $|\alpha|^{2}+|\beta|^{2}=1$
- 0
- 1

Classical Bit Qubit

Qubit

\checkmark Classic bit can take one value between 0 and 1
\checkmark A qubit can take one of infinite values

- in Hilbert vector space with basis of two elements $|0\rangle$ and $|1\rangle$
$\begin{aligned} & \checkmark \text { A qubit is in superposition }|\psi\rangle=\alpha|0\rangle+\beta|1\rangle \\ & \sim \text { Where amplitudes } \alpha \text { and } \beta \text { are complex numbers such that }|\alpha|^{2}+|\beta|^{2}=1\end{aligned}$
- 0

○ 1
Classical Bit

Qubit

Qubit

\checkmark Classic bit can take one value between 0 and 1
\checkmark A qubit can take one of infinite values

- in Hilbert vector space with basis of two elements $|0\rangle$ and $|1\rangle$
\checkmark A qubit is in superposition $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$
- Where amplitudes α and β are complex numbers such that $|\alpha|^{2}+|\beta|^{2}=1$
- 0

Classical Bit Qubit

- 1

Measure

\checkmark The result of the measure is random
\checkmark When we measure a qubit we obtain a classical bit
\checkmark The measure of $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$ is

- 0 with probability $|\alpha|^{2}$
* 1 with probability $|\beta|^{2}$

```
Effect of measure
```

Wavefunction collapse the new state after the measurement will be $|0\rangle$ or $|1\rangle$ depending on the measurement result
$\underline{\text { No-cloning theorem We cannot perform several independent measurements of }|\psi\rangle}$

Measure

\checkmark The result of the measure is random
\checkmark When we measure a qubit we obtain a classical bit
\checkmark The measure of $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$ is

- 0 with probability
- 1 with probability

Effect of measure
Wavefunction collapse the new state after the measurement will be $|0\rangle$ or $|1\rangle$ depending on the measurement result
\square

Measure

\checkmark The result of the measure is random
\checkmark When we measure a qubit we obtain a classical bit
$\boldsymbol{\checkmark}$ The measure of $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$ is

- 0 with probability $|\alpha|^{2}$
- 1 with probability $|\beta|^{2}$

```
Effect of measure
Wavefunction collapse the new state after the measurement will be \(|0\rangle\) or \(|1\rangle\) depending on the measurement result
```

\square

Measure

\checkmark The result of the measure is random
\checkmark When we measure a qubit we obtain a classical bit
$\boldsymbol{\sim}$ The measure of $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$ is

- 0 with probability $|\alpha|^{2}$
- 1 with probability $|\beta|^{2}$

Effect of measure

Wavefunction collapse the new state after the measurement will be $|0\rangle$ or $|1\rangle$ depending on the measurement result
No-cloning theorem We cannot perform several independent measurements of $|\psi\rangle$

Bloch sphere

\checkmark We can rewrite $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle \rightarrow|\psi\rangle=\cos \frac{\theta}{2}|0\rangle+e^{i \varphi} \sin \frac{\theta}{2}|1\rangle$

- with $0 \leq \theta \leq \pi$ and $0 \leq \varphi<2 \pi$

Quantum gates

\checkmark The evolution of a state is given by the Schrödinger equation

$$
H(t)|\psi(t)\rangle=i \hbar \frac{\partial}{\partial t}|\psi(t)\rangle
$$

\checkmark In quantum circuits, the operation given by complex unitary matrices, i.e. verifying $U^{\dagger} U^{\dagger}=U^{\dagger} U=1$
where U^{\dagger} is the complex conjugate transpose of U
\checkmark Each such matrix is a possible quantum gate in a quantum circuit
Application (for 1-qubit gate)
For $U=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle=\binom{\alpha}{\beta}$

$=(a \alpha+b \beta)|0\rangle+(c \alpha+d \beta)|1\rangle$

Quantum gates

\checkmark The evolution of a state is given by the Schrödinger equation

$$
H(t)|\psi(t)\rangle=i \hbar \frac{\partial}{\partial t}|\psi(t)\rangle
$$

\checkmark In quantum circuits, the operation given by complex unitary matrices, i.e. verifying

$$
U U^{\dagger}=U^{\dagger} U=I
$$

where U^{\dagger} is the complex conjugate transpose of U
\checkmark Each such matrix is a possible quantum gate in a quantum circuit
Application (for 1-qubit gate)

Quantum gates

\checkmark The evolution of a state is given by the Schrödinger equation

$$
H(t)|\psi(t)\rangle=i \hbar \frac{\partial}{\partial t}|\psi(t)\rangle
$$

\checkmark In quantum circuits, the operation given by complex unitary matrices, i.e. verifying

$$
U U^{\dagger}=U^{\dagger} U=I
$$

where U^{\dagger} is the complex conjugate transpose of U
\checkmark Each such matrix is a possible quantum gate in a quantum circuit
Application (for 1-qubit gate)
For $U=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle=\binom{\alpha}{\beta}$

$$
U|\psi\rangle=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{\alpha}{\beta}=\binom{a \alpha+b \beta}{c \alpha+d \beta}=(a \alpha+b \beta)|0\rangle+(c \alpha+d \beta)|1\rangle
$$

Pauli Gates (rotation of π along correspondig axis in Bloch)

X or NOT (Pauli σ_{X})

$$
X:=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

$$
\alpha|0\rangle+\beta|1\rangle-x-\beta|0\rangle+\alpha|1\rangle
$$

Z (Pauli σ_{z})

$$
Z:=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

$$
\alpha|0\rangle+\beta|1\rangle-\sqrt{z}-\alpha|0\rangle-\beta|1\rangle
$$

Y (Pauli $\left.\sigma_{Y}\right)$

$$
\begin{gathered}
Y:=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \\
\alpha|0\rangle+\beta|1\rangle-Y--i \beta|0\rangle+i \alpha|1\rangle
\end{gathered}
$$

$$
\begin{gathered}
I:=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
\alpha|0\rangle+\beta|1\rangle-I-\alpha|0\rangle+\beta|1\rangle
\end{gathered}
$$

Hadamard gate

H

$$
H:=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

$\alpha|0\rangle+\beta|1\rangle-H-\frac{\alpha+\beta}{\sqrt{2}}|0\rangle+\frac{\alpha-\beta}{\sqrt{2}}|1\rangle$

$$
\begin{aligned}
& |0\rangle-H-\frac{|0\rangle+|1\rangle}{\sqrt{2}} \\
& |1\rangle-H-\frac{|0\rangle-|1\rangle}{\sqrt{2}}
\end{aligned}
$$

2 qubit systems

\checkmark Each qubit can be in state $|0\rangle$ or $|1\rangle$
\checkmark We have 4 possibilities, equivalently (\otimes is Kroneker product)

\checkmark We can have superposition

$$
|\psi\rangle=\alpha_{00}|00\rangle+\alpha_{01}|01\rangle+\alpha_{10}|10\rangle+\alpha_{11}|11\rangle
$$

with amplitudes $\alpha_{x y}$ complex numbers such that $\sum_{x, y=0}^{1}\left|\alpha_{x y}\right|^{2}=1$

2 qubit systems

\checkmark Each qubit can be in state $|0\rangle$ or $|1\rangle$
\checkmark We have 4 possibilities, equivalently (\otimes is Kroneker product)

$$
\begin{array}{cl}
|0\rangle \otimes|0\rangle, & |0\rangle \otimes|1\rangle, \\
|0\rangle|0\rangle, & |0\rangle|1\rangle,
\end{array}|1\rangle|0\rangle, \quad|1\rangle|1\rangle, \quad|1\rangle \otimes|1\rangle \mid
$$

\checkmark We can have superposition
$|\psi\rangle=\alpha_{00}|00\rangle+\alpha_{01}|01\rangle+\alpha_{10}|10\rangle+\alpha_{11}|11\rangle$
with amplitudes $\alpha_{x y}$ complex numbers such that $\sum_{x, y=0}^{1}\left|\alpha_{x y}\right|^{2}=1$

2 qubit systems

\checkmark Each qubit can be in state $|0\rangle$ or $|1\rangle$
\checkmark We have 4 possibilities, equivalently (\otimes is Kroneker product)

$$
\left.\begin{array}{cl}
|0\rangle \otimes|0\rangle, & |0\rangle \otimes|1\rangle, \\
|0\rangle|0\rangle, & |0\rangle|1\rangle, \\
|00\rangle, & |1\rangle|0\rangle\rangle,
\end{array} \quad|10\rangle, \quad|11\rangle|1\rangle\right)
$$

\checkmark We can have superposition

$$
|\psi\rangle=\alpha_{00}|00\rangle+\alpha_{01}|01\rangle+\alpha_{10}|10\rangle+\alpha_{11}|11\rangle
$$

with amplitudes $\alpha_{x y}$ complex numbers such that $\sum_{x, y=0}^{1}\left|\alpha_{x y}\right|^{2}=1$

Measuring 2 qubit systems

$$
|\psi\rangle=\alpha_{00}|00\rangle+\alpha_{01}|01\rangle+\alpha_{10}|10\rangle+\alpha_{11}|11\rangle
$$

Measuring both qubits

$\checkmark 00$ with probability $\left|\alpha_{00}\right|^{2}$, new state $|00\rangle$
$\checkmark 01$ with probability $\left|\alpha_{01}\right|^{2}$, new state $|01\rangle$
$\checkmark 10$ with probability $\left|\alpha_{10}\right|^{2}$, new state $|10\rangle$
$\checkmark 11$ with probability $\left|\alpha_{11}\right|^{2}$, new state $|11\rangle$

Measuring 2 qubit systems

$$
|\psi\rangle=\alpha_{00}|00\rangle+\alpha_{01}|01\rangle+\alpha_{10}|10\rangle+\alpha_{11}|11\rangle
$$

Measuring both qubits

$\checkmark 00$ with probability $\left|\alpha_{00}\right|^{2}$, new state $|00\rangle$
$\checkmark 01$ with probability $\left|\alpha_{01}\right|^{2}$, new state $|01\rangle$
$\checkmark 10$ with probability $\left|\alpha_{10}\right|^{2}$, new state $|10\rangle$
$\checkmark 11$ with probability $\left|\alpha_{11}\right|^{2}$, new state $|11\rangle$
Measuring only one qubit (the first in this case)
$\checkmark 0$ with probability $\left|\alpha_{00}\right|^{2}+\left|\alpha_{01}\right|^{2}$, new state $\frac{\alpha_{00}|00\rangle+\alpha_{01}|01\rangle}{\sqrt{\left|\alpha_{00}\right|^{2}+\left|\alpha_{01}\right|^{2}}}$
$\checkmark 1$ with probability $\left|\alpha_{10}\right|^{2}+\left|\alpha_{11}\right|^{2}$, new state $\frac{\alpha_{10}|10\rangle+\alpha_{11}|11\rangle}{\sqrt{\left|\alpha_{10}\right|^{2}+\left|\alpha_{11}\right|^{2}}}$

2 qubit gates

\checkmark If A and B are one-qubit gates acting on two different cubits, then on the two qubit $A \otimes B$ \checkmark In general all unitary matrices 4×4

2 qubit gates

\checkmark If A and B are one-qubit gates acting on two different cubits, then on the two qubit $A \otimes B$ \checkmark In general all unitary matrices 4×4

2 qubit gates

\checkmark If A and B are one-qubit gates acting on two different cubits, then on the two qubit $A \otimes B$ \checkmark In general all unitary matrices 4×4

CNOT

$$
\text { CNOT }:=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

for $x, y \in\{0,1\}$

