Machine learning for Quantum Noise Discrimination Machine Learning at GGI

Stefano MARTINA stefano.martina@unifi.it

Quantum Driving And **Bio-complexity**

September 5, 2022

Quantum Machine Learning

Quantum Machine Learning

Paper in review: Stefano Martina, Stefano Gherardini and Filippo Caruso. Machine learning classification of non-Markovian noise disturbing quantum dynamics

September 5, 2022

3

✓ We consider a Quantum Random Walker on a complex graph

- perturbed by noise
- Discriminate quantum noise, by measuring only walker populations
 - Support Vector Machines
 - Neural Networks and Recurrent Neural Networks
- The dynamic parameters are crucial to the classification capacity
 - \blacktriangleright short evolution time / high frequency \longrightarrow easy
 - \blacktriangleright long evolution time / low frequency \longrightarrow hard
- ✓ Over 90% accuracy in classification between
 - two IID noises —
 - two coloured noises
 - one IID VS one coloured noises –

Paper in review: Stefano Martina, Stefano Gherardini and Filippo Caruso. Machine learning classification of non-Markovian noise disturbing quantum dynamics

September 5, 2022

3

- ✓ We consider a Quantum Random Walker on a complex graph
 - perturbed by noise
- Discriminate quantum noise, by measuring only walker populations
 - Support Vector Machines
 - Neural Networks and Recurrent Neural Networks
- The dynamic parameters are crucial to the classification capacity
 - \blacktriangleright short evolution time / high frequency \longrightarrow easy
 - Iong evolution time / low frequency \longrightarrow hard
- ✓ Over 90% accuracy in classification between
 - two IID noises —
 - two coloured noises
 - one IID VS one coloured noises –

Paper in review: Stefano Martina, Stefano Gherardini and Filippo Caruso. Machine learning classification of non-Markovian noise disturbing quantum dynamics

September 5, 2022

3

- ✓ We consider a Quantum Random Walker on a complex graph
 - perturbed by noise
- Discriminate quantum noise, by measuring only walker populations
 - Support Vector Machines
 - Neural Networks and Recurrent Neural Networks
- The dynamic parameters are crucial to the classification capacity
 - short evolution time / high frequency \longrightarrow easy
 - ▶ long evolution time / low frequency \longrightarrow hard
- ✓ Over 90% accuracy in classification between
 - two IID noises —
 - two coloured noises
 - one IID VS one coloured noises –

Paper in review: Stefano Martina, Stefano Gherardini and Filippo Caruso. Machine learning classification of non-Markovian noise disturbing quantum dynamics

🛨 easier

- ✓ We consider a Quantum Random Walker on a complex graph
 - perturbed by noise
- Discriminate quantum noise, by measuring only walker populations
 - Support Vector Machines
 - Neural Networks and Recurrent Neural Networks
- The dynamic parameters are crucial to the classification capacity
 - ▶ short evolution time / high frequency \longrightarrow easy
 - ▶ long evolution time / low frequency \longrightarrow hard
- ✓ Over 90% accuracy in classification between
 - two IID noises —
 - two coloured noises
 - one IID VS one coloured noises -

Stefano Martina (University of Florence)

Stefano Martina (University of Florence)

September 5, 2022 4

Stefano Martina (University of Florence)

Stefano Martina (University of Florence)

≣ ▶ ४ ≣ ▶ ≣ ∽ ९ ० September 5, 2022 4

September 5, 2022

Example

✓ Example of populations with $t_{15} = 0.1$

	$\mathcal{P}_{t_k}^{(35)}$	$\mathcal{P}_{t_k}^{(36)}$	$\mathcal{P}_{t_k}^{(37)}$	$\mathcal{P}_{t_k}^{(38)}$	$\mathcal{P}_{t_k}^{(39)}$	$\mathcal{P}_{t_k}^{(40)}$
t_0	0.00	0.00	0.00	0.00	1.00	0.00
t_1	0.00	0.00	0.00	0.00	0.99	0.00
t_2	0.00	0.00	0.00	0.00	0.93	0.00
t_3	0.00	0.00	0.01	0.01	0.85	0.01
t4	0.00	0.01	0.01	0.01	0.78	0.01
t_5	0.01	0.01	0.01	0.01	0.69	0.01
t_6	0.01	0.02	0.01	0.01	0.63	0.00
t7	0.01	0.02	0.01	0.01	0.57	0.00
t ₈	0.01	0.02	0.01	0.01	0.52	0.00
t_9	0.02	0.02	0.01	0.01	0.45	0.00
t_{10}	0.02	0.02	0.02	0.02	0.37	0.01
t_{11}	0.01	0.02	0.02	0.03	0.29	0.01
t_{12}	0.01	0.01	0.03	0.04	0.20	0.02
t_{13}	0.01	0.01	0.04	0.04	0.14	0.01
t_{14}	0.01	0.02	0.04	0.05	0.08	0.01
t_{15}	0.01	0.02	0.04	0.05	0.06	0.01

✓ Example of populations with $t_{15} = 1$

	$P_{t_k}^{(35)}$	$\mathcal{P}_{t_k}^{(36)}$	$\mathcal{P}_{t_k}^{(37)}$	$\mathcal{P}_{t_{k}}^{(38)}$	$\mathcal{P}_{t_k}^{(39)}$	$\mathcal{P}_{t_k}^{(40)}$
t_0	0.00	0.00	0.00	0.00	1.00	0.00
t_1	0.02	0.02	0.01	0.01	0.45	0.00
t_2	0.01	0.01	0.02	0.03	0.05	0.02
t_3	0.00	0.00	0.00	0.00	0.13	0.02
t_4	0.02	0.01	0.01	0.01	0.12	0.02
t_5	0.01	0.01	0.03	0.03	0.06	0.01
t_6	0.01	0.01	0.01	0.01	0.01	0.00
t_7	0.04	0.03	0.01	0.06	0.11	0.00
t_8	0.04	0.00	0.03	0.11	0.11	0.03
t_9	0.03	0.00	0.03	0.01	0.01	0.10
t_{10}	0.05	0.01	0.01	0.04	0.08	0.04
t_{11}	0.01	0.03	0.02	0.00	0.08	0.02
t_{12}	0.00	0.05	0.02	0.04	0.00	0.06
t ₁₃	0.01	0.03	0.00	0.02	0.05	0.07
t_{14}	0.00	0.00	0.00	0.01	0.12	0.00
t_{15}	0.00	0.00	0.01	0.04	0.10	0.01

Support Vector Machines

Multi Layer Perceptron

$$\hat{y} \equiv \sigma(\mathbf{w}^T \cdot \mathbf{x} + b)$$

$$\mathbf{h}[0] \equiv \mathbf{x}$$

$$\mathbf{h}[l] \equiv \sigma \left(W[l]^T \cdot \mathbf{h}[l-1] + \mathbf{b}[l] \right)$$

$$\hat{\mathbf{y}} \equiv \mathbf{h}[L]$$

• • • • • • • • • •

Stefano Martina (University of Florence)

→ < Ξ

Multi Layer Perceptron

$$\hat{y} \equiv \sigma(\mathbf{w}^T \cdot \mathbf{x} + b)$$

$$\begin{aligned} \mathbf{h}[0] &\equiv \mathbf{x} \\ \mathbf{h}[l] &\equiv \sigma \left(W[l]^T \cdot \mathbf{h}[l-1] + \mathbf{b}[l] \right) \\ \hat{\mathbf{y}} &\equiv \mathbf{h}[L] \end{aligned}$$

A □ > < 同 > < 三</p>

< E

Loss

Categorical Cross Entropy

$$\ell(\hat{\mathbf{y}},\mathbf{y}) = -\sum_{j=1}^{O} y^{(j)} \log \hat{y}^{(j)}$$

Common used in classification tasks

Measure distance between two probability distributions

- $\mathbf{\hat{y}}$ needs to be a probability distributions
- obtained with softmax function:

$$\sigma^{(i)}(\mathbf{z}) \equiv \frac{e^{z^{(i)}}}{\sum_{j=1}^{O} e^{z^{(j)}}}$$

Stefano Martina (University of Florence)

イロト イヨト イヨト

Loss

Categorical Cross Entropy

$$\ell(\hat{\mathbf{y}},\mathbf{y}) = -\sum_{j=1}^{O} y^{(j)} \log \hat{y}^{(j)}$$

Common used in classification tasks

Measure distance between two probability distributions

- $\hat{\mathbf{y}}$ needs to be a probability distributions
- obtained with softmax function:

$$\sigma^{(i)}(\mathbf{z}) \equiv rac{e^{z^{(i)}}}{\sum_{j=1}^{O} e^{z^{(j)}}}$$

Stefano Martina (University of Florence)

• • • • • • • •

Unidirectional Recurrent Neural Network (RNN)

Used on sequential data

Processed iteratively by non-linear function r

- r parametrized with shared set of weights θ_r
- **h**_t sort of memory

 \checkmark **h**_{au} representation of all the sequence

• In classification \mathbf{h}_{τ} can be processed by MLP f

Unidirectional RNN

- ✓ Used on sequential data
- \checkmark Processed iteratively by non-linear function r
 - r parametrized with shared set of weights θ_r
 - h_t sort of memory
- \mathbf{h}_{τ} representation of all the sequence
 - In classification \mathbf{h}_{τ} can be processed by MLP f

Unidirectional RNN

- ✓ Used on sequential data
- \checkmark Processed iteratively by non-linear function r
 - r parametrized with shared set of weights θ_r
 - h_t sort of memory
- ✓ \mathbf{h}_{τ} representation of all the sequence
 - In classification \mathbf{h}_{τ} can be processed by MLP f

GRU/LSTM

Stefano Martina (University of Florence)

3

イロト 不得 トイヨト イヨト

GRU/LSTM

э

イロト 不得 トイヨト イヨト

Stefano Martina (University of Florence)

Stefano Martina (University of Florence)

Aggregation

Standard

$$\mathbf{a} = \mathbf{h}_t[L] \oplus \widetilde{\mathbf{h}}_1[L]$$
Max pooling

$$\mathbf{u}_t = \mathbf{h}_t[L] \oplus \widetilde{\mathbf{h}}_t[L]$$

$$\mathbf{a}^{(j)} = \max_t \mathbf{u}^{(j)}_t$$

Attention mechanism

$$\mathbf{u}_{t} = \mathbf{h}_{t}[L] \oplus \widetilde{\mathbf{h}}_{t}[L]$$
$$\mathbf{v}_{t} = \tanh\left(\mathbf{W}^{T} \cdot \mathbf{u}_{t} + \mathbf{b}\right)$$
$$\alpha_{t} \equiv \frac{e^{\langle \mathbf{v}_{t}, \mathbf{c} \rangle}}{\sum_{j=1}^{\tau} e^{\langle \mathbf{v}_{j}, \mathbf{c} \rangle}}$$
$$\mathbf{a} \equiv \sum_{t=1}^{\tau} \alpha_{t} \mathbf{u}_{t}$$

・ロト ・四ト ・ヨト ・ヨト

Aggregation

Standard

$$\mathbf{a} = \mathbf{h}_t[\mathcal{L}] \oplus \widetilde{\mathbf{h}}_1[\mathcal{L}]$$
Max pooling

$$\mathbf{u}_t = \mathbf{h}_t[\mathcal{L}] \oplus \widetilde{\mathbf{h}}_t[\mathcal{L}]$$

$$\mathbf{a}^{(j)} = \max_t \mathbf{u}^{(j)}_t$$

Attention mechanism

$$\mathbf{u}_{t} = \mathbf{h}_{t}[L] \oplus \widetilde{\mathbf{h}}_{t}[L]$$
$$\mathbf{v}_{t} = \tanh\left(\mathbf{W}^{T} \cdot \mathbf{u}_{t} + \mathbf{b}\right)$$
$$\alpha_{t} \equiv \frac{e^{\langle \mathbf{v}_{t}, \mathbf{c} \rangle}}{\sum_{j=1}^{\tau} e^{\langle \mathbf{v}_{j}, \mathbf{c} \rangle}}$$
$$\mathbf{a} \equiv \sum_{t=1}^{\tau} \alpha_{t} \mathbf{u}_{t}$$

イロト 不得 トイヨト イヨト

э.

Aggregation

Standard

$$\mathbf{a} = \mathbf{h}_t[\mathcal{L}] \oplus \widetilde{\mathbf{h}}_1[\mathcal{L}]$$
Max pooling

$$\mathbf{u}_t = \mathbf{h}_t[\mathcal{L}] \oplus \widetilde{\mathbf{h}}_t[\mathcal{L}]$$

$$\mathbf{a}^{(j)} = \max_t \mathbf{u}^{(j)}_t$$

Attention mechanism

$$\mathbf{u}_{t} = \mathbf{h}_{t}[L] \oplus \widetilde{\mathbf{h}}_{t}[L]$$
$$\mathbf{v}_{t} = \tanh\left(\mathbf{W}^{T} \cdot \mathbf{u}_{t} + \mathbf{b}\right)$$
$$\alpha_{t} \equiv \frac{e^{\langle \mathbf{v}_{t}, \mathbf{c} \rangle}}{\sum_{j=1}^{\tau} e^{\langle \mathbf{v}_{j}, \mathbf{c} \rangle}}$$
$$\mathbf{a} \equiv \sum_{t=1}^{\tau} \alpha_{t} \mathbf{u}_{t}$$

イロト 不得 トイヨト イヨト

		$t_{15} = 0.1$			$t_{15}=1$		
		IID	NM	VS	IID	NM	VS
	SVM	97.0	82.3	96.5	50.3	51.2	49.5
${\cal P}_{t_{15}}$	MLP	96.9	80.7	96.6	49.5	50.7	<u>50.2</u>
	SVM	96.4	80.1	96.3	73.6	61.9	75.0
	GRU	96.5	91.5	96.7	90.5	73.3	88.2
	LSTM		90.4	96.4	88.6	70.3	86.3
$\mathcal{P}_{t_0},$	bi-GRU	96.6	92.2	96.6	91.0	74.6	90.6
	bi-LSTM	96.7	89.7	96.5	90.8	70.6	87.2
$\mathcal{P}_{t_{15}}$	bi-GRU-att	97.0	91.6	96.1	90.9	73.4	87.9
' t ₁₅	bi-LSTM-att	96.9	87.9	96.3	89.0	71.6	87.4
	bi-GRU-max	96.6	92.6	96.6	<u>91.8</u>	76.1	90.4
	bi-LSTM-max	96.6	91.4	96.3	91.4	74.9	89.0

| ◆ □ ▶ ★ □ ▶ ★ □ ▶ | ■ | の < @

		$t_{15} = 0.1$			$t_{15}=1$		
		IID	NM	VS	IID	NM	VS
	SVM	97.0	82.3	96.5	50.3	51.2	49.5
${\cal P}_{t_{15}}$	MLP	96.9	80.7	96.6	49.5	50.7	<u>50.2</u>
	SVM	96.4	80.1	96.3	73.6	61.9	75.0
	GRU	96.5	91.5	96.7	90.5	73.3	88.2
	LSTM		90.4	96.4	88.6	70.3	86.3
$\mathcal{P}_{t_0},$	bi-GRU	96.6	92.2	96.6	91.0	74.6	90.6
	bi-LSTM	96.7	89.7	96.5	90.8	70.6	87.2
$\mathcal{P}_{t_{15}}$	bi-GRU-att	97.0	91.6	96.1	90.9	73.4	87.9
, t ₁₅	bi-LSTM-att	96.9	87.9	96.3	89.0	71.6	87.4
	bi-GRU-max	96.6	92.6	96.6	91.8	76.1	90.4
	bi-LSTM-max	96.6	91.4	96.3	91.4	74.9	89.0

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

		$t_{15} = 0.1$			$t_{15}=1$		
		IID	NM	VS	IID	NM	VS
	SVM	97.0	82.3	96.5	50.3	51.2	49.5
$\mathcal{P}_{t_{15}}$	MLP	96.9	80.7	96.6	49.5	50.7	<u>50.2</u>
	SVM	96.4	80.1	96.3	73.6	61.9	75.0
	GRU	96.5	91.5	96.7	90.5	73.3	88.2
	LSTM		90.4	96.4	88.6	70.3	86.3
$\mathcal{P}_{t_0},$	bi-GRU	96.6	92.2	96.6	91.0	74.6	90.6
	bi-LSTM	96.7	89.7	96.5	90.8	70.6	87.2
$\mathcal{P}_{t_{15}}$	bi-GRU-att	97.0	91.6	96.1	90.9	73.4	87.9
, t ₁₅	bi-LSTM-att	96.9	87.9	96.3	89.0	71.6	87.4
	bi-GRU-max	96.6	92.6	96.6	91.8	76.1	90.4
	bi-LSTM-max	96.6	91.4	96.3	91.4	74.9	89.0

| ◆ □ ▶ ★ □ ▶ ★ □ ▶ | ■ | の < @

		$t_{15} = 0.1$			$t_{15}=1$			
		IID	NM	VS	IID	NM	VS	
	SVM	97.0	82.3	96.5	50.3	51.2	49.5	
$\mathcal{P}_{t_{15}}$	MLP	96.9	80.7	96.6	49.5	50.7	<u>50.2</u>	
	SVM	96.4	80.1	96.3	73.6	61.9	75.0	
	GRU	96.5	91.5	96.7	90.5	73.3	88.2	
	LSTM		90.4	96.4	88.6	70.3	86.3	
$\mathcal{P}_{t_0},$	bi-GRU	96.6	92.2	96.6	91.0	74.6	90.6	
, ₂₀ ,	bi-LSTM	96.7	89.7	96.5	90.8	70.6	87.2	
$\mathcal{P}_{t_{15}}$	bi-GRU-att	97.0	91.6	96.1	90.9	73.4	87.9	
, t ₁₅	bi-LSTM-att	96.9	87.9	96.3	89.0	71.6	87.4	
	bi-GRU-max	96.6	92.6	96.6	91.8	76.1	90.4	
	bi-LSTM-max	96.6	91.4	96.3	91.4	74.9	89.0	

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

		t	$t_{15} = 0.$	1	$t_{15}=1$			
		IID	NM	VS	IID	NM	VS	
	SVM	<u>97.0</u>	82.3	96.5	50.3	51.2	49.5	
$\mathcal{P}_{t_{15}}$	MLP	96.9	80.7	<u>96.6</u>	49.5	50.7	<u>50.2</u>	
	SVM	96.4	80.1	96.3	73.6	61.9	75.0	
	GRU	96.5	91.5	<u>96.7</u>	90.5	73.3	88.2	
	LSTM	96.8	90.4	96.4	88.6	70.3	86.3	
$\mathcal{P}_{t_0},$	bi-GRU	96.6	92.2	96.6	91.0	74.6	90.6	
$, \iota_0, \ldots,$	bi-LSTM	96.7	89.7	96.5	90.8	70.6	87.2	
$\mathcal{P}_{t_{15}}$	bi-GRU-att	<u>97.0</u>	91.6	96.1	90.9	73.4	87.9	
, t ₁₅	bi-LSTM-att	96.9	87.9	96.3	89.0	71.6	87.4	
	bi-GRU-max	96.6	<u>92.6</u>	96.6	<u>91.8</u>	76.1	90.4	
	bi-LSTM-max	96.6	91.4	96.3	91.4	74.9	89.0	

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

Results

		t	$1_{15} = 0.$	1	$t_{15}=1$			
		IID	NM	VS	IID	NM	VS	
	SVM	97.0	82.3	96.5	<u>50.3</u>	51.2	49.5	
$\mathcal{P}_{t_{15}}$	MLP	96.9	80.7	<u>96.6</u>	49.5	50.7	<u>50.2</u>	
	SVM	96.4	80.1	96.3	73.6	61.9	75.0	
	GRU	96.5	91.5	<u>96.7</u>	90.5	73.3	88.2	
	LSTM	96.8	90.4	96.4	88.6	70.3	86.3	
$\mathcal{P}_{t_0},$	bi-GRU	96.6	92.2	96.6	91.0	74.6	<u>90.6</u>	
$, t_0, \ldots,$	bi-LSTM	96.7	89.7	96.5	90.8	70.6	87.2	
$\mathcal{P}_{t_{15}}$	bi-GRU-att	<u>97.0</u>	91.6	96.1	90.9	73.4	87.9	
, t ₁₅	bi-LSTM-att	96.9	87.9	96.3	89.0	71.6	87.4	
	bi-GRU-max	96.6	<u>92.6</u>	96.6	<u>91.8</u>	76.1	90.4	
	bi-LSTM-max	96.6	91.4	96.3	91.4	74.9	89.0	

Stefano Martina (University of Florence)

Used circuit

Martina, S., Buffoni, L., Gherardini, S., & Caruso, F. (2022). Learning the noise fingerprint of quantum devices. Quantum Machine Intelligence, 4(1), 1-12.

We add a temporal dimension

The circuit is repeated 3 times

The measurements are after each CNOT and Toffoli for a total of 9 steps

Stefano Martina (University of Florence)

Used circuit

Martina, S., Buffoni, L., Gherardini, S., & Caruso, F. (2022). Learning the noise fingerprint of quantum devices. Quantum Machine Intelligence, 4(1), 1-12.

- ✓ We add a temporal dimension
- The circuit is repeated 3 times

✓ The measurements are after each CNOT and Toffoli for a total of 9 steps

✓ Temporally close executions

✓ 7 different IBM NISQ devices

✓ For each device 2000 sequences of 9 steps

each one is a distribution probability obtained running 1000 shots of the circuit

イロト イヨト イヨト イヨ

✓ Temporally close executions

✓ 7 different IBM NISQ devices

✓ For each device 2000 sequences of 9 steps

▶ each one is a distribution probability obtained running 1000 shots of the circuit

イロト イヨト イヨト イヨ

- ✓ Temporally close executions
- ✓ 7 different IBM NISQ devices
- ✓ For each device 2000 sequences of 9 steps
 - each one is a distribution probability obtained running 1000 shots of the circuit

Binary device classification

✓ Using FAST dataset

For each pair of devices

- the task is to find the used device from the measurement probabilities
- Both considering single and incremental steps

Trained SVM classifiers

- ▶ 60% 20% 20% train, validation and test split
- kernels linear, RBF and polynomial with degree 2, 3 and 4

< 口 > < 向

Binary device classification

- ✓ Using FAST dataset
- For each pair of devices
 - ▶ the task is to find the used device from the measurement probabilities
- Both considering single and incremental steps
- Trained SVM classifiers
 - $\blacktriangleright~60\%-20\%-20\%$ train, validation and test split
 - kernels linear, RBF and polynomial with degree 2, 3 and 4

イロト イヨト イヨト

- ✓ Using FAST dataset
- For each pair of devices
 - the task is to find the used device from the measurement probabilities
- Both considering single and incremental steps
- Trained SVM classifiers
 - 60% 20% 20% train, validation and test split
 - kernels linear, RBF and polynomial with degree 2, 3 and 4

イロト イヨト イヨト

- ✓ Using FAST dataset
- For each pair of devices
 - the task is to find the used device from the measurement probabilities
- Both considering single and incremental steps
- Trained SVM classifiers
 - 60% 20% 20% train, validation and test split
 - kernels linear, RBF and polynomial with degree 2, 3 and 4

Machines		Ath			Bog			Casab			Lin			Quito			Santiago	
	k	$\alpha(k)$	$\alpha([1, k])$	k	$\alpha(k)$	$\alpha([1, k])$												
	1	0.915	0.915															
	2	0.944	0.975															
	3	0.999	1.000															
	4	0.954	0.999															
Bogota	5	0.981	0.999															
	6	0.989	1.000															
	7	0.949	1.000															
	8	0.990	1.000															
	9	0.991	1.000															
	1	0.895	0.895	1	0.831	0.831												
	2	0.740	0.921	2	0.932	0.959												
	3	0.968	0.983	3	0.943	0.995												
	4	0.994	0.998	4	0.960	0.999												
Casablanca	5	0.969	0.999	5	0.889	0.998												
	6	0.988	1.000	6	0.811	1.000												
	7	0.869	1.000	7	0.830	0.999												
	8	0.906	1.000	8	0.818	0.999												
	9	0.927	1.000	9	0.782	1.000												
	1	0.879	0.879	1	0.772	0.772	1	0.724	0.724									
	2	0.762	0.915	2	0.983	0.984	2	0.869	0.887									
	3	0.999	1.000	3	0.989	0.999	3	0.951	0.966									
	4	1.000	1.000	4	0.996	1.000	4	0.829	0.975									
Lima	5	0.999	1.000	5	0.787	1.000	5	0.814	0.993									
	6	0.999	1.000	6	0.996	1.000	6	0.990	0.999									
	7	0.940	1.000	7	0.795	1.000	7	0.882	0.999									
	8	0.784	1.000	8	0.912	1.000	8	0.823	0.999									
	9	0.978	1.000	9	0.950	1.000	9	0.879	0.999									
	1	0.685	0.685	1	0.815	0.815	1	0.834	0.834	1	0.725	0.725						
	2	1.000	1.000	2	1.000	1.000	2	1.000	1.000	2	1.000	1.000						
	3	1.000	1.000	3	0.990	1.000	3	1.000	1.000	3	1.000	1.000	1					
	4	0.998	1.000	4	1.000	1.000	4	1.000	1.000	4	1.000	1.000						
Quito	5	0.993	1.000	5	0.787	1.000	5	0.881	1.000	5	0.714	1.000						
	6	0.966	1.000	6	0.983	1.000	6	0.979	1.000	6	1.000	1.000						
	7	0.948	1.000	7	0.965	1.000	7	0.940	1.000	7	0.978	1.000						
	8	0.998	1.000	8	0.969	1.000	8	0.959	1.000	8	0.991	1.000						
	9	0.988	1.000	9	0.891	1.000	9	0.864	1.000	9	0.953	1.000			$\blacksquare \blacksquare \blacksquare \blacksquare$	< ₫	► < 4	画を入り

Stefano Martina (University of Florence)

э.

Multiclass device classification

✓ Not considering pairs, but a multiclass setting (one-vs-rest)

Machines	k	$\alpha(k)$	$\alpha([k-1,k])$	$\alpha([k-2,k])$	$\alpha([k-3,k])$	$\alpha([k-4,k])$	$\alpha([1,k])$
	1	0.529					0.529
Athens	2	0.691	0.850				0.850
& Bogota	3	0.920	0.975	0.983			0.983
& Casablanca	4	0.896	0.983	0.991	0.992		0.992
& Lima	5	0.680	0.955	0.992	0.995	0.995	0.995
& Quito	6	0.789	0.946	0.988	0.997	0.998	0.998
& Santiago & Yorktown	7	0.776	0.941	0.974	0.993	0.998	0.999
& forktown	8	0.703	0.911	0.960	0.982	0.994	0.999
	9	0.681	0.871	0.952	0.970	0.986	0.999
Average		0.740	0.929	0.977	0.988	0.994	

メロト メポト メヨト メヨ

Time classification

✓ 2 runs of FAST dataset on the same machine but with 24 hours gap

Machine	k	lpha(k)	$\alpha([1,k])$
	1	0.882	0.882
	2	0.815	0.917
	3	0.757	0.948
	4	0.974	0.994
Casablanca	5	0.969	1.000
	6	0.895	0.999
	7	0.917	0.999
	8	0.859	0.999
	9	0.721	0.999

イロト イヨト イヨト イヨ

SLOW dataset

✓ Temporally delayed executions (at least 2 minutes between each 1000 shots batch)

- ✓ 2 different IBM NISQ devices
- ✓ For each device 2000 sequences of 9 steps
 - each one is a distribution probability obtained running 1000 shots of the circuit

Time window classification

✓ in 1 machine of SLOW dataset

✓ discriminate between the first window of 200 runs and the subsequent windows

[1, 200] vs		[201, 400]	[401, 600]	[601, 800]	[801, 1000]	[1001, 1200]	[1201, 1400]	[1401, 1600]	[1601, 1800]	[1801, 2000]
Machines	k	$\alpha(k)$								
	1	0.838	0.975	0.975	0.950	0.938	0.938	0.750	0.950	0.963
	2	0.812	0.850	0.912	0.875	0.975	0.925	0.800	0.863	0.875
	3	0.688	0.812	0.688	0.738	0.650	0.500	0.738	0.613	0.700
	4	0.738	0.800	0.700	0.750	0.700	0.713	0.863	0.875	0.875
Belem	5	0.662	0.700	0.800	0.800	0.725	0.863	0.762	0.838	0.812
	6	0.700	0.700	0.938	0.950	0.838	0.762	0.800	0.750	0.800
	7	0.675	0.850	0.887	0.975	0.912	0.887	0.713	0.875	0.950
	8	0.775	0.800	0.900	0.912	0.938	0.988	0.787	0.938	0.938
	9	0.750	0.900	0.912	0.988	0.850	0.838	0.787	0.812	0.838
Average		0.738	0.821	0.857	0.882	0.837	0.824	0.778	0.835	0.861
[1, 200] vs		[201, 400]	[401, 600]	[601, 800]	[801, 1000]	[1001, 1200]	[1201, 1400]	[1401, 1600]	[1601, 1800]	[1801, 2000]
Machines	k	$\alpha([1, k])$								
	1	0.838	0.975	0.975	0.950	0.938	0.938	0.750	0.950	0.963
	2	0.850	0.963	0.988	0.975	1.000	0.950	0.825	0.988	0.988
	3	0.887	0.975	0.988	0.975	0.988	0.988	0.850	1.000	0.988
D 1	4	0.850	0.950	1.000	0.988	0.988	0.975	0.975	0.988	1.000
Belem	5	0.850	0.963	1.000	0.988	0.988	0.975	0.963	1.000	1.000
	6	0.850	0.988	0.988	0.988	1.000	0.988	0.975	1.000	0.988
	7	0.863	0.988	1.000	0.988	1.000	1.000	0.988	1.000	1.000
	8	0.850	1.000	1.000	0.988	1.000	1.000	0.975	1.000	1.000
	9	0.875	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

Stefano Martina (University of Florence)

イロト イヨト イヨト イヨ

✓ in same machine as previous slide

 $\checkmark \alpha([1,9])$ discriminating the first window of 200 runs from another window sliding in time

A I > A I = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Robustness in time

- ✓ Both machines of SLOW dataset
- $\checkmark \alpha([1,9])$ discriminating the used machine
- Train on the window in row index; test on window in column index

	1	2	3	4	5	6	7	8	9	10
1	1.000	1.000	0.995	0.925	0.880	0.865	0.995	1.000	1.000	1.000
2	1.000	1.000	0.995	0.925	0.920	0.910	0.980	1.000	1.000	1.000
3	1.000	1.000	1.000	0.970	0.950	0.950	0.980	1.000	1.000	1.000
4	1.000	0.980	0.995	1.000	1.000	1.000	1.000	1.000	1.000	1.000
5	0.980	0.935	0.955	0.995	1.000	0.995	1.000	1.000	1.000	1.000
6	0.995	0.995	0.995	1.000	1.000	1.000	1.000	1.000	1.000	1.000
$\overline{7}$	1.000	1.000	0.995	0.985	1.000	0.990	1.000	1.000	1.000	1.000
8	1.000	1.000	0.995	0.995	1.000	0.990	0.995	1.000	1.000	1.000
9	1.000	1.000	0.995	0.995	0.970	0.960	1.000	1.000	1.000	1.000
10	1.000	1.000	0.995	0.995	0.995	0.995	0.995	1.000	1.000	1.000

Thank you! Questions?

Stefano Martina (University of Florence)

September 5, 2022 24

Qubit

\checkmark Classic bit can take one value between 0 and 1

- A qubit can take one of infinite values
 - \blacktriangleright in Hilbert vector space with basis of two elements $|0\rangle$ and $|1\rangle$
- \checkmark A qubit is in superposition $\left|\psi\right\rangle = \alpha\left|\mathbf{0}\right\rangle + \beta\left|\mathbf{1}\right\rangle$
 - \blacktriangleright Where amplitudes α and β are complex numbers such that $|\alpha|^2+|\beta|^2=1$

イロト イヨト イヨト イヨ

Qubit

Classic bit can take one value between 0 and 1

- A qubit can take one of infinite values
 - \blacktriangleright in Hilbert vector space with basis of two elements $|0\rangle$ and $|1\rangle$
- ✓ A qubit is in superposition $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$
 - \blacktriangleright Where amplitudes α and β are complex numbers such that $|\alpha|^2+|\beta|^2=1$

イロト イヨト イヨト

Qubit

Classic bit can take one value between 0 and 1

- A qubit can take one of infinite values
 - \blacktriangleright in Hilbert vector space with basis of two elements $|0\rangle$ and $|1\rangle$
- \checkmark A qubit is in superposition $\left|\psi\right\rangle = \alpha \left|\mathbf{0}\right\rangle + \beta \left|\mathbf{1}\right\rangle$
 - Where amplitudes α and β are complex numbers such that $|\alpha|^2 + |\beta|^2 = 1$

The result of the measure is random

When we measure a qubit we obtain a classical bit

- \checkmark The measure of $\left|\psi\right\rangle = \alpha \left|\mathbf{0}\right\rangle + \beta \left|\mathbf{1}\right\rangle$ is
 - 0 with probability $|\alpha|^2$
 - ▶ 1 with probability $|\beta|^2$

Effect of measure

Wavefunction collapse the new state after the measurement will be |0
angle or |1
angle depending on the measurement result

No-cloning theorem. We cannot perform several independent measurements of $\ket{\psi}$

The result of the measure is random

When we measure a qubit we obtain a classical bit

- \checkmark The measure of $\left|\psi\right\rangle = \alpha \left|\mathbf{0}\right\rangle + \beta \left|\mathbf{1}\right\rangle$ is
 - 0 with probability $|\alpha|^2$
 - 1 with probability $|\beta|^2$

Effect of measure

Wavefunction collapse the new state after the measurement will be $|0\rangle$ or $|1\rangle$ depending on the measurement result

No-cloning theorem. We cannot perform several independent measurements of $\ket{\psi}$

✓ The result of the measure is random

- ✓ When we measure a qubit we obtain a classical bit
- \checkmark The measure of $\left|\psi\right\rangle = \alpha \left|\mathbf{0}\right\rangle + \beta \left|\mathbf{1}\right\rangle$ is
 - 0 with probability $|\alpha|^2$
 - 1 with probability $|\beta|^2$

Effect of measure

Wavefunction collapse the new state after the measurement will be |0
angle or |1
angle depending on the measurement result

No-cloning theorem. We cannot perform several independent measurements of $|\psi
angle$

✓ The result of the measure is random

- ✓ When we measure a qubit we obtain a classical bit
- \checkmark The measure of $\left|\psi\right\rangle = \alpha \left|\mathbf{0}\right\rangle + \beta \left|\mathbf{1}\right\rangle$ is
 - 0 with probability $|\alpha|^2$
 - 1 with probability $|\beta|^2$

Effect of measure

Wavefunction collapse the new state after the measurement will be $|0\rangle$ or $|1\rangle$ depending on the measurement result

No-cloning theorem. We cannot perform several independent measurements of $|\psi
angle$

Bloch sphere

 $\checkmark \text{ We can rewrite } |\psi\rangle = \alpha |0\rangle + \beta |1\rangle \rightarrow |\psi\rangle = \cos \frac{\theta}{2} |0\rangle + e^{i\varphi} \sin \frac{\theta}{2} |1\rangle$

• with $0 \le \theta \le \pi$ and $0 \le \varphi < 2\pi$

Quantum gates

✓ The evolution of a state is given by the Schrödinger equation $H(t) |\psi(t)\rangle = i\hbar \frac{\partial}{\partial t} |\psi(t)\rangle$

✓ In quantum circuits, the operation given by complex unitary matrices, i.e. verifying $UU^{\dagger} = U^{\dagger}U = I$

where U^{\dagger} is the complex conjugate transpose of U \checkmark Each such matrix is a possible quantum gate in a quantum circuit

Application (for 1-qubit gate)

For
$$U = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 and $\ket{\psi} = lpha \ket{0} + eta \ket{1} = \begin{pmatrix} lpha \\ eta \end{pmatrix}$

$$U |\psi\rangle = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} a\alpha + b\beta \\ c\alpha + d\beta \end{pmatrix} = (a\alpha + b\beta) |0\rangle + (c\alpha + d\beta) |1\rangle$$

Stefano Martina (University of Florence)

Quantum gates

 \checkmark The evolution of a state is given by the Schrödinger equation

$$egin{aligned} H(t) \ket{\psi(t)} &= i \hbar rac{\partial}{\partial t} \ket{\psi(t)} \end{aligned}$$

✓ In quantum circuits, the operation given by complex unitary matrices, i.e. verifying $UU^{\dagger} = U^{\dagger}U = I$

where U^{\dagger} is the complex conjugate transpose of U \checkmark Each such matrix is a possible quantum gate in a quantum circuit

Application (for 1-qubit gate)

For
$$U = egin{pmatrix} a & b \ c & d \end{pmatrix}$$
 and $\ket{\psi} = lpha \ket{0} + eta \ket{1} = egin{pmatrix} lpha \ eta \end{pmatrix}$

$$U |\psi\rangle = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} a\alpha + b\beta \\ c\alpha + d\beta \end{pmatrix} = (a\alpha + b\beta) |0\rangle + (c\alpha + d\beta) |1\rangle$$

Stefano Martina (University of Florence)

Quantum gates

 \checkmark The evolution of a state is given by the Schrödinger equation

$$egin{aligned} H(t) \ket{\psi(t)} &= i \hbar rac{\partial}{\partial t} \ket{\psi(t)} \end{aligned}$$

✓ In quantum circuits, the operation given by complex unitary matrices, i.e. verifying $UU^{\dagger} = U^{\dagger}U = I$

where U^{\dagger} is the complex conjugate transpose of U \checkmark Each such matrix is a possible quantum gate in a quantum circuit

Application (for 1-qubit gate)

For
$$U = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 and $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$
 $U |\psi\rangle = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} a\alpha + b\beta \\ c\alpha + d\beta \end{pmatrix} = (a\alpha + b\beta) |0\rangle + (c\alpha + d\beta) |1\rangle$
Sectomber 5, 2022

Pauli Gates (rotation of π along correspondig axis in Bloch)

X or NOT (Pauli
$$\sigma_X$$
)

$$X := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\alpha \mid 0 \rangle + \beta \mid 1 \rangle - X - \beta \mid 0 \rangle + \alpha \mid 1 \rangle$$
Y (Pauli σ_Y)

$$Y := \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

$$\alpha \mid 0 \rangle + \beta \mid 1 \rangle - Y - -i\beta \mid 0 \rangle + i\alpha \mid 1 \rangle$$
Z (Pauli σ_Z)

$$Z := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$I := \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\alpha \mid 0 \rangle + \beta \mid 1 \rangle - I - \alpha \mid 0 \rangle + \beta \mid 1 \rangle$$

Stefano Martina (University of Florence)

September 5, 2022 29

Hadamard gate

$$|+
angle\coloneqq rac{|0
angle+|1
angle}{\sqrt{2}}$$

 $|angle \coloneqq rac{|0
angle - |1
angle}{\sqrt{2}}$

Stefano Martina (University of Florence)

2 qubit systems

\checkmark Each qubit can be in state $|0\rangle$ or $|1\rangle$

 \checkmark We have 4 possibilities, equivalently (\otimes is Kroneker product)

We can have superposition

$$\ket{\psi} = lpha_{00} \ket{00} + lpha_{01} \ket{01} + lpha_{10} \ket{10} + lpha_{11} \ket{11}$$

with amplitudes α_{xy} complex numbers such that $\sum_{x,y=0}^{1} |\alpha_{xy}|^2 = 1$

Stefano Martina (University of Florence)

э

< ロ > < 同 > < 回 > < 回 >

2 qubit systems

 \checkmark Each qubit can be in state $|0\rangle$ or $|1\rangle$

 \checkmark We have 4 possibilities, equivalently (\otimes is Kroneker product)

$$egin{aligned} \left|0
ight
angle & \left|0
ight
angle \,, \quad \left|0
ight
angle \otimes \left|1
ight
angle \,, \quad \left|1
ight
angle \otimes \left|0
ight
angle \,, \quad \left|0
ight
angle \left|1
ight
angle \,, \quad \left|1
ight
angle \left|0
ight
angle \,, \quad \left|0
ight
angle \,, \quad \left|1
ight
angle \left|0
ight
angle \,, \quad \left|1
ight
angl$$

We can have superposition

$$\ket{\psi} = lpha_{00} \ket{00} + lpha_{01} \ket{01} + lpha_{10} \ket{10} + lpha_{11} \ket{11}$$

with amplitudes α_{xy} complex numbers such that $\sum_{x,y=0}^{1} |\alpha_{xy}|^2 = 1$

Stefano Martina (University of Florence)

イロト イヨト イヨト

2 qubit systems

 \checkmark Each qubit can be in state $|0\rangle$ or $|1\rangle$

✓ We have 4 possibilities, equivalently (\otimes is Kroneker product)

$$egin{aligned} \ket{0}\otimes\ket{0}\,, & \ket{0}\otimes\ket{1}\,, & \ket{1}\otimes\ket{0}\,, & \ket{1}\otimes\ket{1}\ & \ket{0}\ket{0}\,, & \ket{0}\ket{1}\,, & \ket{1}\ket{0}\,, & \ket{1}\ket{1}\ & & \ket{00}\,, & \ket{01}\,, & \ket{10}\,, & \ket{11} \end{aligned}$$

✓ We can have superposition

$$\ket{\psi} = lpha_{00} \ket{00} + lpha_{01} \ket{01} + lpha_{10} \ket{10} + lpha_{11} \ket{11}$$

with amplitudes α_{xy} complex numbers such that $\sum_{x,y=0}^{1} |\alpha_{xy}|^2 = 1$

イロト イヨト イヨト

Measuring 2 qubit systems

$$\left|\psi\right\rangle = \alpha_{00}\left|00\right\rangle + \alpha_{01}\left|01\right\rangle + \alpha_{10}\left|10\right\rangle + \alpha_{11}\left|11\right\rangle$$

Measuring both qubits

- \checkmark 00 with probability $|\alpha_{00}|^2,$ new state $|00\rangle$
- ✓ 01 with probability $|\alpha_{01}|^2$, new state $|01\rangle$
- ✓ 10 with probability $|\alpha_{10}|^2$, new state $|10\rangle$

✓ 11 with probability $|\alpha_{11}|^2$, new state $|11\rangle$

Measuring only one qubit (the first in this case)

✓ 0 with probability
$$|\alpha_{00}|^2 + |\alpha_{01}|^2$$
, new state $\frac{\alpha_{00}|00\rangle + \alpha_{01}|01\rangle}{\sqrt{|\alpha_{00}|^2 + |\alpha_{01}|^2}}$
✓ 1 with probability $|\alpha_{10}|^2 + |\alpha_{11}|^2$, new state $\frac{\alpha_{10}|10\rangle + \alpha_{11}|11\rangle}{\sqrt{|\alpha_{10}|^2 + |\alpha_{11}|^2}}$

Measuring 2 qubit systems

$$\left|\psi\right\rangle = \alpha_{00}\left|00\right\rangle + \alpha_{01}\left|01\right\rangle + \alpha_{10}\left|10\right\rangle + \alpha_{11}\left|11\right\rangle$$

Measuring both qubits

- \checkmark 00 with probability $|\alpha_{00}|^2,$ new state $|00\rangle$
- ✓ 01 with probability $|\alpha_{01}|^2$, new state $|01\rangle$
- $\checkmark~$ 10 with probability $|\alpha_{10}|^2,$ new state $|10\rangle$

 $\checkmark~$ 11 with probability $|\alpha_{11}|^2,$ new state $|11\rangle$

Measuring only one qubit (the first in this case)

✓ 0 with probability
$$|\alpha_{00}|^2 + |\alpha_{01}|^2$$
, new state $\frac{\alpha_{00}|00\rangle + \alpha_{01}|01\rangle}{\sqrt{|\alpha_{00}|^2 + |\alpha_{01}|^2}}$
✓ 1 with probability $|\alpha_{10}|^2 + |\alpha_{11}|^2$, new state $\frac{\alpha_{10}|10\rangle + \alpha_{11}|11\rangle}{\sqrt{|\alpha_{10}|^2 + |\alpha_{11}|^2}}$

2 qubit gates

✓ If A and B are one-qubit gates acting on two different cubits, then on the two qubit A ⊗ B
 ✓ In general all unitary matrices 4 × 4

イロト 不得下 イヨト イヨト

2 qubit gates

✓ If A and B are one-qubit gates acting on two different cubits, then on the two qubit A ⊗ B
 ✓ In general all unitary matrices 4 × 4

イロト 不得下 イヨト イヨト

2 qubit gates

✓ If A and B are one-qubit gates acting on two different cubits, then on the two qubit A ⊗ B
 ✓ In general all unitary matrices 4 × 4

э.