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Introduction
Paper in review: Stefano Martina, Stefano Gherardini and Filippo Caruso. Machine learning classification of
non-Markovian noise disturbing quantum dynamics

✔ We consider a Quantum Random Walker on a complex graph
▶ perturbed by noise

✔ Discriminate quantum noise, by measuring only walker populations
▶ Support Vector Machines
▶ Neural Networks and Recurrent Neural Networks

✔ The dynamic parameters are crucial to the classification capacity
▶ short evolution time / high frequency −→ easy
▶ long evolution time / low frequency −→ hard

✔ Over 90% accuracy in classification between
▶ two IID noises
▶ two coloured noises
▶ one IID VS one coloured noises

easier
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Example

✔ Example of populations with t15 = 0.1

P(35)
tk

P(36)
tk

P(37)
tk

P(38)
tk

P(39)
tk

P(40)
tk

t0 0.00 0.00 0.00 0.00 1.00 0.00

t1 0.00 0.00 0.00 0.00 0.99 0.00

t2 0.00 0.00 0.00 0.00 0.93 0.00

t3 0.00 0.00 0.01 0.01 0.85 0.01

t4 0.00 0.01 0.01 0.01 0.78 0.01

t5 0.01 0.01 0.01 0.01 0.69 0.01

t6 0.01 0.02 0.01 0.01 0.63 0.00

t7 0.01 0.02 0.01 0.01 0.57 0.00

t8 0.01 0.02 0.01 0.01 0.52 0.00

t9 0.02 0.02 0.01 0.01 0.45 0.00

t10 0.02 0.02 0.02 0.02 0.37 0.01

t11 0.01 0.02 0.02 0.03 0.29 0.01

t12 0.01 0.01 0.03 0.04 0.20 0.02

t13 0.01 0.01 0.04 0.04 0.14 0.01

t14 0.01 0.02 0.04 0.05 0.08 0.01

t15 0.01 0.02 0.04 0.05 0.06 0.01

✔ Example of populations with t15 = 1

P(35)
tk

P(36)
tk

P(37)
tk

P(38)
tk

P(39)
tk

P(40)
tk

t0 0.00 0.00 0.00 0.00 1.00 0.00

t1 0.02 0.02 0.01 0.01 0.45 0.00

t2 0.01 0.01 0.02 0.03 0.05 0.02

t3 0.00 0.00 0.00 0.00 0.13 0.02

t4 0.02 0.01 0.01 0.01 0.12 0.02

t5 0.01 0.01 0.03 0.03 0.06 0.01

t6 0.01 0.01 0.01 0.01 0.01 0.00

t7 0.04 0.03 0.01 0.06 0.11 0.00

t8 0.04 0.00 0.03 0.11 0.11 0.03

t9 0.03 0.00 0.03 0.01 0.01 0.10

t10 0.05 0.01 0.01 0.04 0.08 0.04

t11 0.01 0.03 0.02 0.00 0.08 0.02

t12 0.00 0.05 0.02 0.04 0.00 0.06

t13 0.01 0.03 0.00 0.02 0.05 0.07

t14 0.00 0.00 0.00 0.01 0.12 0.00

t15 0.00 0.00 0.01 0.04 0.10 0.01
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Support Vector Machines
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Multi Layer Perceptron
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wn ...
...
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x1
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xn

ŷ1

ŷm

ŷ ≡ σ(wT · x + b)

h[0] ≡ x

h[l ] ≡ σ
(
W [l ]T · h[l − 1] + b[l ]

)
ŷ ≡ h[L]
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Loss

Categorical Cross Entropy

ℓ(ŷ, y) = −
O∑

j=1
y (j) log ŷ (j)

✔ Common used in classification tasks
✔ Measure distance between two probability distributions

▶ ŷ needs to be a probability distributions
▶ obtained with softmax function:

σ(i)(z) ≡ ez(i)∑O
j=1 ez(j)
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Unidirectional Recurrent Neural Network (RNN)

x1

r
θr

x2

r
θr

· · ·

...
xτ

r
θr

f
θf

0 ŷ
h1 h2 hτ -1 hτ

ht = r(xt ,ht−1; θr )
ŷ = f (hτ ; θf )

✔ Used on sequential data
✔ Processed iteratively by non-linear function r

▶ r parametrized with shared set of weights θr
▶ ht sort of memory

✔ hτ representation of all the sequence
▶ In classification hτ can be processed by MLP f
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GRU/LSTM
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GRU/LSTM
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Bidirectional RNN with aggregation
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Aggregation

Standard

a = ht [L] ⊕ h̃1[L]

Max pooling

ut = ht [L] ⊕ h̃t [L]

a(j) = max
t

u(j)
t

Attention mechanism

ut = ht [L] ⊕ h̃t [L]

vt = tanh
(
WT · ut + b

)
αt ≡ e⟨vt ,c⟩

τ∑
j=1

e⟨vj ,c⟩

a ≡
τ∑

t=1
αtut
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Results

t15 = 0.1 t15 = 1
IID NM VS IID NM VS

Pt15

SVM 97.0 82.3 96.5 50.3 51.2 49.5
MLP 96.9 80.7 96.6 49.5 50.7 50.2

Pt0 ,
. . . ,
Pt15

SVM 96.4 80.1 96.3 73.6 61.9 75.0
GRU 96.5 91.5 96.7 90.5 73.3 88.2
LSTM 96.8 90.4 96.4 88.6 70.3 86.3
bi-GRU 96.6 92.2 96.6 91.0 74.6 90.6
bi-LSTM 96.7 89.7 96.5 90.8 70.6 87.2
bi-GRU-att 97.0 91.6 96.1 90.9 73.4 87.9
bi-LSTM-att 96.9 87.9 96.3 89.0 71.6 87.4
bi-GRU-max 96.6 92.6 96.6 91.8 76.1 90.4
bi-LSTM-max 96.6 91.4 96.3 91.4 74.9 89.0
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Used circuit
Martina, S., Buffoni, L., Gherardini, S., & Caruso, F. (2022). Learning the noise fingerprint of quantum devices.
Quantum Machine Intelligence, 4(1), 1-12.

✔ We add a temporal dimension
✔ The circuit is repeated 3 times
✔ The measurements are after each CNOT and Toffoli for a total of 9 steps
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FAST dataset

✔ Temporally close executions
✔ 7 different IBM NISQ devices
✔ For each device 2000 sequences of 9 steps

▶ each one is a distribution probability obtained running 1000 shots of the circuit
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Binary device classification

✔ Using FAST dataset
✔ For each pair of devices

▶ the task is to find the used device from the measurement probabilities
✔ Both considering single and incremental steps
✔ Trained SVM classifiers

▶ 60% − 20% − 20% train, validation and test split
▶ kernels linear, RBF and polynomial with degree 2, 3 and 4
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Machines Athens Bogota Casablanca Lima Quito Santiago
k α(k) α([1, k]) k α(k) α([1, k]) k α(k) α([1, k]) k α(k) α([1, k]) k α(k) α([1, k]) k α(k) α([1, k])

Bogota

1 0.915 0.915
2 0.944 0.975
3 0.999 1.000
4 0.954 0.999
5 0.981 0.999
6 0.989 1.000
7 0.949 1.000
8 0.990 1.000
9 0.991 1.000

Casablanca

1 0.895 0.895 1 0.831 0.831
2 0.740 0.921 2 0.932 0.959
3 0.968 0.983 3 0.943 0.995
4 0.994 0.998 4 0.960 0.999
5 0.969 0.999 5 0.889 0.998
6 0.988 1.000 6 0.811 1.000
7 0.869 1.000 7 0.830 0.999
8 0.906 1.000 8 0.818 0.999
9 0.927 1.000 9 0.782 1.000

Lima

1 0.879 0.879 1 0.772 0.772 1 0.724 0.724
2 0.762 0.915 2 0.983 0.984 2 0.869 0.887
3 0.999 1.000 3 0.989 0.999 3 0.951 0.966
4 1.000 1.000 4 0.996 1.000 4 0.829 0.975
5 0.999 1.000 5 0.787 1.000 5 0.814 0.993
6 0.999 1.000 6 0.996 1.000 6 0.990 0.999
7 0.940 1.000 7 0.795 1.000 7 0.882 0.999
8 0.784 1.000 8 0.912 1.000 8 0.823 0.999
9 0.978 1.000 9 0.950 1.000 9 0.879 0.999

Quito

1 0.685 0.685 1 0.815 0.815 1 0.834 0.834 1 0.725 0.725
2 1.000 1.000 2 1.000 1.000 2 1.000 1.000 2 1.000 1.000
3 1.000 1.000 3 0.990 1.000 3 1.000 1.000 3 1.000 1.000
4 0.998 1.000 4 1.000 1.000 4 1.000 1.000 4 1.000 1.000
5 0.993 1.000 5 0.787 1.000 5 0.881 1.000 5 0.714 1.000
6 0.966 1.000 6 0.983 1.000 6 0.979 1.000 6 1.000 1.000
7 0.948 1.000 7 0.965 1.000 7 0.940 1.000 7 0.978 1.000
8 0.998 1.000 8 0.969 1.000 8 0.959 1.000 8 0.991 1.000
9 0.988 1.000 9 0.891 1.000 9 0.864 1.000 9 0.953 1.000

Santiago

1 0.840 0.840 1 0.611 0.611 1 0.853 0.853 1 0.807 0.807 1 0.789 0.789
2 0.771 0.892 2 0.934 0.950 2 0.714 0.877 2 0.905 0.940 2 1.000 0.999
3 0.999 0.999 3 1.000 1.000 3 0.998 1.000 3 1.000 1.000 3 1.000 1.000
4 1.000 1.000 4 0.988 1.000 4 0.927 0.998 4 1.000 1.000 4 1.000 1.000
5 0.988 1.000 5 0.896 1.000 5 0.694 0.998 5 0.812 1.000 5 0.875 1.000
6 0.925 1.000 6 0.949 1.000 6 0.960 0.998 6 0.917 1.000 6 0.979 1.000
7 0.944 1.000 7 0.979 1.000 7 0.989 0.999 7 0.936 1.000 7 0.996 1.000
8 0.980 1.000 8 0.907 1.000 8 0.856 0.999 8 0.932 1.000 8 0.877 1.000
9 0.993 1.000 9 0.879 1.000 9 0.785 1.000 9 0.914 1.000 9 0.909 1.000

Yorktown

1 1.000 1.000 1 0.998 0.998 1 0.969 0.969 1 0.998 0.998 1 1.000 1.000 1 0.980 0.980
2 0.887 1.000 2 0.980 1.000 2 0.917 0.975 2 0.869 0.998 2 0.994 1.000 2 0.924 0.981
3 1.000 1.000 3 0.871 1.000 3 0.971 0.999 3 0.993 1.000 3 0.985 1.000 3 0.999 1.000
4 1.000 1.000 4 0.968 1.000 4 0.989 0.999 4 0.996 1.000 4 1.000 1.000 4 0.996 1.000
5 1.000 1.000 5 0.999 1.000 5 0.996 1.000 5 0.999 1.000 5 1.000 1.000 5 0.996 1.000
6 0.981 1.000 6 0.884 1.000 6 0.920 1.000 6 1.000 1.000 6 0.881 1.000 6 0.974 1.000
7 0.998 1.000 7 0.971 1.000 7 0.979 1.000 7 0.988 1.000 7 0.994 1.000 7 0.999 1.000
8 0.994 1.000 8 0.917 1.000 8 0.948 1.000 8 0.984 1.000 8 0.974 1.000 8 0.981 1.000
9 0.994 1.000 9 0.912 1.000 9 0.860 1.000 9 0.971 1.000 9 0.894 1.000 9 0.770 1.000
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Multiclass device classification

✔ Not considering pairs, but a multiclass setting (one-vs-rest)

Machines k α(k) α([k − 1, k]) α([k − 2, k]) α([k − 3, k]) α([k − 4, k]) α([1, k])

Athens
& Bogota
& Casablanca
& Lima
& Quito
& Santiago
& Yorktown

1 0.529 0.529
2 0.691 0.850 0.850
3 0.920 0.975 0.983 0.983
4 0.896 0.983 0.991 0.992 0.992
5 0.680 0.955 0.992 0.995 0.995 0.995
6 0.789 0.946 0.988 0.997 0.998 0.998
7 0.776 0.941 0.974 0.993 0.998 0.999
8 0.703 0.911 0.960 0.982 0.994 0.999
9 0.681 0.871 0.952 0.970 0.986 0.999

Average 0.740 0.929 0.977 0.988 0.994
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Time classification

✔ 2 runs of FAST dataset on the same machine but with 24 hours gap

Machine k α(k) α([1, k])

Casablanca

1 0.882 0.882
2 0.815 0.917
3 0.757 0.948
4 0.974 0.994
5 0.969 1.000
6 0.895 0.999
7 0.917 0.999
8 0.859 0.999
9 0.721 0.999
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SLOW dataset

0 500 1 000 1 500 2 000
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Runs (× 9 steps × 1 000 executions)
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Quito

✔ Temporally delayed executions (at least 2 minutes between each 1000 shots batch)
✔ 2 different IBM NISQ devices
✔ For each device 2000 sequences of 9 steps

▶ each one is a distribution probability obtained running 1000 shots of the circuit
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Time window classification

✔ in 1 machine of SLOW dataset
✔ discriminate between the first window of 200 runs and the subsequent windows

[1, 200] vs [201, 400] [401, 600] [601, 800] [801, 1000] [1001, 1200] [1201, 1400] [1401, 1600] [1601, 1800] [1801, 2000]
Machines k α(k) α(k) α(k) α(k) α(k) α(k) α(k) α(k) α(k)

Belem

1 0.838 0.975 0.975 0.950 0.938 0.938 0.750 0.950 0.963
2 0.812 0.850 0.912 0.875 0.975 0.925 0.800 0.863 0.875
3 0.688 0.812 0.688 0.738 0.650 0.500 0.738 0.613 0.700
4 0.738 0.800 0.700 0.750 0.700 0.713 0.863 0.875 0.875
5 0.662 0.700 0.800 0.800 0.725 0.863 0.762 0.838 0.812
6 0.700 0.700 0.938 0.950 0.838 0.762 0.800 0.750 0.800
7 0.675 0.850 0.887 0.975 0.912 0.887 0.713 0.875 0.950
8 0.775 0.800 0.900 0.912 0.938 0.988 0.787 0.938 0.938
9 0.750 0.900 0.912 0.988 0.850 0.838 0.787 0.812 0.838

Average 0.738 0.821 0.857 0.882 0.837 0.824 0.778 0.835 0.861
[1, 200] vs [201, 400] [401, 600] [601, 800] [801, 1000] [1001, 1200] [1201, 1400] [1401, 1600] [1601, 1800] [1801, 2000]

Machines k α([1, k]) α([1, k]) α([1, k]) α([1, k]) α([1, k]) α([1, k]) α([1, k]) α([1, k]) α([1, k])

Belem

1 0.838 0.975 0.975 0.950 0.938 0.938 0.750 0.950 0.963
2 0.850 0.963 0.988 0.975 1.000 0.950 0.825 0.988 0.988
3 0.887 0.975 0.988 0.975 0.988 0.988 0.850 1.000 0.988
4 0.850 0.950 1.000 0.988 0.988 0.975 0.975 0.988 1.000
5 0.850 0.963 1.000 0.988 0.988 0.975 0.963 1.000 1.000
6 0.850 0.988 0.988 0.988 1.000 0.988 0.975 1.000 0.988
7 0.863 0.988 1.000 0.988 1.000 1.000 0.988 1.000 1.000
8 0.850 1.000 1.000 0.988 1.000 1.000 0.975 1.000 1.000
9 0.875 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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✔ in same machine as previous slide
✔ α([1, 9]) discriminating the first window of 200 runs from another window sliding in time
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Robustness in time

✔ Both machines of SLOW dataset
✔ α([1, 9]) discriminating the used machine
✔ Train on the window in row index; test on window in column index

1 2 3 4 5 6 7 8 9 10
1 1.000 1.000 0.995 0.925 0.880 0.865 0.995 1.000 1.000 1.000
2 1.000 1.000 0.995 0.925 0.920 0.910 0.980 1.000 1.000 1.000
3 1.000 1.000 1.000 0.970 0.950 0.950 0.980 1.000 1.000 1.000
4 1.000 0.980 0.995 1.000 1.000 1.000 1.000 1.000 1.000 1.000
5 0.980 0.935 0.955 0.995 1.000 0.995 1.000 1.000 1.000 1.000
6 0.995 0.995 0.995 1.000 1.000 1.000 1.000 1.000 1.000 1.000
7 1.000 1.000 0.995 0.985 1.000 0.990 1.000 1.000 1.000 1.000
8 1.000 1.000 0.995 0.995 1.000 0.990 0.995 1.000 1.000 1.000
9 1.000 1.000 0.995 0.995 0.970 0.960 1.000 1.000 1.000 1.000
10 1.000 1.000 0.995 0.995 0.995 0.995 0.995 1.000 1.000 1.000
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Thank you! Questions?
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Qubit

✔ Classic bit can take one value between 0 and 1
✔ A qubit can take one of infinite values

▶ in Hilbert vector space with basis of two elements |0⟩ and |1⟩
✔ A qubit is in superposition |ψ⟩ = α |0⟩ + β |1⟩

▶ Where amplitudes α and β are complex numbers such that |α|2 + |β|2 = 1
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Measure

✔ The result of the measure is random
✔ When we measure a qubit we obtain a classical bit
✔ The measure of |ψ⟩ = α |0⟩ + β |1⟩ is

▶ 0 with probability |α|2
▶ 1 with probability |β|2

Effect of measure
Wavefunction collapse the new state after the measurement will be |0⟩ or |1⟩ depending on

the measurement result
No-cloning theorem We cannot perform several independent measurements of |ψ⟩
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Bloch sphere

✔ We can rewrite |ψ⟩ = α |0⟩ + β |1⟩ → |ψ⟩ = cos θ
2 |0⟩ + eiφ sin θ

2 |1⟩
▶ with 0 ≤ θ ≤ π and 0 ≤ φ < 2π
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Quantum gates
✔ The evolution of a state is given by the Schrödinger equation

H(t) |ψ(t)⟩ = iℏ ∂
∂t |ψ(t)⟩

✔ In quantum circuits, the operation given by complex unitary matrices, i.e. verifying
UU† = U†U = I

where U† is the complex conjugate transpose of U
✔ Each such matrix is a possible quantum gate in a quantum circuit

Application (for 1-qubit gate)

For U =
(

a b
c d

)
and |ψ⟩ = α |0⟩ + β |1⟩ =

(
α
β

)

U |ψ⟩ =
(

a b
c d

)(
α
β

)
=
(

aα+ bβ
cα+ dβ

)
= (aα+ bβ) |0⟩ + (cα+ dβ) |1⟩
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Pauli Gates (rotation of π along correspondig axis in Bloch)

X or NOT (Pauli σX )

X :=
(

0 1
1 0

)

α |0⟩ + β |1⟩ X β |0⟩ + α |1⟩

Z (Pauli σZ )

Z :=
(

1 0
0 −1

)

α |0⟩ + β |1⟩ Z α |0⟩ − β |1⟩

Y (Pauli σY )

Y :=
(

0 −i
i 0

)

α |0⟩ + β |1⟩ Y −iβ |0⟩ + iα |1⟩

I

I :=
(

1 0
0 1

)

α |0⟩ + β |1⟩ I α |0⟩ + β |1⟩
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Hadamard gate

H

H := 1√
2

(
1 1
1 −1

)

α |0⟩ + β |1⟩ H α+β√
2 |0⟩ + α−β√

2 |1⟩

|0⟩ H |0⟩+|1⟩√
2

|1⟩ H |0⟩−|1⟩√
2

|+⟩ := |0⟩ + |1⟩√
2

|−⟩ := |0⟩ − |1⟩√
2
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2 qubit systems

✔ Each qubit can be in state |0⟩ or |1⟩
✔ We have 4 possibilities, equivalently (⊗ is Kroneker product)

|0⟩ ⊗ |0⟩ , |0⟩ ⊗ |1⟩ , |1⟩ ⊗ |0⟩ , |1⟩ ⊗ |1⟩
|0⟩ |0⟩ , |0⟩ |1⟩ , |1⟩ |0⟩ , |1⟩ |1⟩

|00⟩ , |01⟩ , |10⟩ , |11⟩

✔ We can have superposition

|ψ⟩ = α00 |00⟩ + α01 |01⟩ + α10 |10⟩ + α11 |11⟩

with amplitudes αxy complex numbers such that
∑1

x ,y=0 |αxy |2 = 1
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✔ We have 4 possibilities, equivalently (⊗ is Kroneker product)

|0⟩ ⊗ |0⟩ , |0⟩ ⊗ |1⟩ , |1⟩ ⊗ |0⟩ , |1⟩ ⊗ |1⟩
|0⟩ |0⟩ , |0⟩ |1⟩ , |1⟩ |0⟩ , |1⟩ |1⟩

|00⟩ , |01⟩ , |10⟩ , |11⟩

✔ We can have superposition

|ψ⟩ = α00 |00⟩ + α01 |01⟩ + α10 |10⟩ + α11 |11⟩
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Measuring 2 qubit systems

|ψ⟩ = α00 |00⟩ + α01 |01⟩ + α10 |10⟩ + α11 |11⟩

Measuring both qubits
✔ 00 with probability |α00|2, new state |00⟩
✔ 01 with probability |α01|2, new state |01⟩
✔ 10 with probability |α10|2, new state |10⟩
✔ 11 with probability |α11|2, new state |11⟩

Measuring only one qubit (the first in this case)

✔ 0 with probability |α00|2 + |α01|2, new state α00|00⟩+α01|01⟩√
|α00|2+|α01|2

✔ 1 with probability |α10|2 + |α11|2, new state α10|10⟩+α11|11⟩√
|α10|2+|α11|2
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2 qubit gates

✔ If A and B are one-qubit gates acting on two different cubits, then on the two qubit A ⊗ B
✔ In general all unitary matrices 4 × 4

CNOT

CNOT :=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


for x , y ∈ {0, 1}
|x⟩ |x⟩
|y⟩ |x ⊕ y⟩
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