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THE PHYSICS



THEORETICAL PICTURE OF A COLLISION

In order to describe a collision a lot of ingredients are involved:
• a hard scattering matrix element (partonic level)
• parton shower, on the colored products
• color reconnection and hadronization

This is what is going on in a generic collider, but an hadronic collider
needs one more ingredient:

• partonic description of the hadronic initial state
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SOFT TO HARD PHYSICS

Since QCD is non-perturbative at low energies, there is something
special about hadrons: we are almost guessing in the wilda.

Figure 1: Scattering Matrix element, S . Fragmentation Functions only relevant for
non-outgoing inclusive processes.
The operator Oi is essentially a number operator for parton i, with a Wilson line
(time-like path) insertion for gauge covariance.

aActually, this is a very very poor statement: we have constraints about theory sym-
metries, and the bound state net content. But what we do not know from theory is the
detailed structure, and we need it to predict experiments.

Fortunately, there is also something very special about our theory,
and the breakdown we described: they factorize (up to controlled
sub-leading terms).

Then we are left with our unknown non-perturbative physics, but
nicely packaged in some descriptive functions, the Parton
Distribution Functions (PDFs).

Figure 2: Scattering process with initial and final state hadrons.
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TARGET OBJECT

PDFs then are just a set of unknown functions:

fi : [0, 1] → R

There is one for each flavor i, and they obey some theoretical
constraints (e.g. number and momentum sum rules, constraining the
integral).
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INVERSE PROBLEM



DIRECT PROBLEM

Figure 3: The map F transform the model into data. P is the parametrization space.

No direct observation of samples of
unknown objects.

The observed objects are obtained from
the unknown ones through a singular
transformation (non-bijective)a.

Our inference will then follow the
opposite direction, that is why it is called
the inverse problem.

aTrivial, because function space is infinite-
dimensional, while observed objects are finite (sam-
ples, and then even more “kinds”).
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THEORY PREDICTIONS

So, which is the map from PDF (a.k.a. the object to be determined) to the experimental data?

Physics, i.e. perturbative QCD:

σ(x,Q2) = σ̂ij ⊗ fi ⊗ fj =
∫

dz1dz2 σ̂(z1, z2,Q2) fi
(

x
z1
,Q2

)
fi
(

x
z2
,Q2

)
DGLAP EVOLUTION integro-differential equation, determining PDFs
at all scales from a border condition at a given scale Q2

0

HARD CROSS SECTION short distance physics, computed
diagrammatically (possibly supplemented with resummation)

Since we can compute everything elsea, we are left with the
determination of the border condition only:

fi(x,Q2
0)

aFor inclusive final states.
Evolution and scattering, both computed in pQCD
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FK TABLES

DGLAP evolution framework

Yet Another DIS Module

Yadism
k

k′

q

p + q

pP

DIS predictions module

PineAPPL
General process, PDF-independent, grid storage

Since we want to go through minimization, it is crucial to have a fast
map from model space to data space:

f0(x) = f(x,Q2
0) → σa(x,Q2) = σ̂a(Q2)⊗ f(Q2)⊗ f(Q2)

We call such maps Fast Kernel (FK) tables:Fa = FKa,iα f0,iα
σb = FKb,jβkγ f0,jβ f0,kγ

since data are either linear (one initial proton) or quadratic (two
protons collision) in the PDF.
Plus composite observables (e.g. ratios).

For people that are familiar with perturbation theory and PDF
nomenclature:
when a PDF is told to be LO, NLO, NNLO, or N3LO, this is the underlying
theory order (the FkTable).
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FUNCTION SPACE

A function f : R → R (or suitable intervals) lives in an
infinite-dimensional space.

This has a simple consequence:

Under-determination
Fitting an unknown function on a finite number of data is always
an under-determined problem.

How to choose a solution, when many are available and equivalent?

Figure 4: Possible χ
2 profile in 2D parameter space.
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SOLUTIONS IN THE ASSUMPTIONS

There are two main ways to attack the problem.

1. One consists in reducing the number of parameters, by slicing a
suitable hyperplane. a

This is what we do in PDFs when choosing a fixed parametrization:
we decide which parameters to fit, and take a single given value for
everything else.

Figure 5: χ2 profile in sliced parameter space.

aNot containing zero-directions.

2. The second approach removes the zero-direction by adding
regularization.

This is what the Neural Network (and its training algorithm) is doing
under the hood.

Figure 6: χ2 profile plus regularization function.
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SO WHICH?

Then which one should we choose?

There is not an absolute best answer, because both procedures
might be arbitrary.

In need for guiding principle to make a good choice, proposal:

Choices should encode physics assumptions

and as little arbitrariness as possiblea.

So what about PDFs?
CUTS cutting the space (fixed parametrization) is no bad, if you
know how to do it: you need precise theoretical insight on the
PDF shape

REGULARIZATION also this need as much motivation as the former,
but it makes to shift the focus from the exact shape to more
abstract features

aThough nothing is actually bias-free, so better to know and declare your bias, rather
than hiding it.

approach → use a Neural Network as the representation for the unknown function.

Notice that usually a NN is used to perform a task. Here the NN is actually representing the unknown object itself.
I.e., usually, evaluate on your input once, to obtain the candidate output. Here, many evaluation of the same network on an array of inputs needed to perform the same task.
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UNCERTAINTIES = DISTRIBUTION



PROPAGATING ERROR

Usually the Hessian is used together with the χ
2 as loss.

The Hessian approach is possibly the simplest: essentially, relies on
a quadratic approximation of the loss function near the minimum
(best fit) ↪→ Gaussian distribution in parameter space.

So, given a restricted set of parameters, the determination of the
multi-Gaussian relies on:

EIGENVECTORS as eigenvectors of the loss itself
VARIANCES derived from inverse loss curvature

So the distribution resembles:

P(θ|D) = exp
(
−χ

2(θ;D)
)
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REPLICAS

NNPDF Approach: Monte Carlo sample (empirical distribution)

Naïve idea: uncertainty comes from data, let’s
propagate the data distribution back through the
regularized inverse function:

fi(x) = argmin
f

(L(Di)) = NN (x |Di)

Loss contains the χ
2 , but χ2 is not the end of the story.

Very simple (possibly expensivea) usage: in order to
obtain the distribution of predictions, apply your
theoretical calculation to the element of the sample:

PredS = {F(f) ∀ f ∈ PostS}

aTo address this compressed sets are distributed along the main
release. There is also a program to obtain specialized minimal sets for
dedicated studies:

https://github.com/scarrazza/smpdf
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THE NN: MOTIVATING A CHOICE

What is then doing the neural network (NN)? Why is it working so well?

Essentially, the NN is encoding an interpolation hypothesis in the
architecture and training algorithma.

aTraining-validation split, even though interpretation is far from clear.

While both the approaches are limiting model complexity, the
Neural Network is free enough to follow strong data trends.

Physical Wiggles
A criticism we collected has been about NN opaque assumptions
might prevent to follow small physical fluctuations, but it is
actually the other way round:a

FIXED PARAM. in this case, you can only find oscillations you are
allowing for, so you need to know in advance each and every
wiggle to discriminate physical ones from noise

NN all wiggles are deweighted, but physical wiggles should be re-
solved more and more by data, so ”enough precision” in the data
will naturally overwhelm the theoretical (learning) bias

aIn principle, yet to be proven in practice.
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TRUST THE RESULTS



DATASET

As physicists, we trust in data (physics ∼ experimental science).

Variety of datasets, to cover different features of the underlying object.
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AMAZING BLACK BOX

What happens when you do not trust NN?

Common criticism is:

the NN is a black box

Well… no.
We know a lot of things about a NN: the structure, the task is
performing, and we can gather insights inspecting it and the training
process.

But skeptics are not wrong: what we are missing is a full analytical
insight on the process. A proof of solving the specific task.

We can claim the algorithm to “work” (having a suitable definition
for it…). But, even when we are right, we are often lacking the
specific why.

If analytically there is no obvious way, let’s go empirically.
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CLOSURE TESTS

Controls data region.

LEVEL 0 generate data from “true” central value only: χ2
expected ∼ 0

(essentially: can we find that central value? Is it forbidden?)

LEVEL 1 generate data from the “true” distribution χ
2
expected ∼ 1

a “usual” distribution determination

LEVEL 2 Add pseudo-data generation, χ2
expected ∼ 2

intuitively because it “fluctuates twice”

Too large errors and too small are both wrong. The test is not only
for the central value (but full posterior).
(unless being able to prove to consistently over-estimate, without being able to

compute it to subtract)

Experimental data are far from perfect, they might be affected by several inconsinstencies.

→ model inconsinstencies into the data generation process, a.k.a. “closure tests with inconsistent data”, WIP
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FUTURE TESTS

Controls extrapolation region: what about data you have not seen yet?

I can not travel to the future, but I know history!

I can divide my dataset chronologically (in a possibly meaningful way), and fit all the incremental sets. Then:

Compare older extrapolation region with newer analogue, where it becomes data region

It is not like a full blind analysis, realistically my prior knows about “the future”, but it is a further consistency check.
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RESULTS



UNCERTAINTIES - DATA REGION

Here, the result of the “Physical Wiggles” issue is evident: in order
to nicely fit result with a rather restrictive parametrization, you need
to inflate your errors (tolerance procedure).

However, keep in mind that NNPDF4.0 has a wider datasets then the
other releases.
Implementing data has a non-trivial retrieval and interpretation cost
(lack of standard language, especially for systematics), plus theory
implementation (the FkTable).

But NNPDF3.1 has already smaller uncertainties than more recent
releases, e.g. CT18 and MSHT18, despite a slightly smallera dataset.
This is the methodology impact.

aDisputable.
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UNCERTAINTIES - EXTRAPOLATION - LARGE x

Rather biased result encoded in the hypothesis: the large invariant
mass extrapolation region maps to the large-x behavior of the PDF,
that is little constrained by data. But a fixed parametrization
propagate the behavior of the data region.

While NNPDF4.0 has very small uncertainties in the data region, it is
still flexible enough to inflate in extrapolation, encoding the lack of
experimental knowledge.
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INTRINSIC CHARM

3σ of an intrinsic (non-perturbative) charm component of the proton.

Nature 608 (2022) 7923, 483-487
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CONCLUSIONS



SUMMARY

Title question: “How to learn a function?”

1. Reduce to a finite problem through soft but sensible
assumptions (e.g. interpolation)

2. Minimize suitable loss function in data space, including
extra constraints (usually theoretical knowledge)

3. Apply an “error propagation” technique (posterior
determination/sampling)

4. Test over and over your methodology (empirical
robustness proof, i.e. consistency check)

In this way, it is possible to learn a lot!

But we actually have little to poor insight on “why is my
inference working?”. And thus “Is it actually working?”

Good scientists are skeptic of their own results. But, we still
need to act to the best of our options, while preserving
caution.

But: is a Neural Network really the best tool for this kind of tasks?

Next Episode (clue above ↪→: posterior sampling)
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TOOLS AND REFERENCES

Collaboration and references

For all info about the collaboration, cf.:

https://nnpdf.mi.infn.it

including talks, papers and code.

A few more items at:

https://n3pdf.mi.infn.it

PDFN 3
Machine Learning • PDFs • QCD

Public Code

Introduction paper: Eur.Phys.J.C 81 (2021) 10, 958

Code and docs:

https://github.com/NNPDF/nnpdf
https://docs.nnpdf.science
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THANKS FOR YOUR ATTENTION!
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LOOKING FOR INSIGHTS

NNPDF ”framework” is much more than a Neural Network only:
• nice representation of a generic distribution (replicas)
• many tests in place
• fast theory framework
• lots of data implemented

• both theory calculation and
• commondata implementation with uncertainties (including
correlated systematics)

• and more…

We do not want to loose any of these.

But sometimes we lack insight: we have tests for this, but they are
not always a handy tool to answer all questions.

Hopscotch

What are our criticism to CT replicas?

Mostly we blame the method, but little criticism on the result.

Some physical assumptions have been checked:

• χ
2 vs χ2

t0

• integrability and sum rules
• positivity

But it might be hidden in the NN regularization.

Another limitation* is that the current methodology need to make a fit to one sample at a time. The distribution is only the result of
many fits.

What if we could fit the distribution all at once?



EQUIVALENCE: NN SAMPLED POSTERIOR

Attempt to reinterpret analytically the NNPDF approach.

Eur.Phys.J.C 82 (2022) 4, 330, L. Del Debbio, T. Giani, M. Wilson, “Bayesian approach to
inverse problems: an application to NNPDF closure testing”

In the simplistic case of:
• Gaussian prior and likelihood not so unrealistic

• linear map to data space not our problem

• no further regularization on the minimizer (the NN) definitely not

our problem

it is possible to prove that the NNPDF approach boils down to the
equivalent Bayesian posterior sampling.

↪→
Analogous picture to the underdetermined loss landscape, without loss axis. u is the

data point, g the theoretical map F(u) = gTu. The direction X⊥ is unconstrained.

X∥

X⊥

u

g

y/|g|

It has a hint for the direction to move for a more explicit approach.

https://doi.org/10.1140/epjc/s10052-022-10297-x


RESTART FROM BAYES

Typical examples of ML are:
• image and speech recognition
• generative tasks,
• style transfer
• and so on...

All these problems have in common:

very high dimensional objects, with poor analytical/algorithmic
insight on its structure.

Working out an explicit and effective representation for them would
be difficult.

Not the case for PDFs: math language description and clear analytic
properties at hand (sum rules, power-like behavior, and so on…).

Figure 7: PDF analytical features.

Then, we can follow a rather simple analytical approach:

P(A|B) = P(B|A)P(A)
P(B)

Bayes formula exposes regularization explicitly in the prior, so the
assumptions are analytically transparent.



PRIOR CHOICE & IMPLEMENTATION

But then the question: which prior?
A: a Gaussian process

Essentially a multi-Gaussian with a metric-driven kernel, with the
motivation that is simple, and sufficiently flexible.

Basic ideas:
PARAMETRIZATION exactly our delivery: we use PDF values at grid
points (we would no expose more degree of freedom anyhow,
so no need to use them)

TRANSFORMATIONS data are not in the PDF space, but we can use
linear and non-linear (quadratic) transformations

SUM RULES the Gaussian process allow us to impose them
analytically (in practice, it is easier to impose them as zero-error
data, but it is only a technicality)

• the important thing is that we can constrain integral and
derivatives as much as the process, thanks to the metrical
kernel

INTEGRABILITY integrability and extrapolation behavior it is
implemented as constraints on hyper-parameters

POSITIVITY we can implement as constraint on the process



(VERY) PRELIMINARY RESULTS

Figure 8: Even with completely random data and theory, we get a valence like structure (valence peak, wrong place, wrong height) by virtue of sum rules.
Still, they are too much unconstrained to get correct values.



END OF NN?

Can we retire the Neural Network?

The basic, and most uninformative, answer is “maybe”.

In practice, the Neural Network is doing quite a good job at giving a simple
enough recipe to determine our kernel. → At the price of insight loss.

It has trade-offs, but it is doing a rather good job, as proven by tests. It would be
silly to completely forget about it, since it is providing another access path to, in
principle, equivalent results.



HYPER-OPT

You can get the full distribution, including hyper-parameters:

P(A|B;λ) = P(B|A)P(A;λ)
P(B)

And, if you wish, you can hyper-optimize to get a single value:λ
∗ = maxλ∈Λ P(A|B;λ)

P(A|B) = maxλ∈Λ P(A|B;λ) = P(A|B;λ∗)

This is just the Maximum A Posteriori (MAP) estimate on hyper-parameters, but the full distribution contains more information.

But at that point you might want to choose a hyper-prior, that will affect also the MAP estimate of hyper-parameters (you decide where
to stop…but essentially is all part of your prior).



FURTHER RESULTS

Figure 9: New fit candidate, with less random data (still pretty random).

Figure 10: Hyperparameters fit: notice that while exponents
are working, we are still missing the correlation length.
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