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A new science... ASTROINFORMATICS

(statistics, machine learning, computer science and
domain expertise)

Please forget the Al label ... there is nothing more stupid than a ML
algorithm.
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Many applications (90%)

Traditional justification for using ML in Science

* DATA SIZE: modern Instruments and detectors produce data «  photometric redshifts «  Image segmentation
flows/streams impossible to handle with traditional *  Galaxy classification * Denoising
(traditional approach) * Etc. ...

methods o )
* Identifying transients, etc...

* Etc.....

Supervised approaches Unsupervised approaches
Require base of knowledge Few templates
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Many applications (90%)

Traditional justification for using ML in Science

* DATA SIZE: modern Instruments and detectors produce data «  photometric redshifts «  Image segmentation
flows/streams impossible to handle with traditional *  Galaxy classification * Denoising
(traditional approach) * Etc. ...

methods o )
e Identifying transients, etc...

* Etc.....

Supervised approaches Unsupervised approaches

Simplified translation of the process

Require base of knowledge
Data are humongous... «...colleagues and FeW te m p I ates
journals have told me good things about
ML...»
Personal Notice
It is Almost impossible
for a DL method to
-,\TRU; perform worse than a
e, & human
3 x
|
|
2 [
f I Professor
Pro gssor Hires a PhD Us'ing off the shelf libraries Code perfo.rms equally is astonished and happy...
(domain expert ... (domain expert at (Github, Kaggle, and sometimed better -
old, knows little large..., knows little paperswithcode, ecc.) in than humans
about ML) has about ML but three months puts together PhD
interesting but he/she is young, ascoflealmostalwas D] i publishes a paper
rather standard enthusiastic and f
learns fast) |
problem... '
But... very often suffers from lack of Non optimised, quite always %
rormelll undzrs::sdlng of statistical in overfitting (too high a I‘\/lv
carming.an capacity hence far too \,9\
complex for the problem...)
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Traditional justification for using ML in Science

DATA SIZE: modern Instruments and detectors produce data

flows/streams impossible to handle with traditional

methods

Simplified translation of the process

Data are humongous... «...colleagues and
journals have told me good things about

ML...»

Professor

(domain expert ...

old, knows little
about ML) has
interesting but
rather standard
problem...

Hires a PhD Using off the shelf libraries
(domain expert at ‘ (Github, Kaggle,

large..., knows little paperswithcode, ecc.) in

about ML but three months puts together
he/she is young, a code... almost always DL)
enthusiastic and

learns fast)

But... very often suffers from lack of
formal understanding of statistical
learning and ML ....

Personal Notice

It is Almost impossible
for a DL method to
perform worse than a
human

4
|
|
|
|

Code performs equally
and sometimed better
than humans

v

Many applications (90%)

photometric redshifts * Image segmentation
Galaxy classification * Denoising
(traditional approach) * Etc. ...

Identifying transients, etc...

Etc. .....

Supervised approaches Unsupervised approaches

Require base of knowledge

=

Professor
is astonished and happy...

PhD

publishes a paper

Non optimised, quite always
in overfitting (too high
capacity hence far too
complex for the problem...)

arxiv

Few templates

Very much needed and useful

but... standard !

interesting, not very challenging
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Better (at least more exciting) justification for ML in Science

e Data complexity: modern data sets contain complex information (hundreds or thousands of measured parameters)
which goes beyond the human brain capability to uncover patterns (trends, data structures, ecc...)

Spectrophotometric

Domain
Flux

F/AF
AN

Polarization

~e.
-

~ -

Surface
Brightness

Angular
Resolution

Morphological
Domain

Astrometric
Domain

ut
At baselines

N

o

Time
Domain

Q

OPS — (Observable/Observed Parameter Space)

Each event (phenomenon, measure,
ecc.) identifies a point in an N-
dimensional parameter space
(where N is the number of measured
parameters)

Today NN >> 100

Correlations are non trivial structures
in this OPS
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VERY SIMPLIFIED EPISTEMOLOGY

Laws of physics

*  Empirical laws emerge from

Empirical laws are laws that can be confirmed
directly by empirical observations. The term
"observable” is often used for any phenomenon
that can be directly observed, so it can be said

Identified patterns in the OPS

* Theory is a compression algorithm
capable to subsume an empirical
law in a formula.

e Criterium for a good theory:
experimentum crucis (i.e.
capability to predict new
phenomena)

(in ML, from a statistical point of view this
is equivalent at largeto the concept of
significance and usefulness of a
correlation).

D> )
that empirical laws are laws about observable.
Rudolph Carnap, 1966
Number of people who drowned by falling into a pool =
correlates with
Films Nicolas Cage appeared in
Correlation: 66.6% (r=0.666004)
1998 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
140 drownings 6 films
é 120 drownings 4films %
g‘ 100 @ 2 film: Ug
B0 drownings Ofilms
1998 2000 2001 2002 2003 2004 2003 2006 2007 2008 2009
-#- Nicholas Cage =% Swimming pool drownings
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MARTIN HARWIT

COSMIC

DISCOVERY . Enlargements of the parameter

The Seaggh, Scope,
and Heritage of Astronomy

»

linked to...

space

the OPS

The discovery process is always

- better sampling or coverage of !
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Driven by:

- Technological advances

- Better analytical or numerical

International
Astrolnformatics
Association

tools



1. We cannot visualize patterns in more than 3-D .... And therefore...
very few (if any) physical (astrophysical, physiological, etc.) laws depend
on more that two (max three) independent variables
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on more that two (max three) independent variables

2. We do not easily recognize patterns to which we have never been
exposed before...




- KO\ 1. We cannot visualize patterns in more than 3-D .... And therefore...
)
R very few physical (astrophysical, ecc.) laws depend on more that two
(max three) independent variables

4 CKA

4hG

2. We do not easily recognize patterns to which we have never been
exposed before...

5=KLOG W

Failure of human brain classifier

Question: do we live in a simple universe or, rather, OUR description of the universe is biased by the fact
that it is «KOUR DESCRIPTION»?



Why can ML be useful?

Introduction of non linear (sigmoid) neurons transform ANN in almost perfect approximators....

y=f (g(h(i ((X))))) minimize a cost = L(y,¥ ) with respect to the weight matrices W,

Which define the functions f,g,h,i, ...

Universal Approximation (Pseudo)Theorem (Haykin Pseudo - Theorem)

a neural network with a single layer can approximate any non-linear function to arbitrary accuracy.

Note: while this implies that only a single hidden layer is, in principle, sufficient for any problem, the dimension of this hidden
layer may become intractably large for complex problems.

Most deep learning architectures (e.g. autoencoders) stem out of the need to solve this problem (but the substance is the same
as for feedforward fully connected networks) together with the vanishing gradients problem



Underlying hypothesis

there exist an underlying unknown (often complex) multi-
parametric function (with limited number of degrees (n) of
freedom) which maps the input space onto the output
space (target).

The ML paradigm

Find the proper affine transformation of the input space which
allows to separate the problem

Identify the minimum number (N) of features (complex) which
describe the problem

Usually: N>n

Proper Machine Learning may help
understanding complex (n>3)
physics (science in general) and to
uncover a higher order of
complexity.



First Example: Photometric redshifts (supervised problem)
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Wavelength A (A)

Spectroscopic redshifts

Accurate but troublesome to obtain in
large quantities especially for distant
galaxies

Photometric redshifts
Less accurate but much much easier to
obtain



0.45f

Laurino et al 2011,

Rgot Mean Square

Brescia et al. 2019
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prediction quality k=7

A brute force ML approach (K. Polsterer et al., 2015)
All possible combinations of 4 parameters among a selection of 55

= 341,055 combinations ‘

Estimated

n!
(n—r)!r!

1 2 3
z Spectroscopic

QSOs from SDSS
Training set 300.000

Best combination
Umodel ~“9model
gpsf'rmodel

Zpsf'rmodel

Ipsf'zmodel

Which do not make any
sense to a domain expert !!!



PSF, Petrosian, Total magnitudes + extinction + errors ..... 585 features.... Let us find the best combination of 10, 11, 12 etc... using FEATURE
ADDITION

For just 10 features ..... 1,197,308,441,345,108,200,000 combinations

error diagram k=7 prediction quality k=7
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number of features

Information reaches a plateau at ca. very complex 10 features (N)



USE ML IN AN INNOVATIVE WAY:

* Look at old problems in an innovative way (it is not matter of using the latest ML model), by helping your TEAM to
redefine the problem.

E.G

Galaxy classification.

Galaxy evolution
Galaxy dynamics
Galaxy formation
Cosmological models.....

Biased (KB only at optical NIR wav,
resolution hence z, etc....)
Incomplete

Non physical (merger? AGN?, ecc.)

| (Irregular , Still most works focus on reproducing it!



Search...

ad I X 1V > astro-ph > arXiv:astro-ph/9502078

Help | Advanced

Astrophysics

[Submitted on 16 Feb 1995]
A COMPARATIVE STUDY OF MORPHOLOGICAL CLASSIFICATIONS OF APM GALAXIES

A. Naim, O. Lahav, R. J. Buta, H. G. Corwin Jr., G. de Vaucouleurs, A. Dressler, J. P. Huchra, S. van den Bergh, S. Raychaudhury, L. Sodre Jr.,
M. C. Storrie-Lombardi

We investigate the consistency of visual morphological classifications of galaxies by comparing classifications for 831 galaxies from six independent
observers. The galaxies were classified on laser print copy images or on computer screen produced from scans with the Automated Plate Measuring (APM)
machine. Classifications are compared using the Revised Hubble numerical type index T. We find that individual observers agree with one another with rms
combined dispersions of between 1.3 and 2.3 type units, typically about 1.8 units. The dispersions tend to decrease slightly with increasing angular diameter
and, in some cases, with i mcreasmg axial ratio (b/a). The agreement between independent observers is reasonably good but the scatter is non-negligible. In

spite of the scatte = an-< ed galaxy classifier, e.g. an Artificial Neural Network, to handle the large
nuber of galaxy images that are being compiled in the APM and other surveys.

There is an intrinsic error in the KB of 1.8 classification bins !1!!

Almost no one mentions it.



Subpr0b|em' Technically simple

Conceptually: far reaching

Let us try to find AGN (especially low luminosity AGN since QSO et al are easy)

Reference persons: Lars Doorenbros (CS), Stefano Cavuoti (Astroinf.), Torbaniuk (AGN expert) ACCEPTED

ULISSE: A Tool for One-shot Sky Exploration and its Application to
Active Galactic Nuclei Detection

Lars Doorenbos" . Olena Torbaniuk® 3, Stefano Cavuoti*>“, Maurizio Paolillo®*>%,
Giuseppe Longo* ', Massimo Brescia* “, Raphael Sznitman"“ and Pablo Marquez-Neila!:

I AIMI, ARTORG Center, University of Bern, Murtenstrasse 50, CH-3008 Bern, Switzerland

e-mail: lars.doorenbos@unibe.ch

Department of Physics, University Federico II, Strada Vicinale Cupa Cintia, 21, 80126 Napoli, Italy

Main Astronomical Observatory of National Academy of Sciences, 27 Akademika Zabolotnoho str., 03143 Kyiv, Ukraine
* INAF - Astronomical Observatory of Capodimonte, Salita Moiariello 16, 1-80131 Napoli, Italy

3 INFN - Sezione di Napoli, via Cinthia 9, 80126 Napoli, Italy
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EfficientNet-b O (a type of CNN architecture -Tan & Le el i

2019), trained for classification on ImageNet as the Dataset (Xi1Y, il
CNN from which we obtain the features. @ Feature
_L representations
. : — £}V >
Its penultimate layer consists of 1280 channels, ImageNet-Pretrained e i |
Prototype q Feature Extractor :

Search

leading to a 1280-dimensional feature descriptor for
each image (features are extracted from the model,
and were derived from natural images rather than
astronomical ones. Hence, they are not directly
interpretable).

— 1, —>

Fig. 2. Overview of ULISSE.

These pretrained features are used by ULISSE to 1
identify objects with similar properties. This is done
by performing a similarity search in the feature space.

Nonetheless, we can get an idea of the patterns ‘
individual features are looking for, by looking at the

images in our dataset which most strongly activate

them

Fig. 1. The three objects in our sample which most strongly activate features 11, 41, 541, 83:
together with their feature maps. We provide these for all 1280 features at the http://dame.na



Table 1. The summary of the different datasets studied in this work.

S 1 Fraction

ampie Entire  X-ray MOC Random

AGN 12.0 % 11.8 % 12.0 %

= Composite 5.8% 5.5 % 5.8 %

£ m SFG 44.0 % 41.5 % 44.1 %

2 Unclassified  38.2% 41.2 % 38.1%
—

© .  AGN 0.2% 4.0 % 0.2%

£ non-AGN 5.6 % 96.0 % 5.6 %

<" Unknown 94.2 % — 94.2 %

Number of objects 703 422 40 889 99991

Notes. The fractions represent the percentage of objects in each dataset
classified as AGN, SFG or composite according to the optical BPT-
diagram or X-ray AGN/non-AGN by X-ray selection criteria (see details
in the text). Unknown class indicates the fraction of objects which have

not been observed by XMM-Newton.






# 1 2 3 4

SDSS J032525.36-060837.8 J164607.00+422737.4 J153621.30+222913.6 J133548.24+025956.1
RA 51.35569 251.52917 234.08879 203.95103
DEC —-6.14386 42.46041 2248712 2.99892

Redshift 0.034 0.049 0.089 0.022

Thumbnails

SDSS class Galaxy QSO Galaxy

SDSS subclass AGN Starforming AGN Broadline AGN

BPT class AGN SFG AGN SFG

X-ray class AGN AGN AGN AGN

AGN prototypes

# 9 10 11 12 13
SDSS J115928.62+423542.8 J151121.53+072250.6 J134059.80+302058.0 J083114.54+524224.8 1151105.13+053112.7
RA 179.86926 227.83972 205.24919 127.81060 227.77139
DEC 42.59522 7.38073 30.34947 52.70690 5.52020
Redshift 0.114 0.044 0.040 0.064 0.035

Thumbnails

SDSS class Galaxy Galaxy Galaxy Galaxy Galaxy
SDSS subclass — — Starforming Starforming Starforming
BPT class Unclassified Unclassified SFG SFG SFG
X-ray class non-AGN non-AGN non-AGN non-AGN non-AGN

Non - AGN prototypes

3.79
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Thumbnail
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Results from recursive process on single band

images .

Step Il)DSS Position Prototype :eli\lgel?tly-gi Fractions Niew
. . Distance to prototype N
o B8 B g _a
Using this set-up, for the relatively wo

AGN

unsuccessful prototype #2. ‘

Fraction

SDSS
J164607.00+422737 4
ra: 251.52917
dec: 42.46041

10 15
Number of objects

We obtained a total of 89 objects excluding
duplicates in five iterations, of which 38 are
AGN (42.7 %, see Table A.5).

A -

Distance to prototype

m” w o ~
N m = 0
™M ™M m m

Unclassified
SFG
Composite
AGN

Fraction

ra: 169.748518407
dec: 61.593940720

In contrast, the resulting AGN fraction
setting n = 89 directly for prototype #2

S5}
SDSS
J111859.64+613538.1

4 6 8
Number of objects

Distance to prototype
~ 0

would only result in 25.8 % AGN. ¢ | Lo

SFG
Composite
AGN

(5]

SDSS
J161525.194260637.2
ra: 243.854969001
dec: 26.110337075
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Second example: Finding and characterizing objects in radiointerferometric data cubes

3o ‘ “djrty beam”
ALMA

Atacama Large sub Millimeter Array

i ion
« . » »
ot e true image I dlrty Image

ure created by David Wilner

B(u,v)

zgﬁ
il

antenna 2 antenna 1
signal signal

WM inerference fringes

Data cubes
(RA,dec and 1)




Huge problems: Old professor (s)

* Size of the datacube

 Number of data cubes

* Asymmetric beam (lack of u,v coverage)

* Correlated noise structures (artefact of image reconstruction process)
* noise changes with frequency, ecc.), ecc

Reference person: Michele delli Veneri

MNEAS 000, 1-22 (2022) Preprint 3 September 2022 Compiled using MNRAS ISTEX stvle file v3.0

PhD Students:

: [ e [ (] L : nl ) : L-\-‘ ] . ]' . . .
3D De!:ectmn and Characterisation of ALMA Sources through Deep Michele delli Veneri
Learning

, N (above.... After finishing
II"»*Ii(:htle_ Delli Vﬂnari,_"‘_* Pukasz Tychoniec.,? + Fabrizia Guglielmetti *, Giuseppe Longo =, Eric Villard ° the work and three years
INFN Section of Naples, Napolt, via Cintia, T, Tialy, 80026 . .
1!'J"f:',u'c.rrn'Jw'J'n' of Elecirical Engineering and Information Technelogsy, University of Naples "Federico I, Via Clawdie, 21, 80125 Naplex NA, laly Of insomnia " )

*ES0, Karl-Schwarzschild-Sirafe 2, 85748 Garching bei Munchen
4DE,I’MFIJ’J’J£’J’II of Physics "Ettore Pancing”, University of Naples "Federico 7, Via Cindia, I, Taly, 30126

Lukasz Tychoniec

(simulations)

Technically very complex
Conceptually: traditional (simple)



Sky Model Image
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Figure 1. Several examples of frequency stacked dirty/clean cube pairs generated through our simulation code. Sources within the cubes are outlined with

colored bounding boxes.

Calibrated Dirt

100 200
X

Calibrated Dirt

Sky Model Image

100 200
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Sky Model Image

Calibrated Dirt

100 200
X

Calibrated Dirt

Lack of training data

Trained on 20.000 simulated and realistic
ALMA data cubes



Simulated Sources SNR Distribution

|Mean SNR: 8.64 +- 6.64

Frequency of Sources (%)

20 35
SNR

(a) Distribution of the Signal to Noise Ratio of the simulated sources: fraction
of simulated sources versus measured SNR (see Eq. 17). The box in the top
right corner shows the mean SNR « its standard deviation.

Simulated Sources Positions

240

220

y (pixels)

140

120

100

100 120 140 160 180 200 220 240
x (pixels)

(b) Scatter plot showing uniformity in the positions on the xy plane of the
simulated sources.

Simulated Sources Surface Brightness Distribution

0.012 [Mean Surface Brightness: 67.6 +- 54.82]

0.010

0.008

0.006

Frequency of Sources (%)

0.004

0.002

0.000

100 200 300 400
Surface Brightness (m)y/beam)

(b) Distribution of the the total brightness of the simulated sources. On the
x-axis, the measured total brightness [mly / beam] is obtained by summing
the voxel values in the dirty cubes within sources bounding boxes. On the
y-axis, the [raction of simulated sources is provided. The box in the top right
corner shows the mean brightness = its standard deviation.

Simulated Sources Continuum Brightness Distribution

[Mean Continuum Brightness: 0.004 +- 0.003]

175

Frequency of Sources (%)

0.005 0.010 0.015 0.020
Surface Brightness (m]y/beam)

(¢) Distribution of the continuum mean brightness of the simulated sources
On the x-axis, the measured mean continuum brightness [mly / beam] 1
obtained by selecting all voxels within the x and y limits of the source
bounding boxes but outside their boundaries in frequency [z — fwhm., z -
fwhm-]. On the y-axis, the fraction of simulated sources is shown. The bo:

Simulated Sources Projection Angles Distribution
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(d) Distribution of the projection angles of the simulated sources: fraction of
simulated sources versus projection angles in degrees



The full pipeline created (not implemented)by delli

Stacked Along .
2D Image

Blobs are used 1o

[Bounding Boxes produce
Spectra are obtameﬂ‘ [Bounding Boxes|
S

coordinates and
from bounding boxes bounding boxes

Noisy Specul

[Bounding Boxes}lRA. DEC]

ML )
Sources are spectrally

focused by stacking slices

Veneri et al.

Frequency 10 Create fr————p Preprocessing and

Augmentation

Continuum
Estimation

Continuum
Subtraction

Focussed
Line Emission
Image

|Flux ResNet

8§ within their line extension

and by cropping around
~

their bounding boxes 2
Line Peaks are

A
detected. and fitted

[Lines Extensions and Positions]

_.,< FWHM,
2D Gaussian Spectral
Model Profile
BLOBS FINDER —"< FWHM,
A
Focused Sources
[Focused Sourcesl) o feeeriai} ] THETA
|RA DEC]
Sources imaged Deblending, .
FP Removal

[Lines Extensions and Positions]

with 1D Gaussians
J
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1-st — DL module — «Blobs finder»
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Encoder:

* 4 CNN blocks (kernel 3, stride 2, leaky RELU)
2 D normalization batch

* CNN (stride 1, kernel 3, leaky RELU)
2 dnORMALIZATION BATCH

* Fully connected layer (size 1024)

Decoder

* 4 deconvolutional blocks and a final block (2D bilinear
interpolation, stride 2, Leaky ReLU, 2D Batch Normalization
layer (upsampling block)

« 2D Transposed Convolution layer (stride 2, kernel size 3,
Leaky ReLU, 2D Batch Normalization layer (learnable
upsampling block).

e output of the up-sampling block and learnable up-sampling
block are tconcatenated and passed to a convolutional block
(2D Convolution layer, stride 2, kernel 3, Leaky RelU, 2D
Batch Normalization layer)

» 2D Convolution layer (stride 1, kernel size 3, ) final block is a
2D Convolution layer (stride 1, kernel 1) followed by a
Sigmoid activation function.

Block Name

Input Size

Output Size

Conv Block 1 |, 1,256,256] | b, 8,128, 128]
Conv Block 2 |b,8, 128, 128 |b, 16,64, 64|
Conv Block 3 |b, 16,64, 64| |b,32,32,32]
Conv Block 4 |b,32,32,32] | b, 64,16, 16]
FC 1 |b,64x 16 x 16| | b, 1024

FC?2 | b, 1024 ] |b,64x 16 % 16]
DeConv Block 1 |b, 64,16, 16] | b, 32,32,32]
DeConv Block 2 |b,32,32,32] | b, 16, 64,64 ]
DeConv Block 3 | b, 16,64, 64| |b, 8,128, 128
DeConv Block 4 |b, 8,128, 128 |b, 1,256,256
Final Block |, 1,256,256] | b, 1,256,256]

Table 3. Input and Output shapes for each layer of Blobs Finder, where b

indicates the batch size, and the horizontal line separates the Encoder from

the Deconder network.
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Figure 18. Examples of Blobs Finder predictions on the Test Set. The first row shows input integrated dirty cubes, the middle row the target sky models, and the

bottom row, Blobs Finder predicted 2D Source Probability maps. In green are outlined (in the dirty and sky models images) the true bounding boxes, while in
red the predicted bounding boxes extracted by thresholding the probability maps.



2-nd — DL module — Spectral focusing (RNN : DEEP GRU — Gated Recurrent Unit)

candidates
(ii) to deblend the sources
(iii) to remove most false positives.

Figure 9. The full pipeline schema. Numbers show the logical flow of the data within the pipeline.
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Figure 5. Gated Recurrent Unit architecture showing the flow of data within
the network.

| Output Model Spectrum |

Figure 6. Deep GRU’s architecture constituted by two layers of GRUs fol-
lowed by a Fully connected layer and a Sigmoid activation function.

The Deep Gated Recurrent Unit denoises the standardized spectra and outputs 1D
probabilistic maps of source emission lines or cleaned spectra.
i) feed to the ResNets the best possible input image of potential ‘

Deep GRU Prediction
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Figure 13. In blue the dirty spectrum extracted from the central source
bounding box predicted by Blobs Finder (Fig. 11), in dotted-red the Deep
GRU’s prediction. Vertical blue bars delimit the true emission ranges, while
red bars the predicted emission ranges. Vertical blue and red bars delimit the
true and predicted emission ranges, respectively. A secondary fainter source
emission peak is detected by Deep GRU and thus the source is flagged for

deblending.

Flagged for deblending



3-rd — DL module — Parameters estimation (Battery of RESNETSs)

Preprocessing Block
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Figure 8. Our implementation of the ResNet architecture. The input image is first preprocessed by a 2D Convolution layer, followed by 2D Max Pooling,
2D Batch Normalization, and a ReLU activation function, and then is forwarded through four blocks of two Residual Blocks (see Fig. 7). The output 1s then
processed via an Adaptive Max Pooling layer and fed to two fully connected layers which map the latent vector of 512 elements to a single scalar (the value of
the parameter of interest for the ResNet).
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! Blobs Finder + Deep GRU
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Figure 15. Left: histograms of the detected sources flux densities. Right: cumulative histogram of the detected sources blendness score (see the text). In both
histograms, we compare our detection pipeline (Blobs Finder + Deep GRU), our implementation of Blobs Finder, pecoras implementation of Blobs Finder and,
we report the histograms for all the test set distribution.
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Figure 16. Left: Blobs Finder predicted 2D probabilistic map; Center: true sky model image; Right: pecoras implementation of Blobs Finder predicted 2D
probabilistic map. Predictions and target images have been cropped to 128 by 128 around sources, to better showcase the reconstruction quality.



Algorithm T/ FP FN
Pipeline 4202 (92.3%0) 0 354 (7.7%)
blobcat 2779 (61%) 2429 1777 (39%)
Sofia-2 1010 (22%) 4011 3546 (78%)
decoras 3560 (78.2%) 759 996 (21.9%)
Algorithm Precision Recall Mean loU
Pipeline 1.0 0.923 0.74
blobcat 0.53 0.609 0.61
Sofia-2 0.20 0.22 0.63
decoras 0.82 0.78 0.60

Table 4. Comparison between the sequential proposed source finding pipeline
composed by Blobs Finder, DeepGRU and Speciral Focusing, blobscat,
Soria-2 and pecoras. Columns show true positives (TP), false positives
(FP), false negatives (FN), precision, recall and mean intersection over union
(Mean loU) between true bounding boxes and predicted ones. TP and FN are
also expressed as [ractions over the total number of sources.

Parameter Residual mean std

X (pixels) —0.004 (.73
v (pixels) —0.005 (.67
FWHMXx (pixels) —0.04 ().46
FWHDMy(pixels) —0.12 (0.45
Z(slices) 0.0 0.003
A (slices) 0.0 0.001
pa (degrees) —(.65 20.28
flux (mJy/beam) —-9.56 20.08

Table 5. This table shows the mean and standard deviation of all the residual
distributions between the true targel paramelers and the predictions made by
our pipeline. The x and vy positions are computed from Blobs Finder predicted
blobs, z positions and extensions A_ are computed from Deep GRU predic-
tions, and the remaining parameters are predicted from the four ResNelts.
Alongside each parameter, we also indicate their unit of measurement.
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Figure 20. Scatter plot of the sources SNR against their flux densities relative
errors. Vertical bars divide the plot in section of SNR. The legend shows, for
each SNR interval, the standard deviation of the relative errors.
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Figure 19. Scatter plots of the true parameters values against the models predictions and the corresponding residuals histograms. The red dotted lines in each
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Figure 21. Scatter plot of the sources absolute projection angle residual errors
against their eccentricity, defined as the ratio of their FWHMSs. The vertical
bar delimits the 10% mark for the residual error, while the sources highlighted
in orange are circular (¢ ~ 1) and the ones in red have surface brightness
lower then 30 mJy / beam. These sources account for respectively 47.4 and
43.7 of all sources with a relative error higher then 10%.



Conclusions:

In ML there is a concrete possibility to expand our knowledge not only

quantitatively but also qualitatively (... achieving a higher level of complexity).

Feature selection and feature interpretation are often ignored but
they likely are the most interesting part of the process

Better use of Simulations may hugely help in obtaining outstanding results

It is NOT a one man jOb (every year more than 3000 papers on ML and

it is increasing).... Transition took place around 2010.

TODAY: There is NO WAY a DOMAIN EXPERT can become also an Expert in ML .
At most you can aim at beccoming a practinioner.

CHOOSE ON WHICH SIDE OF THE PROBLEM YOU
WANT TO BE and enjoy it



conclusion

Professor

(domain expert ...

old, knows little
about ML) has
interesting but
rather standard
problem...

Hires a PhD Using off the shelf libraries
(domain expert at (Github, 'Kaggle, '
large..., knows little paperswithcode, ecc.) in
about ML but three months puts together
he/she is young, a code... almost always DL)

enthusiastic and
learns fast)

But... very often suffers from lack of
formal understanding of statistical
learningand ML....

Personal Notice

It is Almost impossible
for a DL method to
perform worse than a
human

Code performs equally
and sometimed better
than humans

=)

Professor
is astonished and happy...

PhD

publishes a paper

Non optimised, quite always
in overfitting (too high
capacity hence far too
complex for the problem...)




