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Overview

e Apply Machine Learning (ML) to direct detection of dark
matter? Long thought difficult due to low statistics.




Dark Matter Direct Detection
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e Current and planned next-generation DD experiments are
probing/will probe a very large portion of the parameter space of
the WIMP (Weakly Interacting Massive Particle) model.
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Direct detection: Schematic
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Direct detection: Traditional likelihood-based analysis

After some exposure — collect events:

L(s+b) ~
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Direct detection: Traditional likelihood-based analysis

After some exposure — collect events:

e—Hs(0)—pp(0) T d(Ng + Ny)
n! H dE

i=1

L(s+b) ~

(Ei | 0)

e Expected number of signal events: us = MT - f dN,/dE
e Expected number of background events: p, = MT - [ dN,/dE
e Spectral information

Model parameters § = {m,,o...} phenomenalogically determine two
things:
e Number of expected events

} Important for ML analysis
e Signal spectrum ‘shape’



XENONT as a test-bed: Events
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e S1: Prompt scintillation signal from recoil event.

e S2: Electron charges produced during ionization drift upwards —

extracted into gaseous phase creating larger scintillation.



XENONNT as a test-bed: Two types of events
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e Nuclear Recoil (NR) — WIMPs
e (Dominant) Background — Electron Recoil (ER).
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XENONNT as a test-bed: Training data
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Figure 1: Nuclear

recoil (NR) event example image from arxiv:1911.09210.




XENONNT as a test-bed: Training data
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Figure 1: Nuclear

recoil (NR) event example image from arxiv:1911.09210.

e Distance and ratio between S1/S2 peaks — NR vs. ER.




XENONNT as a test-bed: Training data

Figure 1: Nuclear
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recoil (NR) event example image from arxiv:1911.09210.

e Distance and ratio between S1/S2 peaks — NR vs. ER.
e ML can learn this instead!




Supervised classification



Classification: Signal vs. Background

e Binary classification: ER background vs. NR signal



Classification: Signal vs. Background

e Binary classification: ER background vs. NR signal

e Sanz et. al arXiv:1911.09210 found this image configuration
optimal. https://github.com/LucyMars/SearchForDarkMatter



Classification: Signal vs. Background

Sanz et al. method:

1. Assume fixed WIMP mass 500 GeV and cross-section o = 10~4°
cm? (34.2 live-days)
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Classification: Signal vs. Background

Sanz et al. method:

1. Assume fixed WIMP mass 500 GeV and cross-section o = 10~%°

cm? (34.2 live-days)

2. Use Laidbax (Likelihood- And Interpolated Density Based
Analysis for XENON) in conjunction with Pax to generate
graphical output of the simulated WIMP and background events

3. Train a Convolutional Neural Network (CNN) to classify
WIMP vs. background

Discovered this can work with ensemble of WIMP masses.

Cross-section irrelevant for event-by-event bkg/signal classification.
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Classification: Training data generation

Reproducing results: generate image training set with 4 x 10* images total.
“Mixed bag” of assumed masses and cross-sections:
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Classification: Signal vs. Background Results

e Train on ~ 40000 images. Take testing sub-sample of ~ 40%
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Classification: Signal vs. Background Results

e Train on ~ 40000 images. Take testing sub-sample of ~ 40%
e Check performance — confusion matrix:
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e Takeaway = 98.03% accuracy. (Recall = 98.07%, Precision =
96.39%)



Classification: Signal vs. Background Results

e Train on ~ 40000 images. Take testing sub-sample of ~ 40%
e Check performance — confusion matrix:
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e Takeaway = 98.03% accuracy. (Recall = 98.07%, Precision =
96.39%)

e This works regardless mass and cross-section: NR/ER
are what matter. 13



Unsupervised approach




Generative Deep Learning: The Variational

e Goal: Learn low dimensional representation (encoding) of data
via dimentionality reduction.
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e Goal: Learn low dimensional representation (encoding) of data
via dimentionality reduction.

e Latent space (bottleneck) layer replaced with a bunch of normal
distributions parameterized by some @ and o.

14



Generative Deep Learning: The Variational Auto-Encoder

e Goal: Learn low dimensional representation (encoding) of data
via dimentionality reduction.

e Latent space (bottleneck) layer replaced with a bunch of normal
distributions parameterized by some @ and o.

e Our goal: Learn the latent representation of the background
(ER) events.
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Variational-Auto-Encoder: Training

e Use same data as with supervised CNN.
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Variational-Auto-Encoder: Training

e Use same data as with supervised CNN.
e Train CVAE on just* ER background data.
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Variational-Auto-Encoder: Training

e Use same data as with supervised CNN.
e Train CVAE on just* ER background data.
e Train by maximising evidence lower bound (ELBO):

p(%Z)]
log p(z) > ELBO = E, (.. |lo
gp(z) > q<\>{ gq(z|x)

~logp(z | z) — Drr(logq(z | )|l log p(2))
Batch K

= Z xilogy; + (1 — ;) - log (1 — y;) *ﬁz [oF + 1 —log(o;) — 1]

j=0
K = number of latent space normal distributions.
x = Input .

y = Output.

z = Latent vector .

B = Regularization parameter.
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CVAE: Training

e Train the network for 200 epochs.

Loss
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CVAE: Training

e Once trained, the CVAE should produce generative examples of
ER images.

17



Anomaly detection

e Anomaly Detection: Once trained, run data the network has
never seen before through trained network.
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Anomaly detection

e Anomaly Detection: Once trained, run data the network has
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e If CVAE has learned the underlying properties of ER bkg events,
any non-background events will in general have higher loss.
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Anomaly detection

e Anomaly Detection: Once trained, run data the network has
never seen before through trained network.

e If CVAE has learned the underlying properties of ER bkg events,
any non-background events will in general have higher loss.

e Loss distribution of anomalous data (new physics) will show as
an excess over background only loss distribution...
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Variational-Auto-Encoder: Results
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e Left: Background loss distribution + just™ signal loss
distribution.

e Right: Inject signal into background signal, run whole data set
through network.

e Any* anomalous signal will show up as statistical deviation in
(pseudo)data loss vs. (known) background loss.
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Semi-unsupervised anomaly detection: New distance met-

ric

Cool. But...

e A bit rubbish: Can we get greater separation (anomaly
awareness) between these distributions?
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Semi-unsupervised anomaly detection: New distance met-

ric

Cool. But...

e A bit rubbish: Can we get greater separation (anomaly
awareness) between these distributions?

e New ‘anomaly function’ that utilizes pre-trained supervised CNN

classifier:
TS=—-FLBO +RHpg ,
——
CVAE loss
where

e Hp=—+ Zi\;o log (1 —p(x;)) (Binary cross-sentropy.)
e R scales the contribution of the cross-entropy term — makes it
more/less supervised.

20



Semi-unsupervised anomaly detection: New distance met-

ric

TS = (—~ELBO) + RHp ,

= Semi-unsupervised. Much greater anomaly awareness!
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Semi-unsupervised anomaly detection: Results

Calculate p—value for reject background-only hypothesis:

2 Z (T'Ser — T'SErR+NR)?

Xp = & TSer + T'SER+NR

p=1- CDF(X%&M) .

B Background Only
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Semi-unsupervised anomaly detection: Effect of R

e Explore effect of the R parameter.
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R
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Semi-unsupervised anomaly detection: Effect of R

e Explore effect of the R parameter.
e Three mock data sets corresponding to 10, 500 and 1000 GeV at

fixed ¢ = 10~%5cm?, 5 t-yr exposure.

log(p)
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Semi-unsupervised anomaly detection: Effect of R

e Explore effect of the R parameter.

e Three mock data sets corresponding to 10, 500 and 1000 GeV at
fixed ¢ = 10~%5cm?, 5 t-yr exposure.

e Best result for R ~ 170, but generally free to choose!
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Semi-unsupervised anomaly detect Forecasting

e Get anomaly sensitivity as function of exposure:
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Semi-unsupervised anomaly detect Forecasting

e Get anomaly sensitivity as function of exposure:

e 0 =10"% cm? (Left) and o

10746 ¢m? (Right). [R = 170].
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Semi-unsupervised anomaly detect Forecasting

p-value

e Get anomaly sensitivity as function of exposure:
e 0 =10"% cm? (Left) and o = 10746 cm? (Right). [R = 170].

e Compare to collaboration?
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e Official XENONNT 50 discover sensitivity for 50 GeV WIMP.

WIMP-nucleon cross-section [cm?]
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e Official XENONNT 50 discover sensitivity for 50 GeV WIMP.

e Do for a variety of R values.
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e Official XENONNT 50 discover sensitivity for 50 GeV WIMP.
e Do for a variety of R values.

e Collaboration has very sophisticated methods (auxiliary data etc.)
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Official XENONnT 50 discover sensitivity for 50 GeV WIMP.
Do for a variety of R values.
Collaboration has very sophisticated methods (auxiliary data etc.)

Not exactly® comparing apples with apples...
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Quick summary

e Can use ML methods to supplement traditional likelihood based
statistical techniques in dark matter searches.

26



Quick summary

e Can use ML methods to supplement traditional likelihood based
statistical techniques in dark matter searches.

e Depending on the experimental premise, can utilize
semi-supervised methods to amplify the analysis power.

26



Quick summary

e Can use ML methods to supplement traditional likelihood based
statistical techniques in dark matter searches.

e Depending on the experimental premise, can utilize
semi-supervised methods to amplify the analysis power.

e More work needed to explore the range of optimal anomaly
functions to use for anomaly detection.

26



Quick summary

e Can use ML methods to supplement traditional likelihood based
statistical techniques in dark matter searches.

e Depending on the experimental premise, can utilize
semi-supervised methods to amplify the analysis power.

e More work needed to explore the range of optimal anomaly
functions to use for anomaly detection.

e Continue work to use SBI (flow based methods) for parametric
regression and posterior estimation.
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Thanks for listening!
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Variational-Auto-Encoder: Interesting discovery...
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Variational-Auto-Encoder: Interesting discovery...
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e Actually events with no S1 (S2 only)
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Variational-Auto-Encoder: Interesting discovery...
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e Actually events with no S1 (S2 only)

e S2-only analyses been done before. Could extract more power

from such an analysis with ML?
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Direct detection: Traditional likelihood-based analysis

After some exposure — collect events:

L(s+b) ~

Tt O AW+ M)

n! dE

i=1
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