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Overview

• Apply Machine Learning (ML) to direct detection of dark

matter? Long thought difficult due to low statistics.

	 	mχ, σ, Bkg/Sig?
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Dark Matter Direct Detection



2



• Current and planned next-generation DD experiments are

probing/will probe a very large portion of the parameter space of

the WIMP (Weakly Interacting Massive Particle) model.
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Direct detection: Schematic
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Direct detection: Traditional likelihood-based analysis

After some exposure → collect events:

L(s+ b) ∼ e−µs(θ)−µb(θ)

n!

n∏
i=1

d (Ns +Nb)

dE
(Ei | θ)

• Expected number of signal events: µs = MT ·
∫
dNs/dE

• Expected number of background events: µb = MT ·
∫
dNb/dE

• Spectral information

Model parameters θ = {mχ, σ...} phenomenalogically determine two

things:

• Number of expected events

• Signal spectrum ‘shape’
Important for ML analysis
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XENONnT as a test-bed: Events

• S1: Prompt scintillation signal from recoil event.

• S2: Electron charges produced during ionization drift upwards →
extracted into gaseous phase creating larger scintillation.
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XENONnT as a test-bed: Two types of events

• Nuclear Recoil (NR) → WIMPs

• (Dominant) Background → Electron Recoil (ER).
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XENONnT as a test-bed: Training data

Figure 1: Nuclear recoil (NR) event example image from arxiv:1911.09210.

• Distance and ratio between S1/S2 peaks → NR vs. ER.

• ML can learn this instead!
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Supervised classification



Classification: Signal vs. Background

• Binary classification: ER background vs. NR signal

• Sanz et. al arXiv:1911.09210 found this image configuration

optimal. https://github.com/LucyMars/SearchForDarkMatter
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Classification: Signal vs. Background

Sanz et al. method:

1. Assume fixed WIMP mass 500 GeV and cross-section σ = 10−45

cm2 (34.2 live-days)

2. Use Laidbax (Likelihood- And Interpolated Density Based

Analysis for XENON) in conjunction with Pax to generate

graphical output of the simulated WIMP and background events

3. Train a Convolutional Neural Network (CNN) to classify

WIMP vs. background
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Classification: Signal vs. Background

Sanz et al. method:

1. Assume fixed WIMP mass 500 GeV and cross-section σ = 10−45

cm2 (34.2 live-days)

2. Use Laidbax (Likelihood- And Interpolated Density Based

Analysis for XENON) in conjunction with Pax to generate

graphical output of the simulated WIMP and background events

3. Train a Convolutional Neural Network (CNN) to classify

WIMP vs. background

Discovered this can work with ensemble of WIMP masses.

Cross-section irrelevant for event-by-event bkg/signal classification.

11



Classification: Training data generation

Reproducing results: generate image training set with 4× 104 images total.

“Mixed bag” of assumed masses and cross-sections:

xTrain
NR =


, , · · ·



xTrain
ER =


, , · · ·
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Classification: Signal vs. Background Results

• Train on ∼ 40000 images. Take testing sub-sample of ∼ 40%

• Check performance → confusion matrix:

• Takeaway ⇒ 98.03% accuracy. (Recall = 98.07%, Precision =

96.39%)

• This works regardless mass and cross-section: NR/ER

are what matter.
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Unsupervised approach



Generative Deep Learning: The Variational Auto-Encoder

• Goal: Learn low dimensional representation (encoding) of data

via dimentionality reduction.

• Latent space (bottleneck) layer replaced with a bunch of normal

distributions parameterized by some µ and σ.

• Our goal: Learn the latent representation of the background

(ER) events.
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Variational-Auto-Encoder: Training

• Use same data as with supervised CNN.

• Train CVAE on just* ER background data.

• Train by maximising evidence lower bound (ELBO):

log p(x) ≥ ELBO = Eq(z|x)

[
log

p(x, z)

q(z | x)

]
≃ log p(x | z)−DKL(log q(z | x)|| log p(z))

=

Batch∑
i=1

xi log yi + (1− xi) · log (1− yi)− β

K∑
j=0

[
σ2
j + µ2

j − log(σj)− 1
]

K = number of latent space normal distributions.

x = Input .

y = Output.

z = Latent vector .

β = Regularization parameter.
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CVAE: Training

• Train the network for 200 epochs.

0 25 50 75 100 125 150 175 200
Epochs

2000

2200

2400

2600

2800

3000

Lo
ss

Train Reconstruction Loss
Test Reconstruction Loss
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CVAE: Training

• Once trained, the CVAE should produce generative examples of

ER images.
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Anomaly detection

• Anomaly Detection: Once trained, run data the network has

never seen before through trained network.

• If CVAE has learned the underlying properties of ER bkg events,

any non-background events will in general have higher loss.

• Loss distribution of anomalous data (new physics) will show as

an excess over background only loss distribution...
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Variational-Auto-Encoder: Results

• Left: Background loss distribution + just* signal loss

distribution.

• Right: Inject signal into background signal, run whole data set

through network.

• Any* anomalous signal will show up as statistical deviation in

(pseudo)data loss vs. (known) background loss.
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Semi-unsupervised anomaly detection: New distance met-

ric

Cool. But...

• A bit rubbish: Can we get greater separation (anomaly

awareness) between these distributions?

• New ‘anomaly function’ that utilizes pre-trained supervised CNN

classifier:

TS = −ELBO︸ ︷︷ ︸
CVAE loss

+RHB ,

where

• HB = − 1
N

∑N
i=0 log (1− p (xi)) (Binary cross-sentropy.)

• R scales the contribution of the cross-entropy term → makes it

more/less supervised.

20



Semi-unsupervised anomaly detection: New distance met-

ric

Cool. But...

• A bit rubbish: Can we get greater separation (anomaly

awareness) between these distributions?

• New ‘anomaly function’ that utilizes pre-trained supervised CNN

classifier:

TS = −ELBO︸ ︷︷ ︸
CVAE loss

+RHB ,

where

• HB = − 1
N

∑N
i=0 log (1− p (xi)) (Binary cross-sentropy.)

• R scales the contribution of the cross-entropy term → makes it

more/less supervised.

20



Semi-unsupervised anomaly detection: New distance met-

ric

Cool. But...

• A bit rubbish: Can we get greater separation (anomaly

awareness) between these distributions?

• New ‘anomaly function’ that utilizes pre-trained supervised CNN

classifier:

TS = −ELBO︸ ︷︷ ︸
CVAE loss

+RHB ,

where

• HB = − 1
N

∑N
i=0 log (1− p (xi)) (Binary cross-sentropy.)

• R scales the contribution of the cross-entropy term → makes it

more/less supervised.

20



Semi-unsupervised anomaly detection: New distance met-

ric

Cool. But...

• A bit rubbish: Can we get greater separation (anomaly

awareness) between these distributions?

• New ‘anomaly function’ that utilizes pre-trained supervised CNN

classifier:

TS = −ELBO︸ ︷︷ ︸
CVAE loss

+RHB ,

where

• HB = − 1
N

∑N
i=0 log (1− p (xi)) (Binary cross-sentropy.)

• R scales the contribution of the cross-entropy term → makes it

more/less supervised.

20



Semi-unsupervised anomaly detection: New distance met-

ric

TS = (−ELBO) +RHB ,

⇒ Semi-unsupervised. Much greater anomaly awareness!
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Semi-unsupervised anomaly detection: Results

Calculate p−value for reject background-only hypothesis:

χ2
p =

∑
bins

(TSER − TSER+NR)
2

TSER + TSER+NR
,

p = 1− CDF(χ2
1d.o.f) .
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Semi-unsupervised anomaly detection: Effect of R

• Explore effect of the R parameter.

• Three mock data sets corresponding to 10, 500 and 1000 GeV at

fixed σ = 10−45cm2, 5 t·yr exposure.
• Best result for R ∼ 170, but generally free to choose!
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Semi-unsupervised anomaly detection: Forecasting

• Get anomaly sensitivity as function of exposure:

• σ = 10−45 cm2 (Left) and σ = 10−46 cm2 (Right). [R = 170].

• Compare to collaboration?
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• Official XENONnT 5σ discover sensitivity for 50 GeV WIMP.

• Do for a variety of R values.

• Collaboration has very sophisticated methods (auxiliary data etc.)

• Not exactly* comparing apples with apples...

25



• Official XENONnT 5σ discover sensitivity for 50 GeV WIMP.

• Do for a variety of R values.

• Collaboration has very sophisticated methods (auxiliary data etc.)

• Not exactly* comparing apples with apples...

25



• Official XENONnT 5σ discover sensitivity for 50 GeV WIMP.

• Do for a variety of R values.

• Collaboration has very sophisticated methods (auxiliary data etc.)

• Not exactly* comparing apples with apples...

25



• Official XENONnT 5σ discover sensitivity for 50 GeV WIMP.

• Do for a variety of R values.

• Collaboration has very sophisticated methods (auxiliary data etc.)

• Not exactly* comparing apples with apples...

25



Quick summary

• Can use ML methods to supplement traditional likelihood based

statistical techniques in dark matter searches.

• Depending on the experimental premise, can utilize

semi-supervised methods to amplify the analysis power.

• More work needed to explore the range of optimal anomaly

functions to use for anomaly detection.

• Continue work to use SBI (flow based methods) for parametric

regression and posterior estimation.
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Thanks for listening!



Backup slides



Variational-Auto-Encoder: Interesting discovery...

• When using CVAE loss as TS.

27



Variational-Auto-Encoder: Interesting discovery...

• Actually events with no S1 (S2 only)

• S2-only analyses been done before. Could extract more power

from such an analysis with ML?
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