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Primordial physics vs structure formation

Millenium Simulation

(Near)-Gaussian initial conditions from inflation

Cosmological time 
evolution


Primordial matter 
distribution

Matter distribution today

Goal: Measure parameters of 
initial conditions and evolution 
from the matter (galaxy) 
distribution observed today

13.7  billion years

inference

Observed galaxies


Millenium Simulation



Different scales in cosmology

Power spectrum

Easy to use for cosmologyLarge scales evolve linearly 

Small scales are very nonlinear 
and depend on complicated 
astrophysics

Hard to use for cosmology but 
MUCH more information in 
principle

IllustrisTNG simulation



• For many upcoming experiments classic data analysis methods 
(e.g. power spectrum) become very suboptimal. 


• Instead, many groups develop methods based on forward 
modelling, simulation based inference, machine learning and 
combinations thereof.


• General challenges:


• If these methods are applied at small enough scales so that gains 
in statistical sensitivity are large, they become sensitive to 
uncertain small-scale baryonic physics.


• Simulations are very costly, so that naive sampling over them is 
intractable. Need approximations; hard to quantify error bars.


• This talk: 2 new methods that help with these problems in some 
cases. 

Chances and challenges for Machine Learning



Neural Network estimates 

Forward modelling

Flavours of simulation-based inference

Neural Network
Cosmological 
parameters: fNL, As 
etc.

Train NN on large set of simulations which are 
hopefully reliable in this domain (this is being 
studied intensely of course).

Differentiable forward model 

Primordial perturbations

Matter/Galaxy distribution

Field-level Likelihood 
Cosmological 
parameters: 
fNL, As etc.

Can be based on:

N-body simulations


Analytic PT

Machine Learning

“Known” PDF



• Models of the early universe (infla5on) make different predic5ons for 

the sta5s5cal proper5es of the ma<er and radia5on distribu5on at the 

beginning of the universe.  

 

• To good approxima5on perturba5ons are Gaussian, but small ”non-
Gaussiani)es” are predicted by different models. 

• A gaussian field is fully defined by its power spectrum 

• Non-Gaussian fields have higher order correla)ons 
• Goal: Detect or constrain non-Gaussianity.

Primordial density perturbations

P (k) / h�(k)�(k)i

h�(k1)...�(kN )i

�

Primordial perturba)ons = 
ini)al condi)ons of the universe



• Planck CMB constrained the 3-point correlation function (bispectrum): 

• Roughly: Non-Gaussianity is constrained to be ~10-4 smaller than Gaussian 
part. The minimum possible value is ~10-7.


• There are many different shapes of 3-point correlation functions. 


• Near term goal: Probe multi-field inflation = “local non-Gaussianity”	 


• Current constraint fNL = -0.9 ± 5.1 (from Planck) must get 10 times tighter.


• Long term goal: Detect masses, couplings and spins of primordial fields.

Primordial non-Gaussianity

h�k1�k2�k3i / fNL



Part 1: A robust neural network 
enhanced method for local non-
Gaussianity inference
Based on:  arxiv: 2205.12964

Collaborators: 

Utkarsh Giri,

Postdoc at UW Madison

Kendrick Smith,

Perimeter Institute



CNNs give very strong constraints on cosmological parameters, IF 
they are allowed to use “very” non-linear scales. Given enough 
capacity and training they should give the optimal constraint. 

Warmup: Measuring σ8 with a CNN

Example: 

Train CNN to estimate the 
linear fluctuation amplitude 
(called σ8) from the matter 
field.


For a cosmological volume 
V=1 Gpc3 and with 2563 pixels, 
the precision is ~ percent level.


Problem: not trustworthy. 


CNN σ8!m

σ8 (NN)

σ8 (truth)



• A simpler way to measure σ8 would be simply count how many 
halos/galaxies are in a given cosmological volume. 


• In a given simulation, nhalo is very sensitive to σ8. 


• However nobody would believe this measurement because it is 
highly dependent on uncertain small-scale physics that governs 
the formation of halos/galaxies. 

Warmup: Measuring σ8 with halo counting

Linear regression σ8nh



Local non-Gaussianity fNL generates an excess clustering on large scales.This 
effect is called “scale dependent bias” of the halo field.


A famous result in cosmology is that the “kink” in the power-spectrum cannot 
be introduced by non-linear astrophysics. This robustness is ultimately a 
consequence of Einstein’s Equivalence Principle. 


Scale-dependent bias of the halo field

δh(kL) = (bh + βh
fNL

k2
L ) δm(kL)

We have a symmetry protected observable. We now want to 
enhance its SNR with a NN without spoiling the robustness. 



Idea: Local non-Gaussianity fNL is a large-scale modulation of local 
power. Therefore if we have a neural network that optimally probes 
local power (i.e. local σ8), it would be the ideal field to base an fNL 
estimate on.


This local NN output field will also have a scale-dependent fNL bias.

CNN for local σ8 measurements

Receptive field of CNN



• We use a simple fully convolutional CNN, which can run on any size 
of input data (no GPU memory problem for realistic data sets!). 


• Simple CNN architecture (not very optimized):


• Training: 800 Quijote Gaussian (!) simulations with different σ8 
values.  

• After training, we analyze independent simulations and run an MCMC 
power spectrum chain on the CNN generated field to determine 
fNL and bias.

Details of the implementation

5x5x5 conv 16 ch.

Relu Relu

1x1 convolution3x3x3 conv 16 ch. 3x3x3 conv 16 ch. 

(20 Mpc)3 
patch

Local σ8 
estimate

Relu



The analytic model matches the NN output

10°26 £ 10°3 2 £ 10°2 3 £ 10°2

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

b º

bmodel
º |fNL=250

bmodel
º |fNL=0

bdata
º |fNL=250

bdata
º |fNL=0

10°26 £ 10°3 2 £ 10°2 3 £ 10°2

k [h Mpc°1]

250

500

750

1000

N
º
º

Ndata
ºº

Nmodel
ºº

The signal power spectrum 
and noise power spectrum of 
the NN output behave exactly 
as we predict analytically. 

We also have some a proof 
that our method is optimal 
under certain circumstances.

“Halo bias” of the neural network output field π

Flat noise power spectrum



Result: 3x improvement on fNL
Comparison of fNL constraint between ordinary scale-dependent halo bias and our 
new result where the mass-weighted halo field is first processed with a neural network. 

Side note: Recently halo catalogues have been analyzed using graph neural networks 
(see talk by Farida Farsian). A local graph neural network would also work with our 
approach and perhaps be a bit more sensitive.
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For the Quijote simulation 
suite, which has a realistic halo 
density, we find that our NN 
outperforms halo bias by a 
significant factor (here about a 
fact 3). 

The method should work on 
real data with a significant 
improvement factor. 

Preliminary new result, not in the paper



• We combined an analytic method to measure fNL with a neural 
network to get the best of both worlds: robustness to baryonic 
effects and optimal statistical sensitivity.


• Next step: Determine the fNL constraint our method can reach on 
upcoming surveys such as Rubin Observatory


• Application to similar problems 

• A large-scale modulation of small scale power is a very 
common setup in cosmology. E.g. quadratic estimators for various 
fields.


• If the small-scale fields are substantially non-Gaussian, a local 
neural network operation can improve the SNR. Again, small-
scale physics will show up as biases that can be marginalized, 
but won’t affect robustness. 

Summary



Part 2: Applications of normalizing 
flows to cosmology at field level

Based on:  arXiv:2105.12024, Neurips 2021 Workshop Machine 
Learning and the Physical Sciences + new work

Collaborators: 

Utkarsh Giri,

Postdoc at UW MadisonAdam Rouhiainen,


Grad student at UW Madison



• Normalizing flow: Series of learned transformations that deform a 
simple base distribution into a complicated target distribution.


• Difference with most other ML methods: We learn a probability 
distribution, rather than an arbitrary input->output mapping.


• Recently used in physics in particular in lattice QCD (e.g. review 
2101.08176) and likelihood free inference (e.g. 2105.12024) 

Quick introduction to normalizing flows

T1(z0)

…
p0(z0) p1(z1)

T2(z1) TK(zK−1)

pK(zK)

z0 z1 zK = x

Learned transformations Ti 
e.g. parametrized by a neural network

…

High 
dimensional 

example 
(samples)

1d example 
(PDF)



• Transformation T (the “flow”)                Change of variables of PDF


• Architecture choice: We want T(u), it’s inverse T-1(x) and the 
Jacobian JT(u) to be computationally efficient to apply the method 
to large dimensions.


• After training two basic operations can be performed:


• Sampling from the distribution (forward mode)


• Exact density evaluation (backward mode)

Mathematical formulation

p(x)Sample x

Target sample xBase distribution sample u



(Near-) Gaussian initial conditions PDF morphs into complicated late-
time matter distribution. 

Analogy with cosmic structure formation

T1(z0)

…
p0(z0) p1(z1)

T2(z1) TK(zK−1)

pK(zK)

z0 z1 zK = x

Gaussian primordial matter perturbations Non-gaussian matter/galaxy distribution today

Cosmological time evolution



Flowing from a correlated Gaussian to the matter distribution

Density peaks 
match, as in 
physical structure 
formation (even 
though this is not 
explicitly trained 
for or needed).

In cosmology: Flow 
from a physically 
motivated prior 
PDF: The gaussian 
field with the right 
power spectrum.

Flow:

RealNVP



• Power spectra and non-Gaussianity agree very well (here “Glow” 
flow). 

• Normalizing Flows can learn to sample from the non-Gaussian 
PDF of the cosmological matter field. Does density evaluation 
also work?

Quality control

Sigmas are per 
sample

these fNL values are 
normalized so that 1 is O(1) 
non-gaussianity 



Is density evaluation working on IID samples?

The cross-correlation coefficient between  and  is .

This shows how flow can be used for density evaluation with high accuracy.


However: Quality of density estimation depends on training set size and 
number of parameters of the flow and dimension of the map. 

ln pflow ln ptrue r ≈ 0.993

We tried flowing from uncorrelated Gaussian noise to a physical correlated 
Gaussian, to compare  and analytic  to build confidence.


 and  for 200 fields (zero-centered):

pflow ptrue

pflow ptrue



• In data analysis in cosmology we often make use of Gaussian priors. 
This is no longer justified for very high resolution observations. Using 
the trained normalizing flow we can now include non-Gaussian 
priors (mildly OOD):


• We use a flow trained on simulations of the matter distribution. Then 
we use this knowledge of the matter PDF to de-noise an 
observation of a matter field by maximizing the posterior. 

Application: non-Gaussian priors

ln p(y |d) = − 1
2 (y − d)TN−1(y − d)−ln pflow(y)

Flow based de-noising

Similar to denoting with score matching. 



• In a second application we use the flow as a generative model, 
with a well-defined probabilistic interpretation.


• A conditional flow can learn how non-Gaussian small-scale 
structure reacts to large-scale structure, probabilistically, at field 
level. 


Example (using a conditional RealNVP flow):


Applications: Superresolution emulators

Superresolution Flow

P(small-scale structure | large-scale structure)



• Flows at field level are an interesting tool for cosmology. They are 
dual purpose for inference and data generation.


• We are currently exploring in particular:


• Flow performance for non-Gaussian priors (smaller networks, 
more symmetries, better OOD performance). Application to very 
non-Gaussian small-scale field observations (e.g. kSZ). 


• Conditional flows to model large-scale to small-scale coupling.


• Include cosmological parameter dependence in the flow (see 
Uros Seljak talk)


• Variational inference of the field posterior with flows.

Summary


