Challenges for unsupervised anomaly detection in particle physics

Katherine Fraser

Department of Physics Harvard University kfraser@g.harvard.edu

TASI 2022 arXiv: 2110.06948, JHEP 03 (2022) 066 with S. Homiller, R. Mishra, B. Ostdiek, M. Schwartz

Outline

- 1. Introduction to Anomaly Detection
- 2. Two methods for Outlier Detection:
 - A. Variational Autoencoders
 - B. Wasserstein Distances
- 3. Understanding Latent Space

Outline

- 1. Introduction to Anomaly Detection
- 2. Two methods for Anomaly Detection:
 - A. Variational Autoencoders
 - B. Wasserstein Distances
- 3. Understanding Latent Space

Why Anomaly Detection?

- We have > 200 pB LHC data but haven't found beyond standard model (BSM) physics.
- Could the trigger be missing important events?
- Could we be looking for the wrong model in our analyses?

Why Anomaly Detection?

- The goal of unsupervised anomaly detection is to avoid model dependence.
- Try to develop methods that are trained only on background but can be used to find signals
- Many previous attempts include the LHC Olympics [2101.08320] and Dark Machines [2105.14027] community challenges

Two Types of Anomaly Detection

Finding Overdensities

[Collins et al: 1805.02664, D'Anglo + Wulzer: 1806.02350, Collins et al: 1902.02634, D'Anglo et al: 1912.12155, Nachman & Shih: 2001.04990, Stein et al: 2012.11638, Carron et al: 2106.10164, Hallin et al: 2109.00546, + many others]

Outlier Detection

[Hajer et al: 1807.10261, Heimel et al: 1808.08979, Farina et al: 1808.08992, Cerri et al: 1811.10276, Roy + Vijay: 1903.02032, Atkinson et al: 2105.07988, Carron et al: 2106.10164, Ngairangbam et al: 2112.04958, + many others]

Simplifying the Problem

- Full event anomaly detended hard
- Consider the simplified, of detecting top and W je.
 QCD dijet background.
- Use jet images of simul: LHC jets, which have b preprocessed (flipped, i discretized) and normal: total pT.

Sample Images: QCD Jet (Above), Top Jet (Below) [Fraser et al: 2110.06948]

Outline

- 1. Introduction to Anomaly Detection
- 2. Two methods for Outlier Detection:

A. Variational Autoencoders

- B. Wasserstein Distances
- 3. Understanding Latent Space

AEs for Anomaly Detection

 In an autoencoder (AE), an encoder compresses inputs to a latent space, and then a decoder tries to map the latent space back to the original data by minimizing a reconstruction loss such as the mean power error:

$$d_{MPE}^{(\alpha)}(\mathcal{I}_1, \mathcal{I}_2) = \frac{1}{N_{pixels}} \sum_{i \in pixels} |\mathcal{I}_{1,i} - \mathcal{I}_{2,i}|^c$$

• When the AE is trained on background, the reconstruction fidelity gives an anomaly score: background-like events should be reconstructed well while signal-like events should not [Heimel et al: 1808.08979, Farina et al: 1808.08992]

Schematic AE [Farina et al: 1808.08992]

Adapting Variational Autoencoders (VAEs)

 In a VAE, the latent space consists of multiple distributions (gaussians) that the decoder samples from, and a KL divergence is added to the loss to regularize training:

Loss = $(1 - \beta)$ × Reconstruction Loss + β × KLD

This allows the VAE to be used for variational inference.

This stochasticity gives distances in latent space meaning.

Our Architecture

The VAE architecture contains:

- An encoder with downsampling blocks (each with convolutional layers, elu activations, and a pooling layer) and dense layers
- A decoder that mirrors the encoder.

VAE Questions

• [THIS PART] How robust is the VAE? Do results depend on:

- Type of Signal? (Ex. Top vs. W jets)
- Reconstruction loss? (Ex. MAE, MSE, Wasserstein distance implemented with the Sinkhorn approximation through the GeomLoss package)
- Hyperparameters? (Ex. β, number of downsampling blocks)
- [PART 3] Can we understand what the VAE is learning in latent space?

VAE Results

Signal			Top jet		W jet	
Training Metric	Down Samplings	Anomaly Metric	AUC	$\epsilon_S(\epsilon_B = 0.1)$	AUC	$\epsilon_S(\epsilon_B = 0.1)$
Supervised	-	-	0.94	0.81	0.96	0.91
MSE	2 $(\beta = 10^{-7})$	Loss	0.83	0.48	0.65	0.14
		MSE	0.83	0.48	0.65	0.14
		MAE	0.80	0.37	0.53	0.04
		Wass(0.5)	0.82	0.43	0.51	0.04
		Wass(1)	0.82	0.44	0.51	0.04
		Wass(2)	0.81	0.44	0.54	0.06
	$3 \ (\beta = 10^{-8})$	Loss	0.84	0.49	0.65	0.12
		MSE	0.84	0.48	0.65	0.12
		MAE	0.81	0.39	0.53	0.04
		Wass(0.5)	0.83	0.46	0.52	0.04
		Wass(1)	0.84	0.51	0.52	0.05
		Wass(2)	0.82	0.51	0.54	0.08
Wass(1)	2 $(\beta = 10^{-8})$	Loss	0.79	0.37	0.46	0.04
		MSE	0.76	0.33	0.61	0.15
		MAE	0.75	0.26	0.52	0.04
		Wass(0.5)	0.77	0.31	0.49	0.03
		Wass(1)	0.79	0.37	0.46	0.04
		Wass(2)	0.77	0.38	0.40	0.06

• We find that the VAE performs best with MSE loss and 2-3 downsampling layers.

VAE Results

- There is no signal independent way of choosing hyperparameters.
- Choices that best represent the background are often not best for signal detection:
 - β with the lowest loss on the validation samples is NOT best for QCD vs. W classification

Outline

- 1. Introduction to Anomaly Detection
- 2. Two methods for Outlier Detection:

A. Variational Autoencoders

B. Wasserstein Distances

3. Understanding Latent Space

A More Physical Alternative

- Optimal transport (OT) is the minimum "effort" required to transform one event into another.
- Optimal transport can be balanced or unbalanced. We normalize our images and restrict to balanced OT.
- The OT distance is

$$d_{OT} = min_f \sum_{i,i} f_{ij} c_{ij}$$

where f_{ij} is the transport plan (where and how to transport intensity) and c_{ij} is the cost function (how much work it takes to transport one unit of intensity).

Example OT Plan [Komiske et al: 1902.02346]

A More Physical Alternative

• Examples of OT metrics include the Energy Movers Distance [Komiske et al: 1902.02346, 2004.04159] and more general Wasserstein distances

$$d_{Wass}^{(p)} = \left(min_f \sum_{i,j} f_{ij}(c_{ij})^p\right)^{1/p}$$

where c_{ij} is the Euclidean distance in the (η, ϕ) plane.

[Komiske et al: 1902.02346]

Using Optimal Transport Distances

- OT gives the distance between events. How can we use it to get a score for the "distance" to a distribution?
- Pick reference samples and use OT distances to the references as an anomaly score.
- We test both the average QCD image and k-medoids of the QCD jets as the reference, where k is chosen using the elbow method. We find medoids perform better than the average.

OT Results

				Top jet	W jet
Reference Sample	Metric	Number of medoids	Method	AUC	AUC
Supervised	-			0.94	0.96
QCD Reference	Wass(1)	-	Avg	0.81	0.62
		1	Medoid	0.83	0.66
		3 (elbow)	Medoids (min)	0.85	0.68
		5	Medoids (min)	0.87	0.60
		7	Medoids (min)	0.87	0.61
	Wass(5)	-	Avg	0.53	0.60
		1	Medoid	0.68	0.36
		3	Medoids (min)	0.66	0.41
		4 (elbow)	Medoids (min)	0.67	0.41
		5	Medoids (min)	0.71	0.43
	MAE	-	Avg	0.83	0.71
		1	Medoid	0.82	0.71
		3 (elbow)	Medoids (min)	0.82	0.61
		5	Medoids (min)	0.83	0.67
		7	Medoids (min)	0.83	0.65

- Best results use the 1-Wasserstein metric and slightly exceed the VAE performance.
- Find worse performance for larger p because small pixel differences become comparatively less important, which is consistent with what [Finke et al: 2104.09051] found for AEs.

OT Results

Top Reference	Wass(1)	-	Avg	0.69	0.69
		1	Medoid	0.58	0.79
		3 (elbow)	Medoids (min)	0.32	0.79
		5	Medoids (min)	0.45	0.84
		7	Medoids (min)	0.49	0.83
	Wass(5)	-	Avg	0.72	0.40
		1	Medoid	0.53	0.52
		2 (elbow)	Medoids (min)	0.72	0.70
		3	Medoids (min)	0.66	0.61
		5	Medoids (min)	0.61	0.54

 Since OT is easy to apply to other reference samples, we also explore using top jets as a reference and try to detect QCD vs. Top jets or QCD vs. W jets (using the assumption that W events are more ``top-like" than QCD events).

Outline

- 1. Introduction to Anomaly Detection
- 2. Two methods for Outlier Detection:
 - A. Variational Autoencoders
 - B. Wasserstein Distances
- 3. Understanding Latent Space

Understanding the Latent Space

- Can we use the latent space to understand what the VAE is learning?
- Distances between events in the VAE latent space are correlated with Wasserstein OT distances between the same pairs, and that downsampling helps generate these correlations.

Understanding the Latent Space

- More generally, it is interesting to ask how latent spaces can help us define the notion of complexity underlying anomalies
- This relies on visualizing and understanding latent spaces:
 - Do these patterns hold for other types of AEs?
 - Can we get additional information by constructing explicit latent spaces, which might be semi-supervised like [Harris et al: 2011.03550] (potentially using optimal transport)? Or requiring latent spaces have specific properties, like [Harris et al: 2208.05484]?
 - What are the right tools to study high dimensional latent spaces?

Summary

- For both VAEs and OT with reference samples, choices that best represent the background are often not best for signal detection. This presents a challenge for unsupervised anomaly detection.
- Our best results using the event-to-ensemble distance slightly exceed the performance of the VAE.
- Wasserstein OT distances and VAE latent space distances are correlated. This is an interesting potential hint for understanding latent representations and there is more to explore here.

Back Up Slides

Variational Inference with VAEs

- Data x, Latent space elements z
- Let where $q_{\phi}(z \mid x)$ is the VAE encoder. Then p(x) =

$$\mathbb{E}_{p(z)}[p(x|z)] = \int p(x|z)p(z)dz$$
$$= \int q_{\phi}(z|x)\frac{p(x|z)}{q_{\phi}(z|x)}p(z)dz = \mathbb{E}_{q_{\phi}(z|x)}\left[\frac{p(x|z)p(z)}{q_{\phi}(z|x)}\right]$$

$$\Rightarrow \log p(x) = \log \mathbb{E}_{q_{\phi}(z|x)} \left[\frac{p(x|z)p(z)}{q_{\phi}(z|x)} \right]$$

$$\geq \mathbb{E}_{q_{\phi}(z|x)} \left[\log \left(\frac{p(x|z)p(z)}{q_{\phi}(z|x)} \right) \right] = \mathbb{E}_{q_{\phi}(z|x)} \left[\log p(x|z) - \log \left(\frac{q_{\phi}(z|x)}{p(z)} \right) \right]$$

Downsampling vs. Layers

The Elbow Method

