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Why Anomaly Detection?

e We have > 200 pB LHC data but haven’t found beyond
standard model (BSM) physics.

e Could the trigger be missing important events?

e Could we be looking for the wrong model in our analyses?
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https://towardsdatascience.com/how-big-are-big-data-in-2021-6dc09aff5ced

———
Why Anomaly Detection?

e The goal of unsupervised anomaly detection is to avoid
model dependence.

e Try to develop methods that are trained only on
background but can be used to find signals

e Many previous attempts include the LHC Olympics
12101.08320) and Dark Machines [210s.140277 community
challenges



———
Two Types of Anomaly Detection

Finding Overdensities Outlier Detection
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[Collins et al: 1805.02664, D’Anglo + [Hajer et al: 1807.10261, Heimel et al:
Waulzer: 1806.02350, Collins et al: 1808.08979, Farina et al: 1808.08992, Cerri
1902.02634, D’Anglo et al: 1912.12155, et al: 1811.10276, Roy + Vijay: 1903.02032,
Nachman & Shih: 2001.04990, Stein et al: Atkinson et al: 2105.07988, Carron et al:
2012.11638, Carron et al: 2106.10164, 2106.10164, Ngairangbam et al:

Hallin et al: 2109.00546, + many others] 2112.04958, + many others]


https://arxiv.org/abs/2109.00546

_______________________________________________
Simplifying the Problem

e Full event anomaly detection is 01
hard w0l A
e Consider the simplified problem 10t
of detecting top and W jets in a N
QCD dijet background. oo e
e Use jet images of simulated wl
LHC jets, which have been :
preprocessed (flipped, rotated, ol
discretized) and normalized by w0
total pT % 10 20 30 40

Sample Images: QCD Jet (Above), Top Jet (Below)
[Fraser et al: 2110.06948]
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———
AEs for Anomaly Detection

e In an autoencoder (AE), an encoder compresses inputs to a latent
space, and then a decoder tries to map the latent space back to the
original data by minimizing a reconstruction loss such as the mean
power error:

4@ (jl’jZ) —

MPE | jl,i - jz,i |a

pixels jepivels
e When the AE is trained on background, the reconstruction fidelity
gives an anomaly score: background-like events should be

reconstructed well while signal-like events should not [Heimel et al:
1808.08979, Farina et al: 1808.08992]

Schematic AE [Farina et al: 1808.08992]



Adapting Variational Autoencoders (VAES)

e In a VAE, the latent space consists of multiple distributions
(gaussians) that the decoder samples from, and a KL divergence is

added to the loss to regularize training:
Loss = (1 — B) x Reconstruction Loss + § x KLD
This allows the VAE to be used for variational inference.
e This stochasticity gives distances in latent space meaning.

[PureAl]


https://pureai.com/articles/2020/05/07/variational-autoencoders.aspx

Our Architecture

Encoder

Down Sample Block 1

Input Image

Latent Space

il
—

Decoder

Up Sample Block 1

Latent Space

Reconstructed Image |

Up Sample Block 2

[Fraser et al: 2110.06948]

The VAE architecture
contains:

e An encoder with
downsampling
blocks (each with
convolutional
layers, elu
activations, and a
pooling layer) and
dense layers

e A decoder that
mirrors the
encoder.



e
VAE Questions

e [THIS PART] How robust is the VAE? Do results depend on:
e Type of Signal? (Ex. Top vs. W jets)

e Reconstruction loss? (Ex. MAE, MSE, Wasserstein distance -
implemented with the Sinkhorn approximation through the
GeomLoss package)

e Hyperparameters? (Ex. 3, number of downsampling blocks)

e [PART 3] Can we understand what the VAE is learning in latent
space?



e
VAE Results

Signal Top jet W jet |
Training Down Anomaly
Metric Samplings Metric AUC es(ep=0.1) | AUC es(ep =0.1)
Supervised - - 0.94 0.81 0.96 0.91
Loss 0.83 0.48 0.65 0.14
MSE 0.83 0.48 0.65 0.14
2 (8= 10,7> MAE 0.80 0.37 0.53 0.04
’ Wass(0.5) | 0.82 0.43 0.51 0.04
Wass(1) 0.82 0.44 0.51 0.04
MSE Wass(2) | 0.81 0.44 0.54 0.06
Loss 0.84 0.49 0.65 0.12
MSE 0.84 0.48 0.65 0.12
3(8= 10—8) MAE 0.81 0.39 0.53 0.04
f Wass(0.5) | 0.83 0.46 0.52 0.04
Wass(1) 0.84 0.51 0.52 0.05
Wass(2) | 0.82 0.51 0.54 0.08
Loss 0.79 0.37 0.46 0.04
MSE 0.76 0.33 0.61 0.15
N _ MAE 0.75 0.26 0.52 0.04
Wass(1) | 2 (8=10") wag(05) | 0.77 0.31 0.49 0.03
Wass(1) 0.79 0.37 0.46 0.04
Wass(2) | 0.77 0.38 0.40 0.06

e We find that the VAE performs best with MSE loss and 2-3
downsampling layers.



VAE Results
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e There is no signal independent way of choosing

hyperparameters.

e Choices that best represent the background are often not

best for signal detection:
* [ with the lowest loss on the validation samples is NOT

best for QCD vs. W classification



e
Outline

1. Introduction to Anomaly Detection

2. Two methods for Outlier Detection:
A. Variational Autoencoders
B. Wasserstein Distances

3. Understanding Latent Space



———
A More Physical Alternative

e Optimal transport (OT) is the minimum
“effort” required to transform one event p STl e Tp
into another. ’

R/2

e Optimal transport can be balanced or
unbalanced. We normalize our images
and restrict to balanced OT.

e The OT distance is

Azimuthal Angle ¢

EMD: 125.4 GeV/

dOT = mll’lf E ijcij -R ~R/2 Rap‘gnw R/2 R
ij
. E le OT PI
where f;; is the transport plan (where and [Komiske ot a: 1802.02346]

how to transport intensity) and ¢;; is the
cost function (how much work it t]akes to
transport one unit of intensity).



———
A More Physical Alternative

e Examples of OT metrics include the R o
Energy Movers Distance [Komiske et al:
1902.02346, 2004.04159] and more general "

Wasserstein distances

Azimuthal Angle ¢
-

EMD: 125.4 GeV/

1/p :
délil)ss = (mlnfz f;j(clj)p> s
Lj

-R ~R/2 0 R/2 R

where ¢;; is the Euclidean distance in e v
] Example OT Plan

the (;/I’ ¢) plane. [Komiske et al: 1902.02346]



-
Using Optimal Transport Distances

e OT gives the distance between events. How can we use it to get a
score for the “distance” to a distribution?

e Pick reference samples and use OT distances to the references as
an anomaly score.

e We test both the average QCD image and k-medoids of the QCD
jets as the reference, where k is chosen using the elbow method.
We find medoids perform better than the average.
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e
OT Results

Topjet Wit @ Best results use the 1-
Reforence | potric NPT Method | AUC | AUC Wasserstein metric and
ample medoids .

Supervised | - - - 0.94 | 0.96 slightly exceed the VAE

- Avg 0.81 | 0.62

1 Medoid 0.83 0.66 performance'

Wass(1) 3 (elbow) Medoids (min) | 0.85 | 0.68 i
5 Medoids (ming 087 | 060 @ Find worse performance
7 Medoids (min) | 0.87 | 0.61 f
or larger p because small
- Avg 0.53 0.60 ’ )
Qcp L Medoid | 068 | 036 pixel differences become

Reference | Wass(8) 3 Medoids (m}n) 0.66 | 0.41 tivelv |

4 (elbow) Medoids (min) | 0.67 | 0.41 comparatively less

5 Medoids (min) | 0.71 | 0.43 i i i

: e P |mportant, whlch is

1 Medoid 082 | 071 consistent with what [Finke

MAE 3 (elbow) Medoids (min) | 0.82 | 0.61 .
5 e (min) | 083 | 067 etal: 2104.09051] found for
7 Medoids (min) | 0.83 | 0.65 AEs.




e
OT Results

- Avg 0.69 | 0.69

1 Medoid 0.58 0.79

Wass(1) 3 (elbow) Medoids (min) | 0.32 | 0.79

5 Medoids (min) | 0.45 | 0.84

Top 7 Medoids (min) | 0.49 | 0.83
Reference - Avg 0.72 0.40
1 Medoid 0.53 0.52

Wass(5) 2 (elbow) Medoids (min) | 0.72 | 0.70

3 Medoids (min) | 0.66 | 0.61

5 Medoids (min) | 0.61 | 0.54

e Since OT is easy to apply to other reference samples, we also
explore using top jets as a reference and try to detect QCD vs. Top
jets or QCD vs. W jets (using the assumption that W events are
more "“top-like" than QCD events).
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———
Understanding the Latent Space

e Can we use the latent space to understand what the VAE is
learning?
e Distances between events in the VAE latent space are correlated

with Wasserstein OT distances between the same pairs, and that
downsampling helps generate these correlations.

10 10
Correlation r = 0.44 Correlation r=0.78
8 . k] Val QCD Loss = 5.72e-05
2 Qé
6 ~ 6
) &
£ 4 s 4
= E
2 2
9 0
0.0000 0.0002 0.0004 0 10 20

Image dyr Euclidian L.S. Distance



———
Understanding the Latent Space

e More generally, it is interesting to ask how latent spaces can help
us define the notion of complexity underlying anomalies
e This relies on visualizing and understanding latent spaces:
¢ Do these patterns hold for other types of AEs?

e Can we get additional information by constructing explicit latent
spaces, which might be semi-supervised like [Harris et al: 2011.03550]
(potentially using optimal transport)? Or requiring latent spaces
have specific properties, like [Harris et al: 2208.05484]?

e What are the right tools to study high dimensional latent
spaces”?


https://arxiv.org/abs/2208.05484

———
Summary

e For both VAEs and OT with reference samples, choices that
best represent the background are often not best for signal
detection. This presents a challenge for unsupervised
anomaly detection.

e QOur best results using the event-to-ensemble distance
slightly exceed the performance of the VAE.

e Wasserstein OT distances and VAE latent space distances
are correlated. This is an interesting potential hint for
understanding latent representations and there is more to
explore here.
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Variational Inference with VAEs

e Data x, Latent space elements z
o Let where g,(z|x) is the VAE encoder. Then p(x) =
E,olpx|2)]= [p(x | 2)p(2)dz

p(x|2)
[Q¢(Z| ) ¢(Z|X) (Z)dz :[Eq¢(zlx)|:

p(x|2)p(z) ]
q4(z | x)

p(x|2)p(2) ]
94z | x)

>] - [EQ¢(ZIx)[|°9P(x|Z) - Iog(

. = logpx) = Iog[Eq(/)(Zm[

p(x|2)p(2)
g4z x)

qy(z]x) )]

Z [qus(zlx)[ 9< @)



———
Downsampling vs. Layers

After 1 down sample

After 2 down sample

After 3 down sample

Il Pearson Correlation 7 =( Il Pearson Correlation r=0.87 Il Pearson Correlation r=0.77

=)
=

Image dyf),
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Image dif.
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The Elbow Method
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