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Why Anomaly Detection? 
• We have > 200 pB LHC data but haven’t found beyond 

standard model (BSM) physics.  

• Could the trigger be missing important events?  

• Could we be looking for the wrong model in our analyses?

Clissa 2022

https://towardsdatascience.com/how-big-are-big-data-in-2021-6dc09aff5ced


Why Anomaly Detection? 

• The goal of unsupervised anomaly detection is to avoid 
model dependence.  

• Try to develop methods that are trained only on 
background but can be used to find signals 

• Many previous attempts include the LHC Olympics 
[2101.08320] and Dark Machines [2105.14027] community 
challenges 



Two Types of Anomaly Detection 

Finding Overdensities Outlier Detection

[Collins et al: 1805.02664, D’Anglo + 
Wulzer: 1806.02350, Collins et al: 
1902.02634, D’Anglo et al: 1912.12155, 
Nachman & Shih: 2001.04990, Stein et al: 
2012.11638, Carron et al: 2106.10164, 
Hallin et al: 2109.00546, + many others]

[Hajer et al: 1807.10261, Heimel et al: 
1808.08979, Farina et al: 1808.08992, Cerri 
et al: 1811.10276, Roy + Vijay: 1903.02032, 
Atkinson et al: 2105.07988, Carron et al: 
2106.10164, Ngairangbam et al: 
2112.04958, + many others]

https://arxiv.org/abs/2109.00546


Simplifying the Problem

• Full event anomaly detection is 
hard 

• Consider the simplified problem 
of detecting top and W jets in a 
QCD dijet background.  

• Use jet images of simulated 
LHC jets, which have been 
preprocessed (flipped, rotated, 
discretized) and normalized by 
total pT. 

Sample Images: QCD Jet (Above), Top Jet (Below)
[Fraser et al: 2110.06948]
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• In an autoencoder (AE), an encoder compresses inputs to a latent 
space, and then a decoder tries to map the latent space back to the 
original data by minimizing a reconstruction loss such as the mean 
power error:  

• When the AE is trained on background, the reconstruction fidelity 
gives an anomaly score: background-like events should be 
reconstructed well while signal-like events should not [Heimel et al: 
1808.08979, Farina et al: 1808.08992] 

AEs for Anomaly Detection

d (α)
MPE(ℐ1, ℐ2) =

1
Npixels ∑

i∈pixels

|ℐ1,i − ℐ2,i |
α

Schematic AE [Farina et al: 1808.08992] 



Adapting Variational Autoencoders (VAEs)
• In a VAE, the latent space consists of multiple distributions 

(gaussians) that the decoder samples from, and a KL divergence is 
added to the loss to regularize training: 

Loss = (1 − β) × Reconstruction Loss + β × KLD 

This allows the VAE to be used for variational inference. 

• This stochasticity gives distances in latent space meaning.

 [PureAI]

https://pureai.com/articles/2020/05/07/variational-autoencoders.aspx


Our Architecture

[Fraser et al: 2110.06948]

The VAE architecture 
contains: 

• An encoder with 
downsampling 
blocks (each with 
convolutional 
layers, elu 
activations, and a 
pooling layer) and 
dense layers 

•  A decoder that 
mirrors the 
encoder.



VAE Questions

• [THIS PART] How robust is the VAE? Do results depend on: 

• Type of Signal? (Ex. Top vs. W jets) 

• Reconstruction loss? (Ex. MAE, MSE, Wasserstein distance - 
implemented with the Sinkhorn approximation through the 
GeomLoss package) 

• Hyperparameters? (Ex. β, number of downsampling blocks) 

• [PART 3] Can we understand what the VAE is learning in latent 
space?



VAE Results

computed for the test samples for the QCD dijet events, the top-jet events, and the W -jet

events.

To evaluate performance in anomaly detection, we train the autoencoder on a QCD

background using the training metric. Then we evaluate the anomaly score using the

anomaly metric for a boosted top jet signal sample and a boosted W -jet signal sample. For

a figure of merit of performance we use the Area Under the receiver operating characteristic

Curve (AUC). We also include the signal e�ciency at a cut which allows only 10% of the

QCD events to pass, which is denoted ✏S(✏B = 0.1).

Signal Top jet W jet
Training Down Anomaly

AUC ✏S(✏B = 0.1) AUC ✏S(✏B = 0.1)Metric Samplings Metric
Supervised - - 0.94 0.81 0.96 0.91

MSE

2 (� = 10�7)

Loss 0.83 0.48 0.65 0.14
MSE 0.83 0.48 0.65 0.14
MAE 0.80 0.37 0.53 0.04

Wass(0.5) 0.82 0.43 0.51 0.04
Wass(1) 0.82 0.44 0.51 0.04
Wass(2) 0.81 0.44 0.54 0.06

3 (� = 10�8)

Loss 0.84 0.49 0.65 0.12
MSE 0.84 0.48 0.65 0.12
MAE 0.81 0.39 0.53 0.04

Wass(0.5) 0.83 0.46 0.52 0.04
Wass(1) 0.84 0.51 0.52 0.05
Wass(2) 0.82 0.51 0.54 0.08

Wass(1) 2 (� = 10�8)

Loss 0.79 0.37 0.46 0.04
MSE 0.76 0.33 0.61 0.15

MAE 0.75 0.26 0.52 0.04
Wass(0.5) 0.77 0.31 0.49 0.03
Wass(1) 0.79 0.37 0.46 0.04
Wass(2) 0.77 0.38 0.40 0.06

Results are shown in table ?? for the training metric choices d(2)
MPE

and d(1)
Wass

and

for di↵erent numbers of downsampling blocks in the network. For each number of down

samplings, we trained the network with di↵erent values of the VAE parameter �, and in

the table present the results for the value of � which achieved the smallest loss on the

validation data. For the d(2)
MPE

trained networks, the values of � which minimized the loss

were 10�7, 10�7, and 10�8, for the one, two, and three down sample block networks, re-

spectively. The d(1)
Wass

trained results are in the lower part of the table and had optimal

values of � of 10�5, 10�8, and 10�7 for one, two, and three down sampling blocks, respec-

tively. The entries highlighted in blue indicate the configuration with the best AUC and

✏S(✏B = 0.1) for top jets and W jets across all of our considered VAE architectures, training

methods, and anomaly score methods. The top row in the table shows the results (in red)

from a supervised approach, for comparison (see appendix B for details of the supervised

algorithm).

In general, we find the networks trained with d(2)
MPE

as the training metric and using

the full loss as the anomaly metric has the best AUC. The exception is when only a single

– 11 –

• We find that the VAE performs best with MSE loss and 2-3 
downsampling layers.



VAE Results

• There is no signal independent way of choosing 
hyperparameters. 

• Choices that best represent the background are often not 
best for signal detection: 
• β with the lowest loss on the validation samples is NOT 

best for QCD vs. W classification
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• Optimal transport (OT) is the minimum 
“effort” required to transform one event 
into another.  

• Optimal transport can be balanced or 
unbalanced. We normalize our images 
and restrict to balanced OT.  

• The OT distance is 

where  is the transport plan (where and 
how to transport intensity) and  is the 
cost function (how much work it takes to 
transport one unit of intensity).

fij
cij

A More Physical Alternative 

dOT = minf ∑
i, j

fijcij

Example OT Plan 
[Komiske et al: 1902.02346] 



• Examples of OT metrics include the 
Energy Movers Distance [Komiske et al: 
1902.02346, 2004.04159] and more general 
Wasserstein distances  

where  is the Euclidean distance in 
the  plane.

cij
(η, ϕ)

A More Physical Alternative 

Example OT Plan 
[Komiske et al: 1902.02346] 

d ( p)
Wass = (minf ∑

i, j

fij(cij)p)
1/p



• OT gives the distance between events. How can we use it to get a 
score for the “distance” to a distribution? 

• Pick reference samples and use OT distances to the references as 
an anomaly score.  

• We test both the average QCD image and k-medoids of the QCD 
jets as the reference, where k is chosen using the elbow method. 
We find medoids perform better than the average. 

Using Optimal Transport Distances



OT Results

• Best results use the 1-
Wasserstein metric and 
slightly exceed the VAE 
performance.  

• Find worse performance 
for larger p because small 
pixel differences become 
comparatively less 
important, which is 
consistent with what [Finke 
et al: 2104.09051] found for 
AEs.



OT Results

• Since OT is easy to apply to other reference samples, we also 
explore using top jets as a reference and try to detect QCD vs. Top 
jets or QCD vs. W jets (using the assumption that W events are 
more ``top-like" than QCD events). 
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• Can we use the latent space to understand what the VAE is 
learning? 

• Distances between events in the VAE latent space are correlated 
with Wasserstein OT distances between the same pairs, and that 
downsampling helps generate these correlations.

Understanding the Latent Space



• More generally, it is interesting to ask how latent spaces can help 
us define the notion of complexity underlying anomalies 

• This relies on visualizing and understanding latent spaces: 

• Do these patterns hold for other types of AEs? 

• Can we get additional information by constructing explicit latent 
spaces, which might be semi-supervised like [Harris et al: 2011.03550] 
(potentially using optimal transport)? Or requiring latent spaces 
have specific properties, like [Harris et al: 2208.05484]? 

• What are the right tools to study high dimensional latent 
spaces?

Understanding the Latent Space

https://arxiv.org/abs/2208.05484


• For both VAEs and OT with reference samples, choices that 
best represent the background are often not best for signal 
detection. This presents a challenge for unsupervised 
anomaly detection.  

• Our best results using the event-to-ensemble distance 
slightly exceed the performance of the VAE. 

• Wasserstein OT distances and VAE latent space distances 
are correlated. This is an interesting potential hint for 
understanding latent representations and there is more to 
explore here.

Summary



Back Up Slides



• Data x, Latent space elements z 

• Let where  is the VAE encoder. Then p(x) =

 

•  log  

 

qϕ(z |x)

𝔼p(z)[p(x |z)] = ∫ p(x |z)p(z)dz

= ∫ qϕ(z |x)
p(x |z)
qϕ(z |x)

p(z)dz = 𝔼qϕ(z|x)[ p(x |z)p(z)
qϕ(z |x) ]

⇒ p(x) = log𝔼qϕ(z|x)[ p(x |z)p(z)
qϕ(z |x) ]

≥ 𝔼qϕ(z|x)[log( p(x |z)p(z)
qϕ(z |x) )] = 𝔼qϕ(z|x)[logp(x |z) − log(

qϕ(z |x)
p(z) )]

Variational Inference with VAEs



Downsampling vs. Layers



The Elbow Method


