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LHC SIMULATIONS
• Full detector simulation takes ~40% of grid CPU resources


• HL-LHC looming


• Order-of-magnitude more simulations needed


• Improved detectors  higher granularity, increased complexity


• ML a possible solution?

⇒
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Sources

K. Pedro, HSF 2020

J. Duarte, ANL 2021, Video

*Delayed

https://indico.cern.ch/event/941278/contributions/4084848/
https://www.dropbox.com/s/vc6m16rgij6fnb7/Argonne_Edge_12Aug2021.pdf?dl=0
https://argonne.zoomgov.com/rec/play/uCjdk4Pk436S5NYn3s7VEzE7fvRhnfpUeHAq__pEclUxnzu6HANitZPWywYkCIxVFISW8xaL-TERBiCN.6lA2KaFd8UPzCj0N?continueMode=true
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LHC SIMULATIONS*
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Sources

S. Sekmen, LPC 2017
F. Krauss, Kyoto 2011

Hard process 
Showering 

Hadronization 
Underlying event

GenParticles

Energy depositions  
and interactions 
along detector

SimHits

Digitization 
Hit reconstruction

RecoHits

Particle 
reconstruction

Reco

Particles

High level 
features

Event-level analysis

*Bias towards CMS

https://indico.cern.ch/event/596660/contributions/2412429/attachments/1411828/2159813/SekmenFSDHowITWorks170213.pdf
https://www.ippp.dur.ac.uk/~krauss/Lectures/MonteCarlos/MC2_Kyoto.pdf
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• Opportunity for ML alternatives in many steps


• Trading accuracy of “FullSim” (Geant) for speed


• Trading verifiability/trust for # of steps

LHC SIMULATIONS

ML?

ML? ML?

Speed
Ac

cu
ra

cy FullSim

FastSim

Delphes

ML? ML?

ML?

K. Pedro, HSF 2020

ML?

Hard process 
Showering 

Hadronization 
Underlying event

GenParticles

Energy depositions  
and interactions 
along detector

SimHits

Digitization 
Hit reconstruction

RecoHits

Particle 
reconstruction

Reco

Particles

High level 
features

Event-level analysis

https://indico.cern.ch/event/941278/contributions/4084848/
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LHC SIMULATIONS

• Want model  for underlying data distribution 

• Rich area in machine learning: Deep generative models

• deep neural networks are flexible and expressive 


•  typically modelled with high-capacity DNNs

pθ(x) p(x)

pθ(x)

Hard process 
Showering 

Hadronization 
Underlying event

GenParticles

Energy depositions  
and interactions 
along detector

SimHits

Digitization 
Hit reconstruction

RecoHits

Particle 
reconstruction

Reco

Particles

High level 
features

Event-level analysis
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DIRECT MODELLING
Explicit parametric specification of pθ(x)

• Model assumption:  can be predicted entirely by 

• Iteratively output  based on  using learnt 

xi x<i

xi x<i p(xi |x<i)

π(z) p(x)

• Backward: learn transformation from  to simpler  


• Forward: sample , invert transformation, get 

p(x) π(z)

π(z) p(x)

p(x) = p(x1)
N−1

∏
i=2

p(xi |x<i)

Autoregressive

p(x) = π(x = f −1(z)) ∂f −1(x)
∂x

Flow-based

1. Access to exact likelihood


2. Simple  loss


3. Stable training

−ln p(x)

Diffusion-based

p(x) = p(x |z1)(
T−1

∏
i=1

p(zi |zi+1))p(zT)

x z1 zT

q(zi+1 |zi) = 𝒩(zi+1 |μ(zi), σ(zi))

• Backward: iteratively add gaussian noise


• Forward:  network learns to denoisep(zi |zi+1)

• But in practice they are typically outperformed by GANs (next slide)
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LATENT VARIABLE MODELS
• Assume high dimensional data  can be characterised by lower dimensional ‘latent’ (hidden) features 

• Generative process: sample from simpler prior  and learn 

x z

z ∼ p(z) p(x |z) ⇒ p(x) = ∫ p(x |z)p(z)dz

Variational Autoencoder

• ‘Evidence-based Lower BOund’ (ELBO) of  : ln p(x)
ELBO = 𝔼z∼qϕ(z|x)[ln p(x |z)] − KL[qϕ(z |x) | |p(z)]
Autoencoder reconstruction loss Divergence between variational 

posterior and assumed prior

Generative Adversarial Networks
• Abandon likelihood-based loss approach


• Iteratively train ‘discriminator’ network as an adversarial 
loss for the ‘generator’


• 1) Hard to train; 2) lose likelihood; 3) adversarial; 
but when done right tends to be most performant*

• *UNTIL last year where score-based diffusion models started beating GANs for the first time!


• No time in this talk but very interesting direction - modelling  instead of ∇xln p(x) p(x)

z

x
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• How do we trust generated data?


• How do we compare generative models?
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• How do we trust generated data? Evaluation metrics

• How do we compare generative models? Evaluation metrics
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• How do we trust generated data?


• How do we compare generative models?
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Evaluation metrics sensitive to:
• Quality


• Diversity


• Physics performance (interpretable)

Evaluation metrics that are:
• Standardised


• Reproducible


• Efficient
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EVALUATION METRICS
• Most important aspect of generative modelling


• We propose two key metrics:


• Physics-inspired: 1-Wasserstein ( ) distances between distributions


• ML-inspired: adapt established Fréchet Inception Distance metric from CV


• Practically, found to together satisfy all criteria very effectively


• In effort to standardise, we release these, and more, in JetNet package

W1

14

Kansal et al., NeurIPS 2021

JetNet

https://github.com/jet-net/jetnet
https://arxiv.org/abs/2106.11535
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• Traditional method for evaluating physics simulations is to compare physical distributions 

 DISTANCESW1
MC generator evaluation (Ellis et al ’96) FastSim (Sekmen ’17) LAGAN (de Oliveira et al ’17)

• Proposal: quantify using 1-Wasserstein (earth mover’s) distance ( )


• Can evaluate multiple low- and high-level features: sensitive to quality

• High scores for differing supports: sensitive to mode collapse (diversity)


• Efficient, Reproducible, Interpretable


• Can use boot-strapping with subsets of only real samples to derive baseline


• Cons: scaling to more dimensions (missing correlations), how to aggregate scores for different features?

W1

Kansal et al., NeurIPS 2021

https://arxiv.org/abs/2106.11535
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FRÉCHET <CLASSIFIER> DISTANCES
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• Machine learning version of this: use classifier hidden features instead!


• Example: apply to jet generation using pre-trained ParticleNet graph classifier :

Real Jets

Gen Jets

FPND = Frechet(𝒩(μr, Σr), 𝒩(μg, Σg)) = | |μr − μg | |2 + Tr[Σr + Σg − 2(ΣrΣg)1/2]

μr, Σr

μg, Σg

{30 particles
{ featuresη, φ, pT

Class

{Internal Repr.

Pooling

FCN
knn+ 

EdgeConv

ParticleNet

FCN

• High-performing classifier learns salient hidden features from data


• Retain sensitivity to quality, diversity from , reproducible and efficient plus:


• Single aggregate score, correlations ( ) between features, easy to scale


• But lose interpretability, hence used in conjunction with  scores

W1

Σ

W1

Kansal et al., NeurIPS 2021

https://arxiv.org/abs/2106.11535
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ALTERNATIVES
• KL vs JS vs  vs 

• All reasonable,  particularly ubiquitous for GoF


• Only  takes account of metric space

χ2 W1

χ2

W1

17

• Classifier Metric


• Train a classifier between real and fake


• Pros: quality and diversity

• Cons: Interpretability, reproducibility, efficiency, hard to standardise

Real Jet Mass (GeV)
100 200 300 400 500

KL, JS,  for both is the sameχ2

100 200 300 400 500

Generated Jet Mass 1 (GeV)

100 200 300 400 500

Generated Jet Mass 2 (GeV)

Source

https://stats.stackexchange.com/a/351153
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• Properties of LHC data:


• Sparsity


• High granularity


• Irregular geometry


• No fixed ordering


• Point clouds:


• Store only the hits/particles


• Retain feature precision


• Are flexible, work for any geometry


• Have no ordering


 Natural representation for HEP data⇒

18

DATA 
REPRESENTATIONS

Hits

Hit coordinates, energy
Particle coords, momentum

Image repr. for CNNs
Particles

Row entry

η φ pT

Particle/Hit 1

Particle/Hit 2⋯
px py pz

or

η

φ

Energy/  node featurespT



Raghav Kansal Particle Cloud Generation with Message Passing GANs

PARTICLE / HIT CLOUDS
• More physics-motivated representation, capturing geometry, 

respecting permutation symmetry


• This + graph neural networks, exploiting geometrical 
information, are SOTA in CMS

19

η

φ

ParticleNet (Qu et al ’20) for boosted jet 
tagging

MLPF (Pata et al ‘21) for Particle Flow 
reconstruction

• Can this be extended to generative models?
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21

Apologies to those I didn’t 
have time for!
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ATLAS FASTCALOGAN
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• Currently used for ATLAS fast 
simulations (AtlFast3) - 7B events 
for Run 2 analyses!


• Conditional ‘Wasserstein GAN’ 
using shower images


• Reasonable performance but:


• Room for improvement


• ‘Voxelisation’ to deal with sparsity 
and high granularity 


• 300 GANs trained for each  binη

AtlFast3, ATLAS Collaboration 2022

https://arxiv.org/abs/2109.02551
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BIB-AE

23

• Bounded-Information Bottleneck 
Autoencoder


• VAE + GAN + Post Processor


• Photon, pion shower images


• Good agreement with (simplified) 
CMS-like simulationsSample Geant4 pion shower image Sample BIB-AE image

Photon showers

Pion showers

Buhmann et. al., CSBS 2021

Buhmann et. al., MLST 2022
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SPARSE APPROACHES

24

Analysis-Specific FastSim 
(Chen et al., CSBS 2021)

• Directly from gen-level high level features 
(jet , MET etc.) to reco features⃗p

SparseVAE: Gen Jet  Reco Jet (Touranakou et al., MLST 2022)→

VAE + Flow-based prior: Gen Particle  Reco Jet 
(Orzari et al., LXAI @ ICML 2021)

→
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OUR APPROACH: MPGAN
• Majority of work, while successful, is image-based


• Difficult to scale to HL-LHC and apply to e.g CMS high-granularity calorimeter


• We develop a graph-based approach


• Key ideas:


• Natural, sparse, and flexible representation for data


• Learn global features and inter-particle correlations (i.e. jet, shower structure)

25

η

φ
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Generated 
Particle Cloud

hT
1

hT
2

26

MPGAN
• We develop a GAN with a fully-connected message-passing 

(MP) generator and discriminator mt+1
ij = f t+1

e (ht
i ⊕ ht

j)

ht+1
v = f t+1

n (ht
i ⊕ ∑

j∈J

mt+1
ij )

× T

f t
e

f t
n

…

{Initial Noise

h0
1

h0
2

MP Generator

{Final Featuresη φ pT 1

× T

fe

fn

MP Discriminator

Real Particle 
Cloud

FC LayerAve

Pool

…

…

{Hidden Features Real or 
Generated

Kansal et al., ML4PS @ NeurIPS 2020
Kansal et al., NeurIPS 2021

https://arxiv.org/abs/2012.00173
https://arxiv.org/abs/2106.11535
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• Test-bench: Pythia-simulated high  jets (“JetNet”)


• 30 highest  particles, ( ) features


• Gen particle  Reco jet

pT

pT ηrel, ϕrel, prel
T

→

DATASET

η

φ

zenodo.org/record/5502543

q/g

 t→Wb→qqb h→bb

 W/Z→qqb t→Wb→qqbq/g

 t→Wb→qqb h→bb

 W/Z→qqbg q t Wq qqq→ →

JetNet

Kansal et al., ML4PS @ NeurIPS 2020
Kansal et al., NeurIPS 2021

JetNet Python Package

https://zenodo.org/record/5502543
https://arxiv.org/abs/2012.00173
https://arxiv.org/abs/2106.11535
https://github.com/jet-net/jetnet


Raghav Kansal Particle Cloud Generation with Message Passing GANs 28

 RESULTS: GLUON JETS
*Mean and error over 5 sets of 

pairs of 10,000 jets each
Sample feature distributions, with MPGAN compared to baseline point cloud generators

Generator Discriminator W1-P (10-3) W1-M (10-3) W1-EFP (10-5) FPND

FC PointNet 1.3 ± 0.2 1.3 ± 0.4 1.5 ± 0.9 5.0

GraphCNN PointNet 16 ± 6 1.9 ± 0.2 200 ± 1000 7k

MP MP 0.9 ± 0.3 0.7 ± 0.2 0.7 ± 0.2 0.12

MP PointNet 1.2 ± 0.4 1.3 ± 0.4 4 ± 2 18

Real vs real average particle 
features  score*  

(W1-P) = (0.44 ± 0.09)  10-3
W1

×

Real vs real jet mass  score  
(W1-M) = (0.7 ± 0.2)  10-3

W1
× Real vs real average jet EFPs  score  

(W1-EFP) = (0.62 ± 0.07)  10-5
W1
×

• MPGAN generator is the best performing on every metric


• Significantly outperforms alternatives on high level feature metrics (W1-M, W1-EFP, FPND)


• Mass and ave. EFP scores are within error of the real vs real baseline  learning jet substructure correctly⇒

Kansal et al., ML4PS @ NeurIPS 2020
Kansal et al., NeurIPS 2021

https://arxiv.org/abs/2012.00173
https://arxiv.org/abs/2106.11535
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 RESULTS: TOP QUARK JETS

Generator Discriminator W1-P (10-3) W1-M (10-3) W1-EFP (10-5) FPND

FC PointNet 1.6 ± 0.4 2.7 ± 0.1 7.7 ± 0.5 3.9

GraphCNN PointNet 30 ± 20 11.3 ± 0.9 37 ± 2 30k

MP MP 2.3 ± 0.3 0.6 ± 0.2 2 ± 1 0.37

MP PointNet 1.6 ± 0.4 0.76 ± 0.08 4 ± 1 3.7

Real vs real 

W1-P = (0.55 ± 0.07)  10-3×

Real vs real 
W1-M = (0.51 ± 0.07)  10-3×

Real vs real  
W1-EFP = (1.1 ± 0.1)  10-5×

• MPGAN learns perfectly the complex bimodal jet feature distributions


• Mass and ave. EFP scores remain within error of real vs real baseline
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MPGAN SUMMARY
• Graph-based approach is highly successful at learning complex physics substructure


• Graph-based discriminator loss is crucial: learns particle correlations  forces generator to learn as well


• Goal: extend this to CMS calorimeter showers for HL-LHC 


• Gen particle  reconstructed hits


• Next steps:


• Conditional generation and metrics (learning and evaluating )


• Scaling to larger point clouds


• Development / application to CMS datasets

⇒

→

p(x |y)

30
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DISCUSSION
• Significant opportunity to accelerate simulations for HL-LHC using machine learning


• Rich active area of research in ML and HEP, with ATLAS already using GANs for fast simulation


• Lots of open questions:


• Where in the simulation pipeline would be most effective?


• Gen particles  reco hits seems to be a reasonable trade-off in speed vs. accuracy/trust


• Plenty of phase space left to explore and test


• Which model?


• GANs (or variations thereof) and GNNs promising


• Here also phase space left to explore


• How to evaluate?


• Fréchet distance and  scores have been very effective


• Community needs to converge on metrics (and datasets)

→

W1

32
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BACKUP

33
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VARIABLE-SIZED CLOUDS

34

• Very few gluon jets have fewer than 30 particles, can get away with zero-padding


• More difficult with light quark jets:

• We experiment with various masking architectures to handle this (adding a binary 
particle feature indicating if it’s real or zero-padded)
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ARCHITECTURE

Number of particles 
randomly samples from 

real distribution 
N = ∑ masks …

1

1

1

0

mask

Masks assigned to first  
points, sorted in point 

feature space

N

fe

fn

{Final Featuresη φ pT 1

Generated Particle 
Cloud

…

{Initial Noise

MP Generator w/ masking

fe

fn

FC LayerAve

Pool

…

…

{Hidden Features Real or 
Generated

{Initial Featuresη φ pT 1

Real Particle 
Cloud

Generated 
Particle Cloud

MP Discriminator  
w/ masking

Most successful masking architecture:
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 RESULTS: LIGHT QUARK JETS
Sample feature distributions, with our MPGAN compared to FC and GraphCNN generators + PointNet discriminators

Generator Discriminator W1-P (10-3) W1-M (10-3) W1-EFP (10-5) FPND Coverage MMD

FC PointNet 1.5 ± 0.1 2.9 ± 0.2 2 ± 1 22k 0.36 0.026

GraphCNN PointNet 3.9 ± 0.2 4.2 ± 1.6 20M ± 10M 19k 0.37 0.031

MP MP 2.1 ± 0.1 0.6 ± 0.1 0.9 ± 0.4 2.4 0.54 0.026

MP PointNet 22.0 ± 0.1 3.2 ± 0.2 5 ± 2 3.6k 0.22 0.035

Real vs real 

W1-P = (0.5 ± 0.1)  10-3×

Real vs real 
W1-M = (0.5 ± 0.1)  10-3×

Real vs real  
W1-EFP = (0.46 ± 0.04)  10-5×

• Masking strategy is successful

• MPGAN again best performing on every metric, apart from W1-P, significantly so on W1-M, W1-EFP, FPND

• Mass and ave. EFP scores all within error of the real vs real baseline
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BASELINE POINT CLOUD GANS
We compare with existing point cloud GANs as baselines, two relevant architectures are:

Fully Connected 
Generator


(Achlioptas et al ’18)

FC Layers

{Noise

30 particles  
 3 features×

Graph Convolutional 
Generator


(Valsesia et al ’19)

FC

Noise

{30 nodes

{Hidden features

knn+ 
EdgeConv

{Final 3 features

PointNet-Mix Discriminator is the most 
performant on ShapeNet, compared to 
FC and GraphCNN (Wang et al ’21)

…{30 particles

{3 features
FC

{Hidden features

…
Max +  

Mean Pool

FC

Real or 
Generated

Real clouds Generated

These GANs work somewhat, 
but not well enough for our 
purpose (next slides)

Interestingly, Wang et al find 
the FC generator works better 
than the GraphCNN (with a 
PointNet-Mix discriminator)


