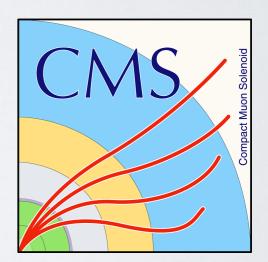
PARTICLE CLOUD GENERATION WITH MESSAGE PASSING GANS

Raghav Kansal



ML at GGI Conference 09/09/2022

- LHC Simulations
- Deep generative models
 - Evaluation metrics
 - Data representations
- Current applications
 - MPGAN
- Discussion

- LHC Simulations
- Deep generative models
 - Evaluation metrics
 - Data representations
- Current applications
 - MPGAN
- Discussion

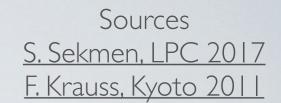
LHC SIMULATIONS

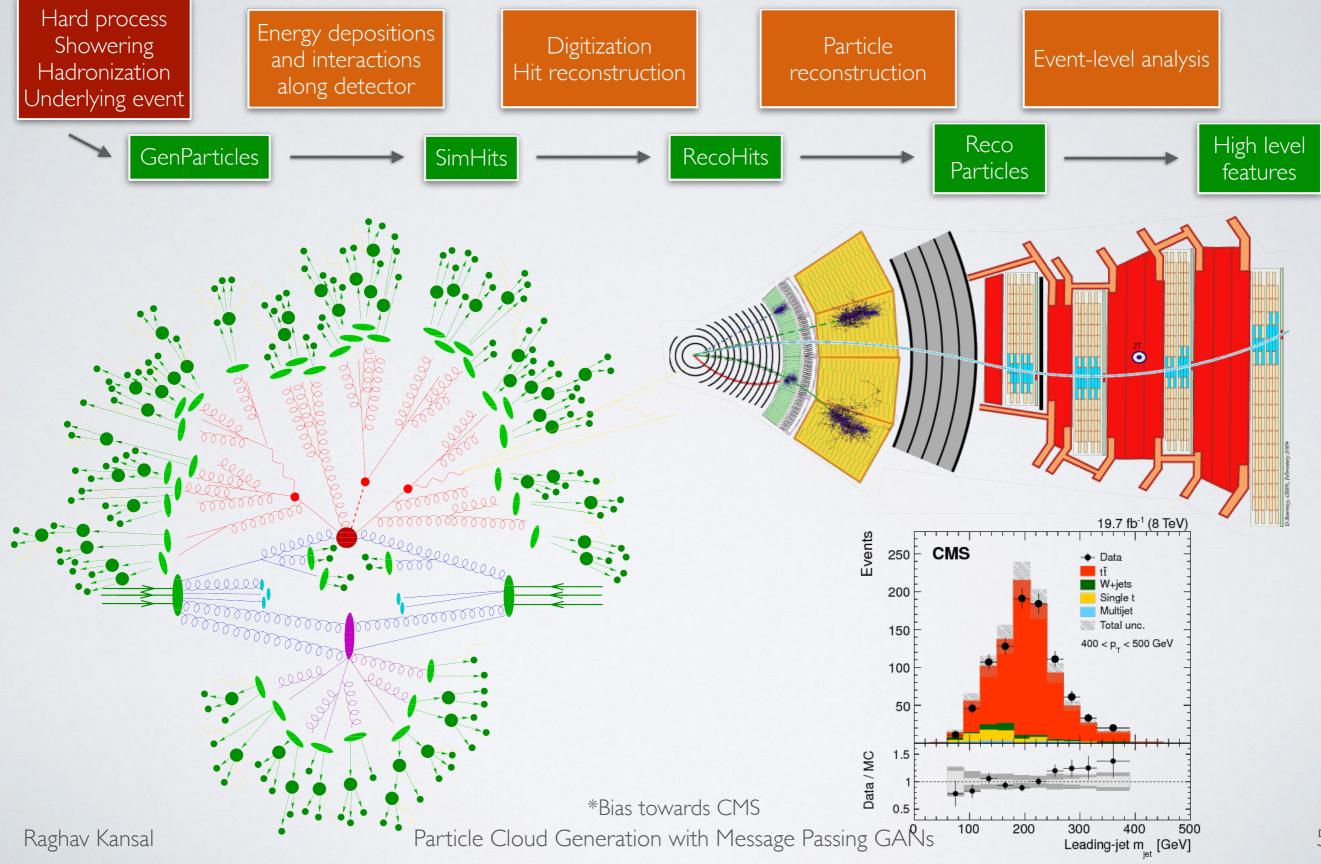
Sources <u>K. Pedro, HSF 2020</u> J. Duarte, ANL 2021, Video

• Full detector simulation takes ~40% of grid CPU resources

- HL-LHC looming
 - Order-of-magnitude more simulations needed
 - Improved detectors \Rightarrow higher granularity, increased complexity
 - ML a possible solution?

LHC SIMULATIONS*





LHC SIMULATIONS

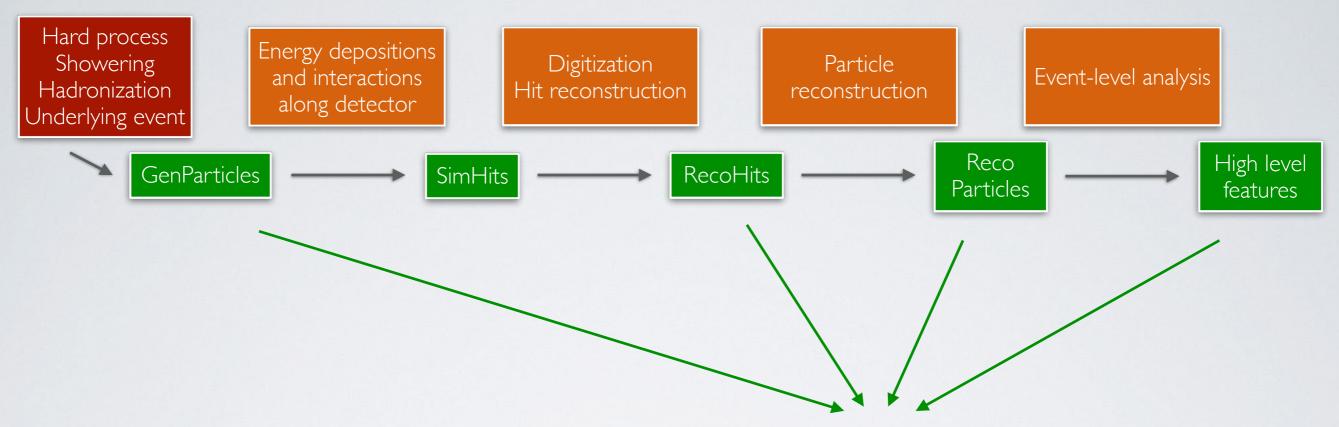


Opportunity for ML alternatives in many steps

• Trading accuracy of "FullSim" (Geant) for speed

• Trading verifiability/trust for # of steps

LHC SIMULATIONS



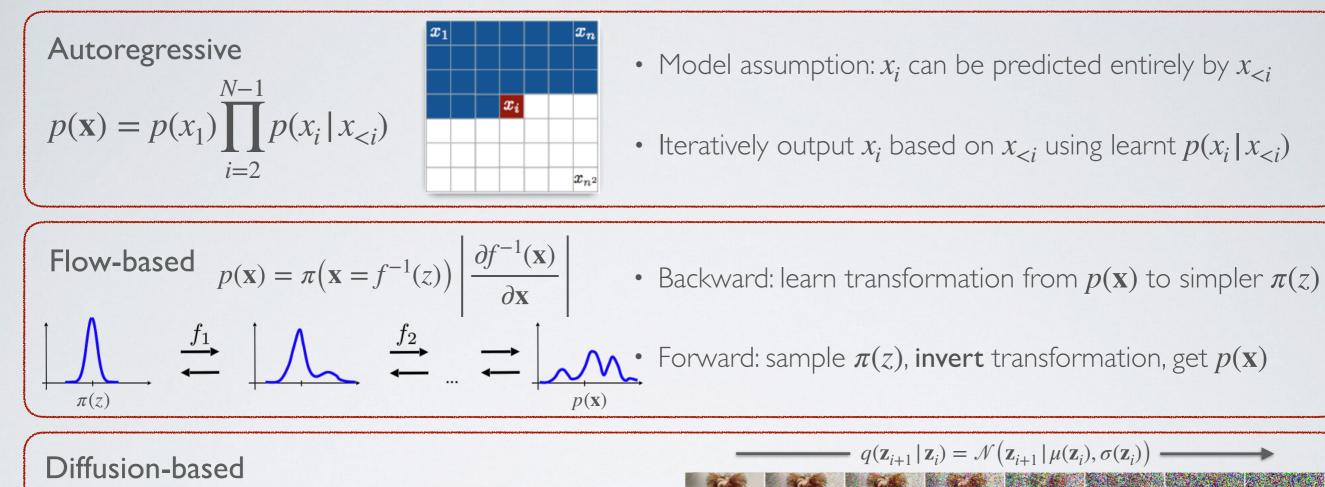
- Want model $p_{\theta}(\mathbf{x})$ for underlying data distribution $p(\mathbf{x})$
- Rich area in machine learning: Deep generative models
 - deep neural networks are flexible and expressive
 - $p_{\theta}(\mathbf{x})$ typically modelled with high-capacity DNNs

• LHC Simulations

- Deep generative models
 - Evaluation metrics
 - Data representations
- Current applications
 - MPGAN
- Discussion

DIRECT MODELLING

Explicit parametric specification of $p_{\theta}(x)$



- Backward: iteratively add gaussian noise
- Forward: $p(\mathbf{z}_i | \mathbf{z}_{i+1})$ network learns to denoise

I. Access to exact likelihood

- 2. Simple $-\ln p(\mathbf{x})$ loss
- 3. Stable training

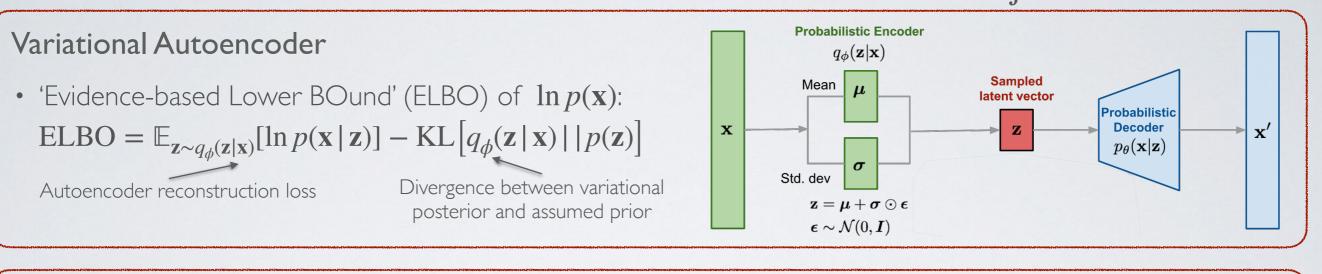
Raghav Kansal

• But in practice they are typically outperformed by GANs (next slide)

 $- p(\mathbf{x}) = p(\mathbf{x} | \mathbf{z}_1) \left(\prod_{i=1}^{T-1} p(\mathbf{z}_i | \mathbf{z}_{i+1}) \right) p(\mathbf{z}_T)$

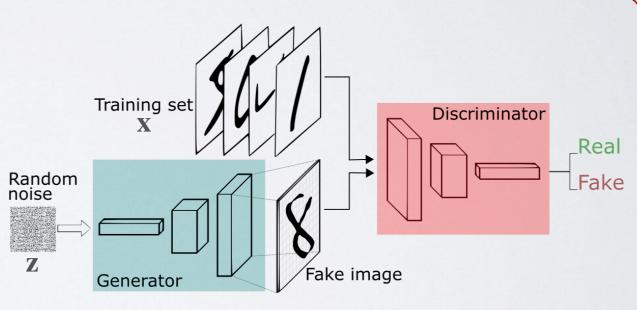
LATENT VARIABLE MODELS

- Assume high dimensional data ${f x}$ can be characterised by lower dimensional 'latent' (hidden) features ${f z}$
- Generative process: sample from simpler prior $\mathbf{z} \sim p(\mathbf{z})$ and learn $p(\mathbf{x} \mid \mathbf{z}) \Rightarrow p(\mathbf{x}) = p(\mathbf{x} \mid \mathbf{z})p(\mathbf{z})d\mathbf{z}$



Generative Adversarial Networks

- Abandon likelihood-based loss approach
- Iteratively train 'discriminator' network as an adversarial loss for the 'generator'
- I) Hard to train; 2) lose likelihood; 3) adversarial;
 but when done right tends to be most performant*



- *UNTIL last year where score-based diffusion models started beating GANs for the first time!
- No time in this talk but very interesting direction modelling $abla_{\mathbf{x}} \ln p(\mathbf{x})$ instead of $p(\mathbf{x})$

Raghav Kansal

• How do we **trust** generated data?

• How do we compare generative models?

How do we trust generated data? Evaluation metrics

How do we compare generative models? Evaluation metrics

- How do we trust generated data?
 Evaluation metrics sensitive to:
 - Quality
 - Diversity
 - Physics performance (interpretable)
- How do we compare generative models?
 Evaluation metrics that are:
 - Standardised
 - Reproducible
 - Efficient

EVALUATION METRICS

Most important aspect of generative modelling

• We propose two key metrics:

Kansal et al., NeurIPS 2021

letNet

- Physics-inspired: I-Wasserstein (W_1) distances between distributions
- ML-inspired: adapt established Fréchet Inception Distance metric from CV

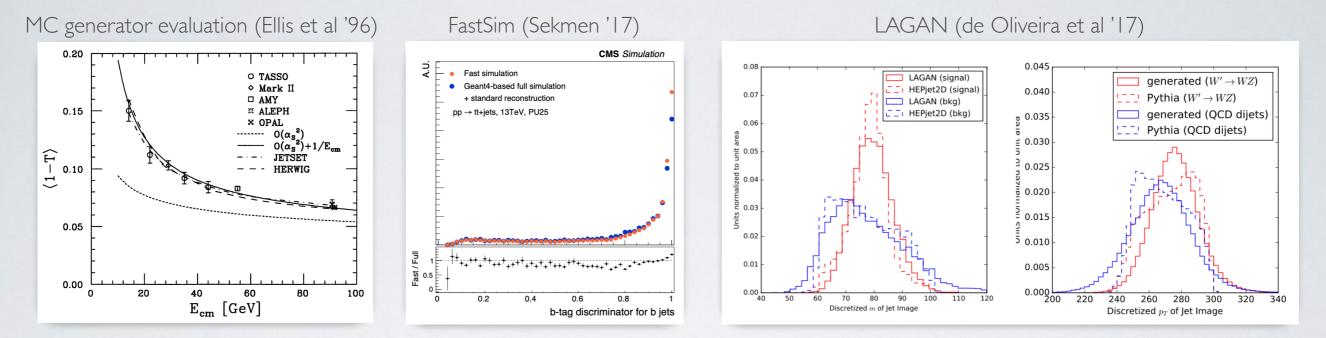
• Practically, found to together satisfy all criteria very effectively

• In effort to standardise, we release these, and more, in <u>JetNet</u> package

W_1 DISTANCES

Kansal et al., NeurIPS 2021

• Traditional method for evaluating physics simulations is to compare physical distributions



- Proposal: quantify using I-Wasserstein (earth mover's) distance (W_1)
 - Can evaluate multiple low- and high-level features: sensitive to quality
 - High scores for differing supports: sensitive to mode collapse (diversity)
 - Efficient, Reproducible, Interpretable
 - Can use boot-strapping with subsets of only real samples to derive baseline
- Cons: scaling to more dimensions (missing correlations), how to aggregate scores for different features?

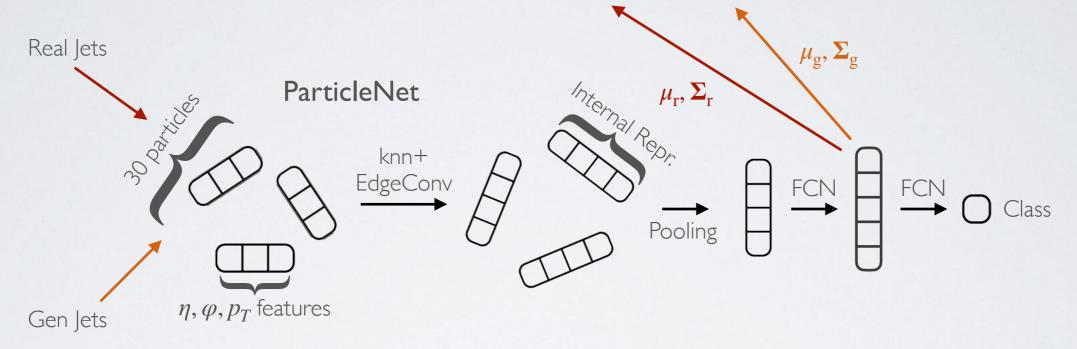
FRÉCHET <CLASSIFIER> DISTANCES

• Machine learning version of this: use classifier hidden features instead!

Kansal et al., NeurIPS 2021

• Example: apply to jet generation using pre-trained ParticleNet graph classifier:

 $FPND = Frechet(\mathcal{N}(\mu_r, \boldsymbol{\Sigma}_r), \mathcal{N}(\mu_g, \boldsymbol{\Sigma}_g)) = ||\mu_r - \mu_g||^2 + Tr[\boldsymbol{\Sigma}_r + \boldsymbol{\Sigma}_g - 2(\boldsymbol{\Sigma}_r \boldsymbol{\Sigma}_g)^{1/2}]$



- High-performing classifier learns salient hidden features from data
- Retain sensitivity to quality, diversity from W_1 , reproducible and efficient plus:
 - Single aggregate score, correlations (Σ) between features, easy to scale
 - But lose interpretability, hence used in conjunction with W_1 scores

ALTERNATIVES

- KL vs JS vs χ^2 vs W_1
 - All reasonable, χ^2 particularly ubiquitous for GoF
 - Only W_1 takes account of metric space

- Classifier Metric
 - Train a classifier between real and fake
 - Pros: quality and diversity
 - Cons: Interpretability, reproducibility, efficiency, hard to standardise

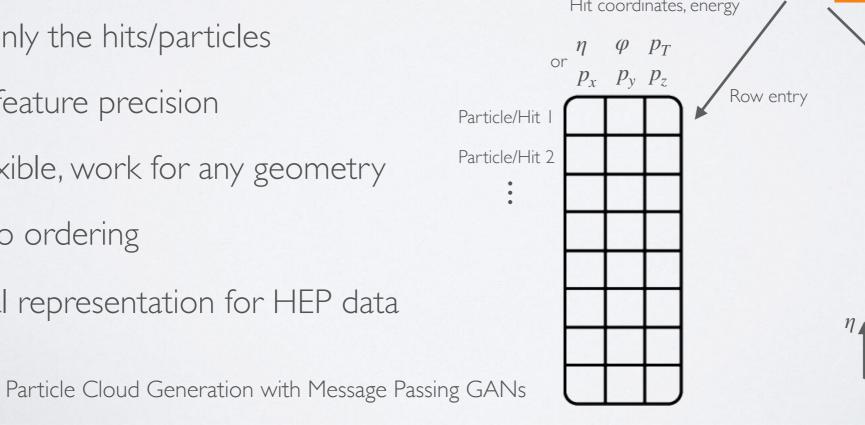
Source

DAIA REPRESENTATIONS

- Properties of LHC data:
 - Sparsity
 - High granularity •
 - Irregular geometry •
 - No fixed ordering
- Point clouds:

Raghav Kansal

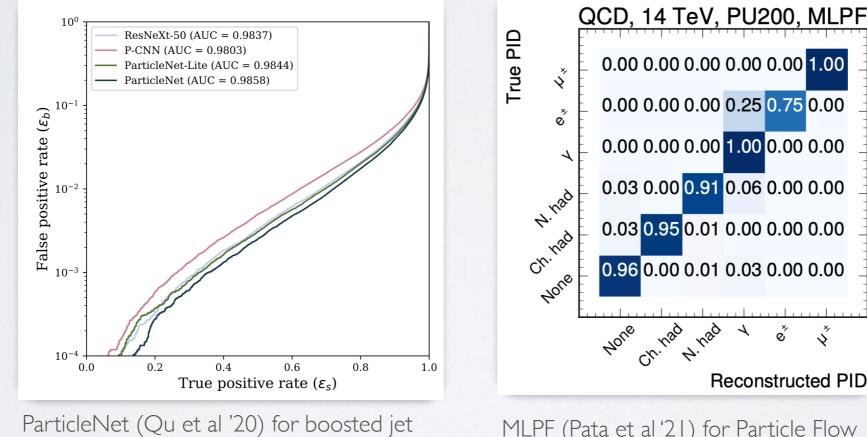
- Store only the hits/particles
- Retain feature precision
- Are flexible, work for any geometry
- Have no ordering
- \Rightarrow Natural representation for HEP data



80 $\Delta \phi$ 40 200 25 50 75 $\Delta \eta$ Image repr. for CNNs Particles Hits Hit coordinates, energy Particle coords, momentum Energy/ p_T node features η **Ο** 18

PARTICLE / HIT CLOUDS

- More physics-motivated representation, capturing geometry, respecting permutation symmetry
- This + graph neural networks, exploiting geometrical information, are SOTA in CMS



MLPF (Pata et al '21) for Particle Flow reconstruction

• Can this be extended to generative models?

tagging

0

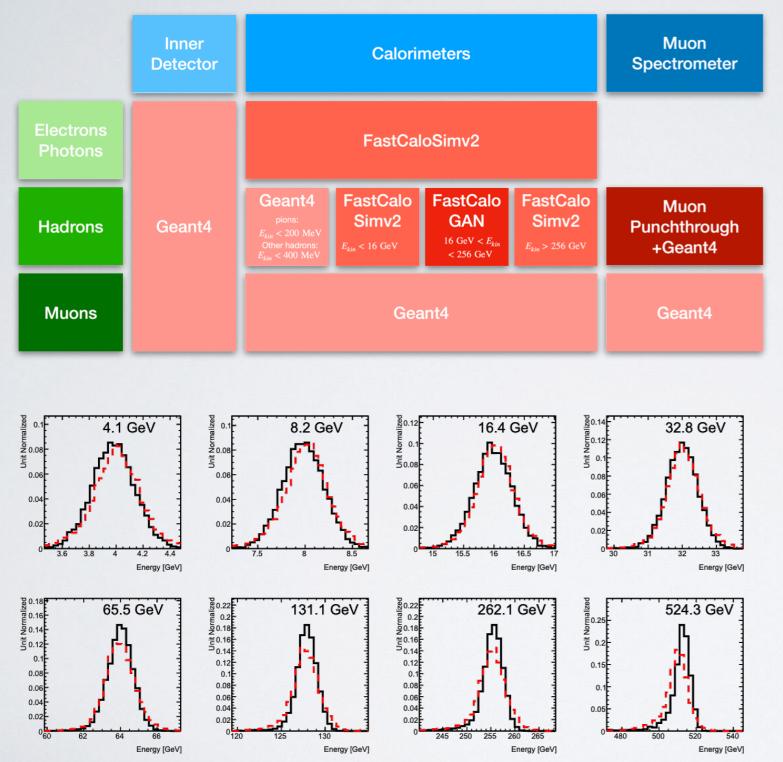
- LHC Simulations
- Deep generative models
 - Evaluation metrics
 - Data representations
- Current applications
 - MPGAN
- Discussion

- LHC Simulations
- Deep generative models
 - Evaluation metrics
 - Data representations
- Some* current applications

Apologies to those I didn't have time for!

- MPGAN
- Discussion

ATLAS FASTCALOGAN



- Currently used for ATLAS fast simulations (AtlFast3) - 7B events for Run 2 analyses!
- Conditional 'Wasserstein GAN' using shower images
- Reasonable performance but:
 - Room for improvement
 - 'Voxelisation' to deal with sparsity and high granularity
 - 300 GANs trained for each η bin

BIB-AE

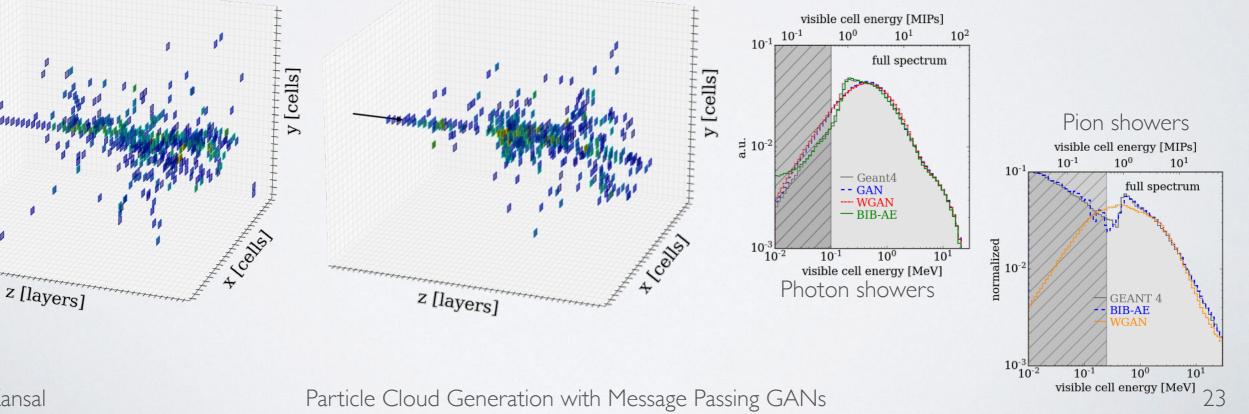
Output Intermediate Input (0)Latent Difference $L_{\rm CriticD}$ Critic Post Х ZDecoder Processor Encoder Ĩ Іх σ Network $L_{\rm Critic}$ Critic KLD MSE Latent $L_{\rm CriticL}$ Critic $\mathcal{N}(0,1)$ MMD $L_{\text{BIB-AE}} = \text{KLD} + L_{\text{CriticL}} + L_{\text{Critic}} + L_{\text{CriticD}}$ $L_{\rm Post} = \rm MMD + \rm MSE$

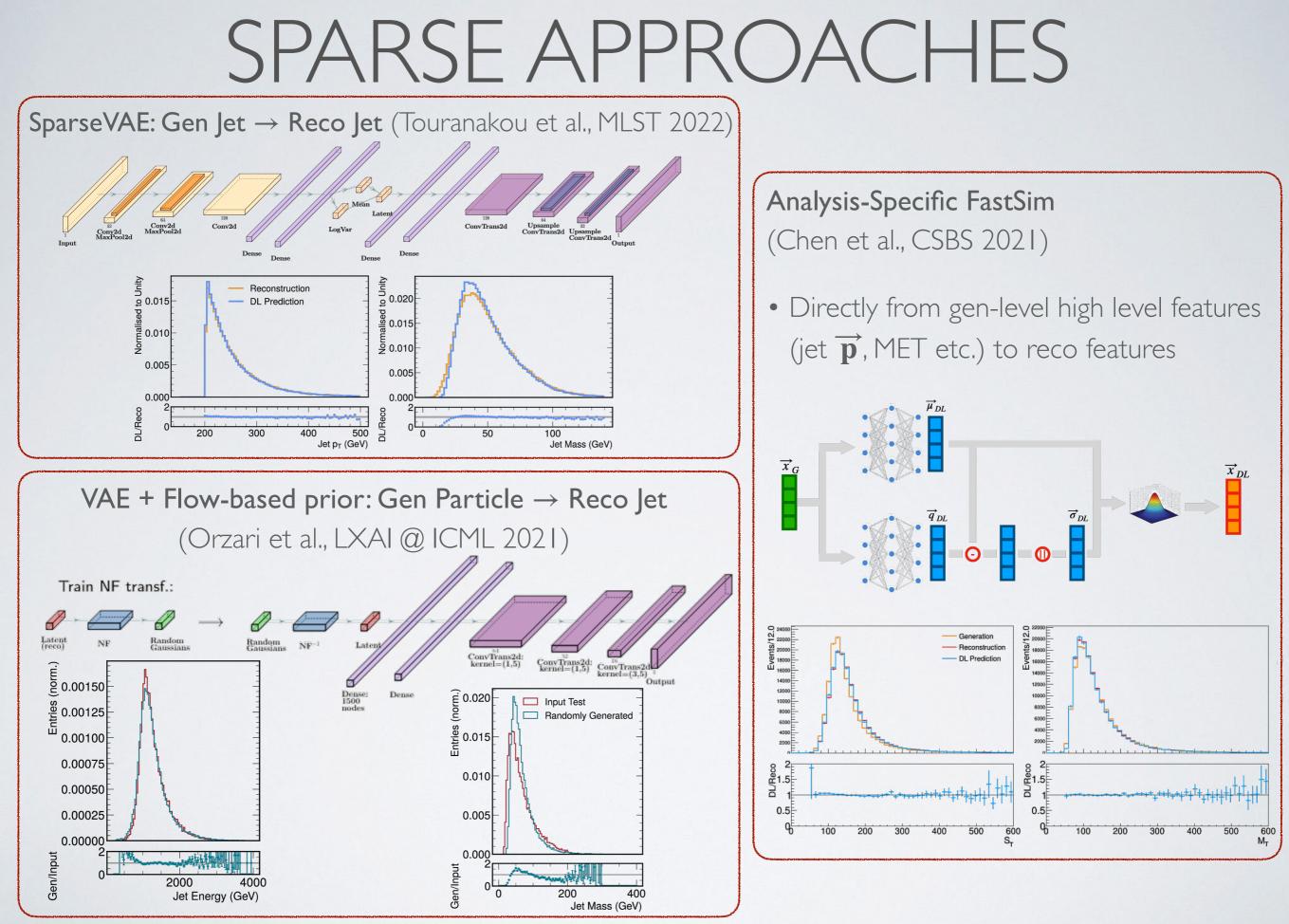
Sample Geant4 pion shower image y [cells]

Sample BIB-AE image

Buhmann et. al., CSBS 2021 Buhmann et. al., MLST 2022

- Bounded-Information Bottleneck Autoencoder
- VAE + GAN + Post Processor
- Photon, pion shower images
- Good agreement with (simplified) CMS-like simulations





OUR APPROACH: MPGAN

• Majority of work, while successful, is image-based

• Difficult to scale to HL-LHC and apply to e.g CMS high-granularity calorimeter

• We develop a graph-based approach

- Key ideas:
 - Natural, sparse, and flexible representation for data
 - Learn global features and inter-particle correlations (i.e. jet, shower structure)

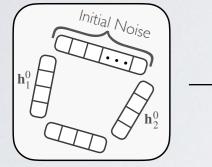
MPGAN

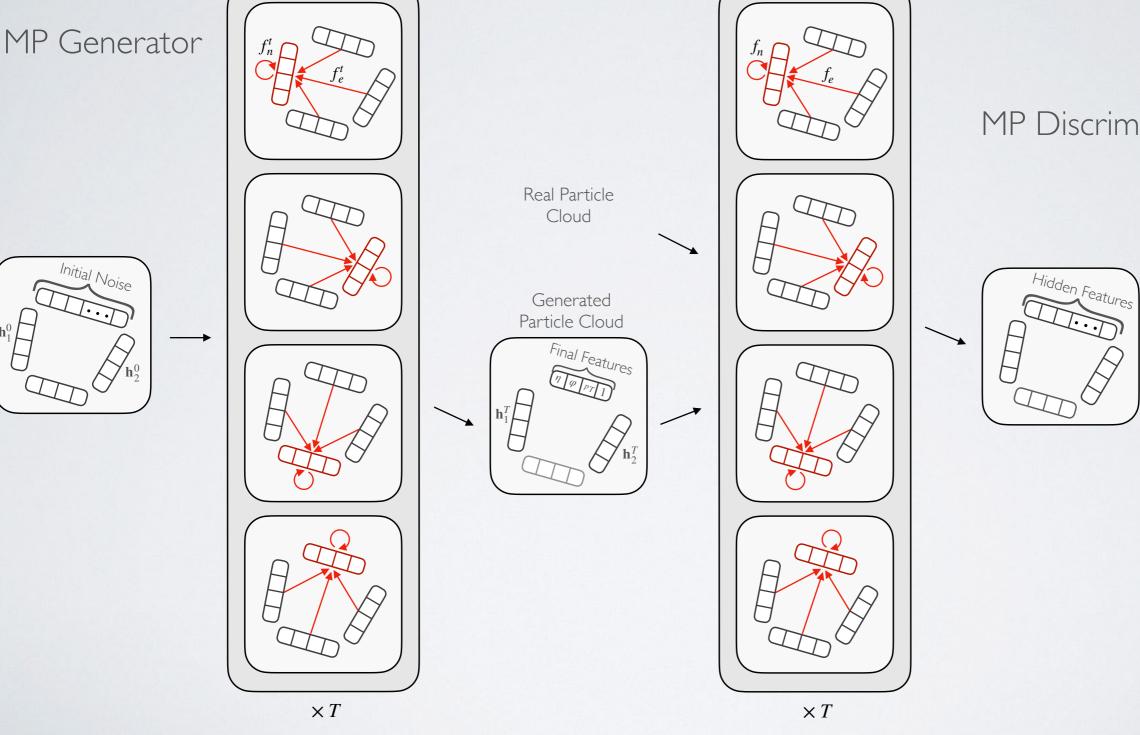
Kansal et al., ML4PS @ NeurlPS 2020 Kansal et al., NeurIPS 2021

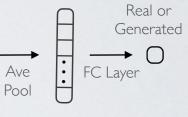
• We develop a GAN with a fully-connected message-passing (MP) generator and discriminator

$$\mathbf{m}_{ij}^{t+1} = f_e^{t+1}(\mathbf{h}_i^t \bigoplus \mathbf{h}_j^t)$$
$$\mathbf{h}_v^{t+1} = f_n^{t+1}(\mathbf{h}_i^t \bigoplus \sum_{j \in J} \mathbf{m}_{ij}^{t+1})$$

MP Discriminator







DATASET

Kansal et al., ML4PS @ NeurlPS 2020 Kansal et al., NeurlPS 2021 JetNet Python Package

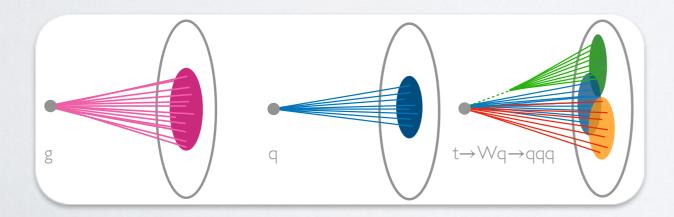
00

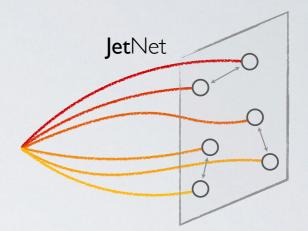
0

• Test-bench: Pythia-simulated high p_T jets (''JetNet'')

• 30 highest p_T particles, $(\eta^{rel}, \phi^{rel}, p_T^{rel})$ features

• Gen particle \rightarrow Reco jet

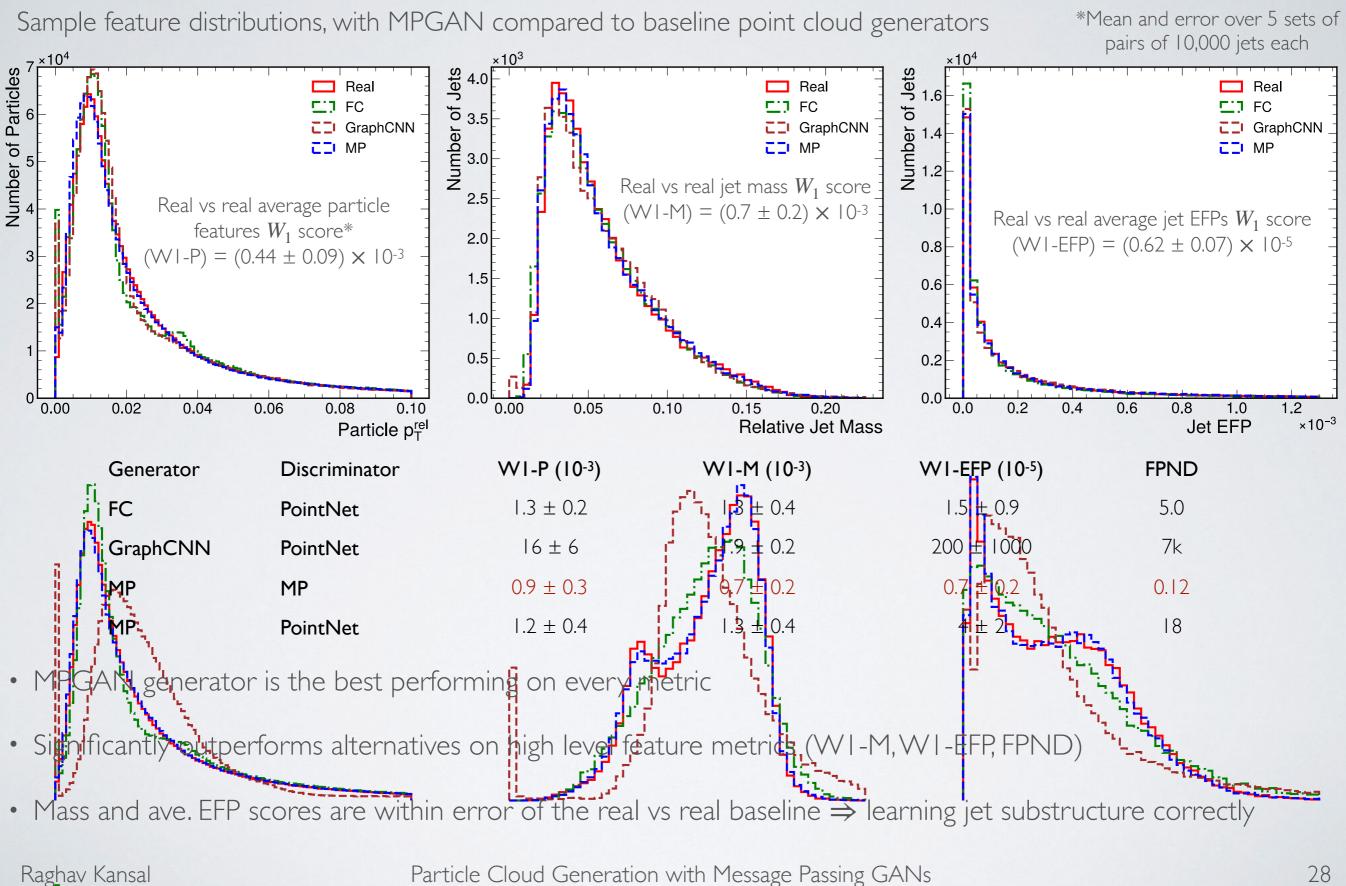




0

RESULTS: GLUON JETS

Kansal et al., ML4PS @ NeurIPS 2020 Kansal et al., NeurIPS 2021



Jet HTS:TOP QU Jet $1 \quad \sup_{\Sigma} 3.5 \frac{\times 10^3}{\Sigma}$ Jet <u>×10⁴</u> ×10³ Number of Particles Jets 3. 🗖 Real Real 🔲 Real FC FC FC FC FC Number of 3.0 2.5 ້ ວີ 3.0 CI GraphCNN **C** GraphCNN Number 5 **GraphCNN** CI MP LI MP CI MP 2.0 2.0 1.5 1.5 1.0 1.0 0.5 0.5 0.0 0.0 0 0.15 0.00 0.02 0.04 0.06 0.08 0.10 0.00 0.05 0.10 0.20 2 3 ×10⁻³ **Relative Jet Mass** Jet EFP Particle prel Real vs real Real vs real Real vs real $WI-P = (0.55 \pm 0.07) \times 10^{-3}$ $WI-M = (0.51 \pm 0.07) \times 10^{-3}$ $WI-EFP = (1.1 \pm 0.1) \times 10^{-5}$ WI-M (10-3) WI-EFP (10-5) Discriminator $W|-\bar{P}(10^{-3})$ **FPND** Generator 2.7 ± 0.1 7.7 ± 0.5 3.9 FC PointNet 1.6= ± GraphCNN PointNet 11.3 ± 0.9 37 ± 2 30k 30 0.6 ± 0.2 0.37 MP MP 2.3 PointNet 0.76 ± 0.08 3.7 MP AN learns perfectly the complex bimedal jet feature distributions • Mass and ave. EFP scores remain within error of real vs real baseline Raghav Kansal

MPGAN SUMMARY

- Graph-based approach is highly successful at learning complex physics substructure
- Graph-based discriminator loss is crucial: learns particle correlations ⇒ forces generator to learn as well
- Goal: extend this to CMS calorimeter showers for HL-LHC
 - Gen particle \rightarrow reconstructed hits
- Next steps:
 - Conditional generation and metrics (learning and evaluating $p(\mathbf{x} \mid y)$)
 - Scaling to larger point clouds
 - Development / application to CMS datasets

- LHC Simulations
- Deep generative models
 - Evaluation metrics
 - Data representations
- Current applications
 - MPGAN
- Discussion

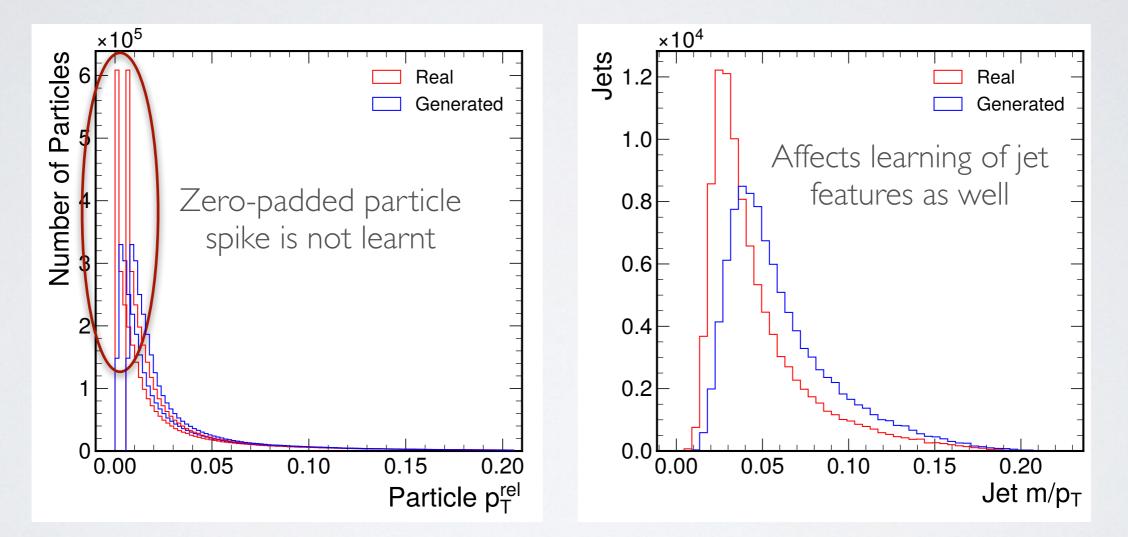
DISCUSSION

- Significant opportunity to accelerate simulations for HL-LHC using machine learning
- Rich active area of research in ML and HEP, with ATLAS already using GANs for fast simulation
- Lots of open questions:
 - Where in the simulation pipeline would be most effective?
 - Gen particles \rightarrow reco hits seems to be a reasonable trade-off in speed vs. accuracy/trust
 - Plenty of phase space left to explore and test
 - Which model?
 - GANs (or variations thereof) and GNNs promising
 - Here also phase space left to explore
 - How to evaluate?
 - Fréchet distance and W_1 scores have been very effective
 - Community needs to converge on metrics (and datasets)

BACKUP

VARIABLE-SIZED CLOUDS

- Very few gluon jets have fewer than 30 particles, can get away with zero-padding
- More difficult with light quark jets:

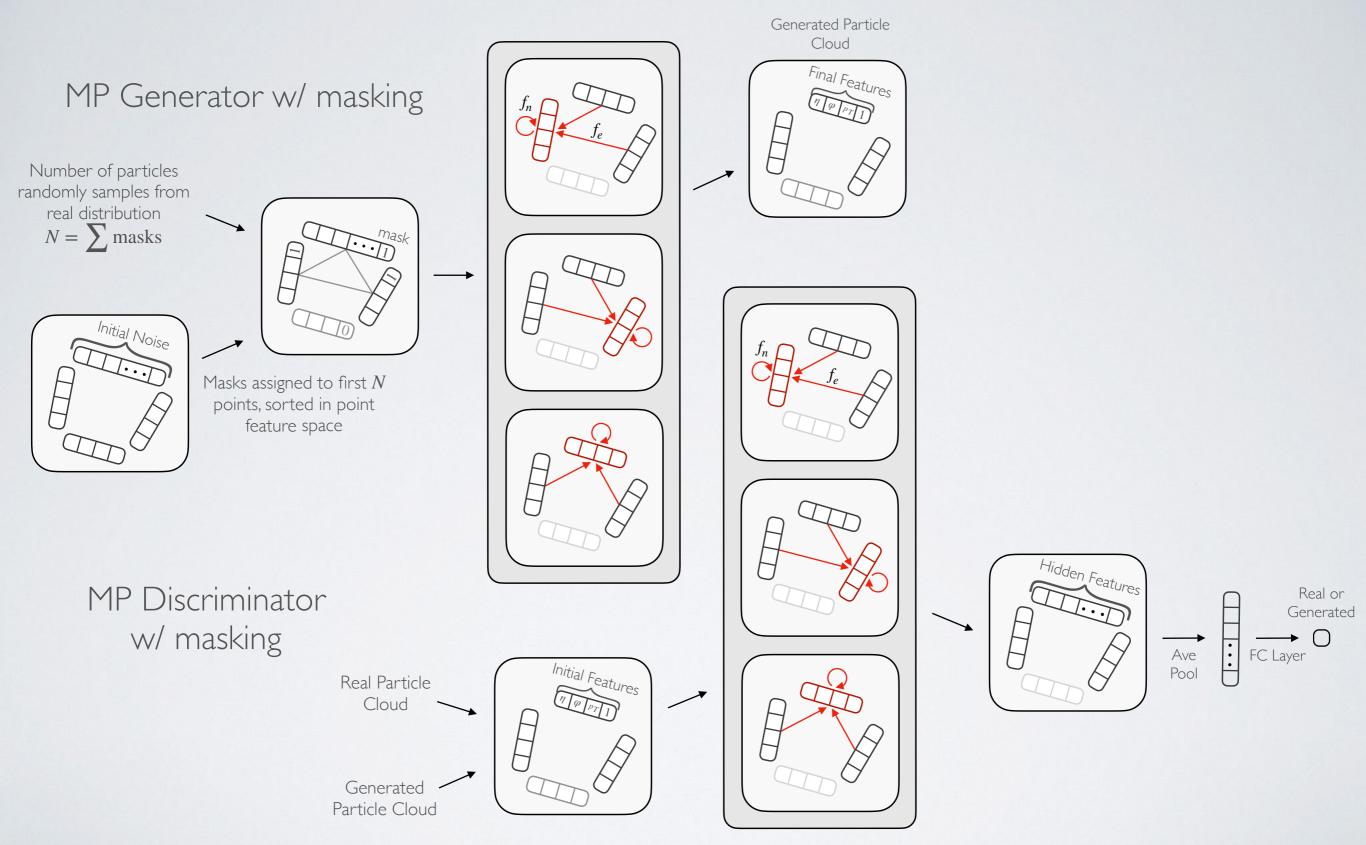


• We experiment with various masking architectures to handle this (adding a binary particle feature indicating if it's real or zero-padded)

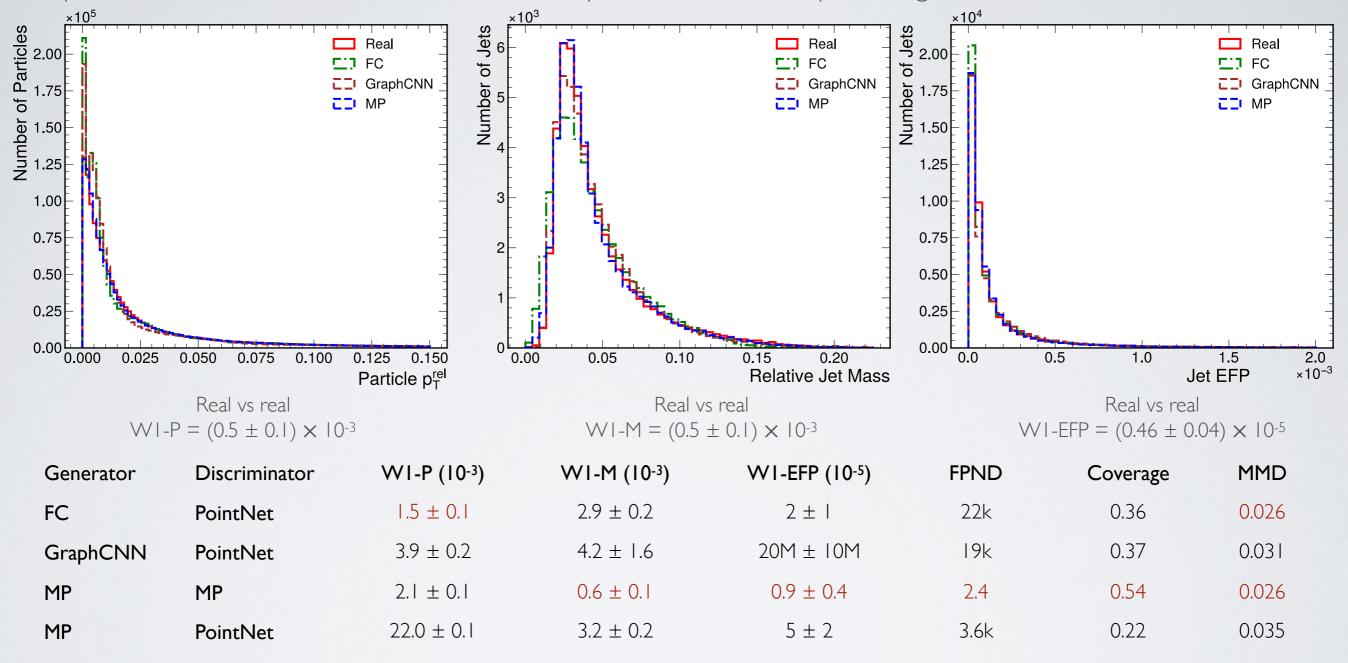
Raghav Kansal

Most successful masking architecture:

ARCHITECTURE



Sample feature distributions, with our MPGAN compared to FC and GraphCNN generators + PointNet discriminators



- Masking strategy is successful
- MPGAN again best performing on every metric, apart from WI-P, significantly so on WI-M, WI-EFP, FPND
- Mass and ave. EFP scores all within error of the real vs real baseline

Raghav Kansal

BASELINE POINT CLOUD GANS

We compare with existing point cloud GANs as baselines, two relevant architectures are:

