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[all summary plots CMS and ATLAS]How well is the Standard Model? – Inclusive cross sections

• 9 orders of magnitude of inclusive x-sec measurements

• Drell-Yan; high rate→ differential measurement

• 4-top quarks; only xsec, many kinematic features

• What about fundemantal BSM models?

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsCombined
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-032/


EXCLUSION PLOT
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[all summary plots CMS and ATLAS]

• no tell-tale signals in model-dependent searches

• push mass scale into the multi-TeV regime; here: SUSY

• Are we doing it right?

• model independent? → ``anomaly detection’’

• search deviations  compatible with SM symmetries
→ “effective” theories

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2022-013/


WHERE TO LOOK AT THE LHC?

• Let’s add all terms compatible with the SM symmetries
• respect SM symmetries: SU(3)c ⨂ SU(2)L⨂U(1) 

• 59 operators at d=6  [JHEP10(2010)085 ]

• SM-EFT effects are polynomial modifications with 
varying coefficients over feature space
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interference → linear or quadratic effects

probability =  
wave-function2

coupling modifications or
new interactions

https://arxiv.org/abs/1008.4884


CONFRONT THE MODEL WITH COLLIDER DATA

• initial state – standard model

• intermediate (quantum/virtual) particle, 
”beyond” SM in the language of QFTs

Hard scatter event

• parton shower

• factorization / 
hadronization models

• decay branchings,
calculated & measured

• partly empirical

Detector interactions

• ionization (Bethe-Bloch), szintillation, 
brem., transition-radiation … mostly empirical

Shower, hadronization & decays

Maximum-
likelihood
estimate

Confidence limits
based on

likelihood-ratio tests 

𝛉MLE = 
argmax𝛉 L(𝒟,𝛉)



THE LIKELIHOOD FUNCTION 
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data-set with
feature vectors x

theory parameters

Neyman-Pearson Lemma:  The likelihood ratio
test statistic is optimal

arxiv:1503.0x7622

provides a close-to optimal test statistic
→ straightforward to obtain from supervised learning

classifiertruth
(supervised)

training sample 

Likelihood ratio “trick”: label two values of 𝛉 with z=0,1

https://arxiv.org/pdf/1503.07622.pdf


DISENTANGLING SM-EFT IN THE HIGGS-SECTOR
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Higgs – Boson couplings Higgs – Fermion 
couplings

Higgs – Boson 
loop induced

𝜏

𝜏

6.3%0.23%0%
b

b

58%0.15%2.6%21%
𝛍

𝛍

0.02%decay:

45 pb gluon fusion

3.5 pb vector-boson
fusion

1.2 pb associate W

0.5 pb ttH

Higgs production
modes with their 
SM-EFT couplings



THE HIGGS IN THE GOLDEN CHANNEL

9

EPJC 80 (2020) 957

𝜏

𝜏

6.3%0.23%0%
b

b

58%0.15%2.6%
𝛍

𝛍

0.02%

• example #1:  ZZ* decay channel in all production modes

• experimentally clean (“golden channel”) 

• 10 = 5 (+5 CP odd) operators: cHW, cHB, cHW, cuH, cHWB

• attempt to optimally disentangle production modes

21%decay:

H → ZZ* → 4l

https://arxiv.org/pdf/2004.03447.pdf


• Reconstructed bins contain a mixture of  production channels and backgrounds (mostly ZZ*)

• ML is used to separate production modes in each category

• per reco-channel: NNs trained with 2-7 observables 

• combine with RNNs (LSTMs) using variable-length jets and leptons

• common network layer for multiclassification in e.g., ggF, VBF, ZZ*

10

THE HIGGS IN THE GOLDEN CHANNEL EPJC 80 (2020) 957

RNNMLP RNN

MLP

https://arxiv.org/pdf/2004.03447.pdf


Log-likelihood ratio 
test statistic
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THE HIGGS IN THE GOLDEN CHANNEL EPJC 80 (2020) 957

Likelihood = prod. of Poissonians auxiliary measurements

(profiled, to deal with
nuisances)

https://arxiv.org/pdf/2004.03447.pdf


Log-likelihood ratio 
test statistic
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THE HIGGS IN THE GOLDEN CHANNEL EPJC 80 (2020) 957

Likelihood = prod. of Poissonians

signal-strength
modifiers

defined at the
fiducial level

production decay acceptance

universal!

auxiliary measurements

significant interplay of production and decay effects
learn “only” the likelihood ratio of different SM production modes

(profiled, to deal with
nuisances)

https://arxiv.org/pdf/2004.03447.pdf


• use ML for separating CP-even vs. odd effects 

• gradient-BDT  XGBoost

• 38 input features (kinematic properties)

TTH IN THE MULTILEPTON CHANNEL

13

JHEP (submitted)

𝜏

𝜏

6.3%0.23%0%
b

b

58% 0%0.15%2.6%
𝛍

𝛍

0.02%

• example #2: t(t)H multilepton in 2ℓSS+0𝜏, 2ℓSS+1𝜏, 3ℓ final states

• 3 DNNs for signal/background multi-classification

• targets t-t-H Yukawa coupling (   ) in 𝜅-framework

• in SM-EFT: “CP” structure (complex phase) of 

21%decay:

ttH multilepton

+ 37 other
observables

https://xgboost.ai/
https://arxiv.org/abs/2208.02686


• example of learning “of” SM-EFT effects

• issue: large top backgrounds from ttZ and ttW in all 
measurement regions → combine sectors!

• 𝜏 lepton ID performance has significant impact

TTH IN THE MULTILEPTON CHANNEL

14

• BDT exploits the likelihood  trick to obtain 
CP even/odd fraction from the data 

• limits on deviations of the t-t-H interaction (      ,      )
including combinations with other final states

ttH multilepton

JHEP (submitted)

https://arxiv.org/abs/2208.02686


INTERLUDE: CLASSIFICATION WITH DEEPTAU
• 𝜏 leptons in the detector

• 5 hadronic + 2 leptonic decays

• three main fake contributions

• new [DeepTau] identification 
algorithm classifies 𝜏h modes

• similar to 
• ATLAS 𝜏 ID [using RNNs]

• [DeepJet] for g/c/b/uds/leptons 
identification and 

• [DeepAK8] for  t/W/Z/H decays

• high level candidate-features 
(fully connected) and feature 
maps on two grids of all particles 
in the vicinity in convolutional 
layers

• 140M 𝜏 candidates, 690hrs
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JINST 17 (2022) P07023
sketch from Izaak Neuteligns

three main 
fake contributions

seven 𝜏 decay 
modes

(1&3-prong) + e/𝛍

https://arxiv.org/pdf/2201.08458.pdf
https://cds.cern.ch/record/2688062/files/ATL-PHYS-PUB-2019-033.pdf
http://www.arxiv.org/abs/2008.10519
http://www.arxiv.org/abs/2004.08262
https://doi.org/10.48550/arXiv.2201.08458
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JINST 17 (2022) P07023
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http://www.arxiv.org/abs/2008.10519
http://www.arxiv.org/abs/2004.08262
https://doi.org/10.48550/arXiv.2201.08458


INTERLUDE: CLASSIFICATION WITH DEEPTAU
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JINST 17 (2022) P07023

• 𝜏 leptons in the detector
• 5 hadronic + 2 leptonic decays

• three main fake contributions

• new [DeepTau] identification 
algorithm classifies 𝜏h modes

• similar to 
• ATLAS 𝜏 ID [using RNNs]

• [DeepJet] for g/c/b/uds/leptons 
identification and 

• [DeepAK8] for  t/W/Z/H decays

• high level candidate-features 
(fully connected) and feature 
maps on two grids of all particles 
in the vicinity in convolutional 
layers

• 140M 𝜏 candidates, 690hrs
improvement of background suppression by almost factor 2

when compared to previous 𝜏 MVA not using the convolutional layers

https://doi.org/10.48550/arXiv.2201.08458
https://arxiv.org/pdf/2201.08458.pdf
https://cds.cern.ch/record/2688062/files/ATL-PHYS-PUB-2019-033.pdf
http://www.arxiv.org/abs/2008.10519
http://www.arxiv.org/abs/2004.08262


RECENT SM-EFT RESULTS (SELECTION!)
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4l JHEP 07 (2021) 005

H→4l EPJC 80 (2020) 957
H→4l PRD 104, 052004 (2021) EPJC 81 (2021) 200

ATL-PHYS-PUB-2021-010

W±W∓

PRD 102, 092001 (2020)
arxiv:2202.00487

resolved EPJC 81 (2021) 178 
boosted PLB 816 (2021) 136204

W±W∓ (+ ≥ 1 jet) VBF Z + jj WZ Wɣ

EPJC 81(2021)163 
JHEP 06 (2021) 003
PRD102, 092001 (2020) CMS-SMP-20-0014

PRD sub. 
CMS-SMP-20-005

W/Z+H (H→bb)

H→WW, e𝛍
EPJC 82 (2022) 622

H→ɣɣ H→W*W W±W∓H→Z*Z ZZ

PRD 97 (2018) 032005

https://link.springer.com/article/10.1007/JHEP07(2021)005
https://arxiv.org/pdf/2004.03447.pdf
https://arxiv.org/abs/2104.12152
http://dx.doi.org/10.1140/epjc/s10052-020-08817-8
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-010/
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.092001
https://arxiv.org/pdf/2202.00487.pdf
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2018-51/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2018-52/
https://link.springer.com/content/pdf/10.1140/epjc/s10052-020-08734-w.pdf
https://inspirehep.net/files/4009f5ceba17b02143540efdd4dc0769
https://arxiv.org/pdf/2009.00119.pdf
https://arxiv.org/abs/2110.11231
https://arxiv.org/abs/2111.13948
https://link.springer.com/article/10.1140/epjc/s10052-022-10366-1
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.97.032005
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TOP AND DIBOSON SECTORS
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ttW
0.55 pb

ttɣ
0.80 pb

tɣq
0.4 pb

tttt
0.009 pb

W±W∓

EWK 10 fb

W±W±

EWK 4 fb

WZ
EWK 2.15 fb

ZZ
EWK 0.82 fb

Wɣ
EWK 20.4 fb

Zɣ
EWK 7.8 fb

Z 
EWK 37.4 fb

tt
811 pb

t (t-channel)
217 pb

tW
72 pb

t (s-channel)
10 pb

ttZ
1 pb

tZq
0.088 pb



SM-EFT EFFECTS ARE EVERYWHERE

• Solve background correlations like a triangular matrix (i.e. staged): 
• Multi-differential high-dimensional SM-EFT analysis of candles: 

• Drell-Yan, W+Jets, ttbar, single-top (t), etc. 

• Then move to  ZH (+ Drell-Yan), WH (+ttbar), H→WW  (+WW and ttbar)

• Can go in parallel provided re-interpretation is feasible
• Needs close-to complete likelihood → a whole separate discussion

• ML versatile tools to optimally extract SM-EFT effects without too 
much tuning need → parametrized classifiers are an example

22

ZZ (VBF)

Drell-Yan
ttbar

tt+Z

H→WW



• Quantum field theory: Differential cross section have structure

• sampling z at a fixed 𝛉0

• re-evaluate the likelihood for a few alternative 𝛉

• fix polynomial coefficients of event weights wi(𝛉)

• obtain predictions parametrized in 𝛉
from MC simulation run in “forward mode”

EXPLOITING PARAMETRIZED SIMULATION WITH TREE ALGOS

23

probability = 
wave function, 

squared

SM interference
pure

SM-EFT
interpretation
valid at LO



TREES & BOOSTING

• Let us make a tree-based ansatz for the differential cross-section ratio R

• The “weak learner” is a tree  associating a sub-region (j) of a partitioning 𝒥with a  predictive function Fj

• Fitting tree: Optimize ”node split positions” on some loss. Trained (e.g. greedily) on the ensemble.

• An axis-aligned tree is limited. Remove the limitation iteratively with “boosting”. 25

cut on x1

cut on x2

cut on x1 again etc.

F…

F1 F2

training phase:
e.g. “CART” algo

phase space
partitioning J

prediction Fj

need to solve for partitioning J and {Fj}

index-function (non-linearity)

weak learner

x1

x2

F1 F2 F3

F4 F5
F7F6

F8

phase-space partitioning

[arXiv:2107.10859, arXiv:2205:12976]

https://arxiv.org/abs/2107.10859
https://arxiv.org/pdf/2205.12976.pdf


LEARNING MORE WITH TREES

26

Regress in R,  including its the polynomial 𝛉 dependence

Tree ansatz for each a, ab:
Fj(𝛉) polynomial with const. coeff.
(per node) 

Solve for optimal partitioning with greedy CART algorithm

split only if 
wj(𝛉) is positive ∀𝛉

We’ll find an optimized tree.
→ boost

[arXiv:2107.10859, arXiv:2205:12976]

→ will allow to compute the
optimal LLR test statistic q(𝒟)

Solve for the predictor on the empirical 
distribution (simulated sample)

find optimal 
partitioning

find optimal 
predictor

No trainable parameters in the predictor

https://arxiv.org/abs/2107.10859
https://arxiv.org/pdf/2205.12976.pdf


CONCRETE SOLUTION: TREE BOOSTING

• Boosting: Fit linear model iteratively to pseudo-residuals of the preceding iteration with learning rate η

• Ansatz :

• Insert into the loss function:

27

previous iteration current iteration

pseudo-residual, amounting
to event-leve reweighting

current 
iteration

current
iteration

previous
iteration

…. perform this iteratively

[arXiv:2107.10859, arXiv:2205:12976]

https://arxiv.org/abs/2107.10859
https://arxiv.org/pdf/2205.12976.pdf


• “Boosted Information tree” (BIT)

• 500 k events, 3 WCs, 9 coefficients

• 9 minutes training

• Tested in a ZH toy model, and a more 
realistic Delphes study, including 
backgrounds

28

[arXiv:2107.10859, arXiv:2205:12976]

https://arxiv.org/abs/2107.10859
https://arxiv.org/pdf/2205.12976.pdf


OPTIMALITY IN TOY DATA

• Test with toy simulation in ZH final state – unbinned likelihood ratio test statistic 

• Neyman-Pearson: The LL ratio test statistic has the highest power (1-β) for a given test size (CL=95%)

• tree depth D=4 sufficient. Instead of the unbinned case, Nbin = 5 already very close to optimum

• significant improvement when including backgrounds and comparing to conventional Run-II strategy
29

tree depth: 

theoretical 
optimum

Boosted 
information 

tree
(BIT)

[arXiv:2107.10859, arXiv:2205:12976]

improvement
over “RunII”

strategy

https://arxiv.org/abs/2107.10859
https://arxiv.org/pdf/2205.12976.pdf


THE SM-EFT CHALLENGE IS NOT ABOUT ML

• Methods to parametrize (close-to) optimal observables for
the various final states are established

• The challenge is a 100+ combination (aka global fit) that we can trust

• across all processes,

• across all operators,

• across many years of experimental developments,

• and while theoretical predictions improve 

• The important groundwork is on what we publish, and how complete (uncertainties & correlations), and 
reproducible it is.

• ML algorithms help to semi-automatize the analysis design while we can stay receptive to new theory ideas

30

[arxiv:2207.03511]

Energy correlators in hadronically
decaying 1TeV W bosons

https://arxiv.org/pdf/2207.03511.pdf


NEURAL NETWORKS REGRESS; THE BIT DOESN’T
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• Each NN layer maps Ln+1 = σ(Wij Ln + bi ). These DOF need to select & predict the regressed values.

• In the BIT, we only select. The prediction (Fj) is computed from the boxed events. This is possible,
because a tree algorithm is (greedely) trained on the ensemble. The BITs’ DOF are NOT updated  event-by-event.

(do not take 
too literally)NNs per layer

BIT per depth
Fj known

(quite litarally 
what is happening)

→ fewer DOF need regressing



WW AND H →WW∗COMBINATION (LEPTONIC)

• Preformed combined fit of

1. signal strengths of ggH and VBF in H →WW∗

2. SM WW unfolded differential pT(lead-.l) x-sec

• 20 SM-EFT operators affecting the measurements

• physics-guided eigenbasis probes 8 directions

• Assume a U(3)5 flavor symmetry

• Stepping stone for more global EFT combinations

• STXS combination: [ATLAS-CONF-2020-053]

32

ATL-PHYS-PUB-2021-010, 36fb−1

http://cdsweb.cern.ch/record/2743067/files/ATLAS-CONF-2020-053.pdf
https://cds.cern.ch/record/2758785/files/ATL-PHYS-PUB-2021-010.pdf


WW AND H →WW∗COMBINATION 

33

Higgs
-gluon

H-q vector

4-fermion

chromo-dipole
• Preformed combined fit of

1. signal strengths of ggH and VBF in H →WW∗

2. SM WW unfolded differential pT(lead-.l) x-sec

• 20 SM-EFT operators affecting the measurements

• physics-guided eigenbasis probes 8 directions

• Assume a U(3)5 flavor symmetry

• Stepping stone for more global EFT combinations

• STXS combination: [ATLAS-CONF-2020-053]

http://cdsweb.cern.ch/record/2743067/files/ATLAS-CONF-2020-053.pdf


• Train a discriminator to separate signal from background and 
regress in the truth label

• Training, e.g., with p(z=0) = p(z=1)

LIKELIHOOD RATIO TRICK

34

arxiv:1503.0x7622

“Likelihood ratio trick” 
provides a close-to 
optimal test statistic

expressive function, 
e.g, a NN or a decision tree

truthtraining sample 
with mixture of

signal (1) and bkg (0)

Provides the
lowest mis-identification probability

for a given signal efficieny
(No free parameters! ↔ simple hypothesis)

Neyman-Pearson Lemma:
The likelihood ratio

is the optimal test- statstic 
in hypothesis tests

Let’s look at SM-EFT applications & issues …

https://arxiv.org/pdf/1503.07622.pdf


⟶ HL-LHC

LHC LONG TERM SCHEDULE

Run 3 dataset will ~ double 
to 300 fb-1 (~1034 cm-2s-1)

~ factor 10 more data (~5 1034 cm-2s-1) 3 ab-1



SENDING MIXED SIGNALS TO THE LOSS FUNCTION

36

mixing signals & 
case dependent mixes

• MSE (& cross-entropy) loss functions average the training data set
• less-than-ideal for linear effects

• Does not reflect what we know about the 𝛉 dependence
• The real issue is the necessity for a case-dependent training
• The challenge of global SM-EFT searches will require a high degree of automatization

• Need strategies for learning (approximations) of the log-likelihood suitable for high parameter dimensions



HOW TO PARAMETRIZE?

• Quantum field theory: Differential cross section predict polynomial SM-EFT dependence:

• additivity of the matrix element → incur a simple (polynomial) dependence in 𝛉 for fixed configuration z

37

probability = wave function, squared

• Neyman-Pearson: 

Optimality can be achieved with cross-section ratio R or its
universal coefficient functions Ra, Rab

NB #2: R is positive: Fit universal dependence using
the most general quadratic polynomial

where
“normalization” “shape”

NB #1 Curse of dimensionality is lifted!!
15 operators → 136 coefficients



OPTIMAL PARAMETRIZED CLASSIFIERS 

• studied in the context of for the most important SM-EFT operators

38

• high purity, ~85%-90% as seen by  ATLAS and CMS (with SM-EFT)

• Adam optimizer, pytorch, 104 epochs, learning rate of  10-4

• 4 hidden layers á 32 nodes, 2 networks simultaneously trained

• alternatives configurations studied

• establish optimality with analytic model (Toy), very similar at (N)LOoptimality

JHEP 05 (2021) 247
ATLAS-CONF-NOTE-2016-043,

JHEP 07 (2022) 032
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y

http://cds.cern.ch/record/2206093
https://arxiv.org/pdf/2110.11231.pdf
https://arxiv.org/abs/2007.10356
http://cds.cern.ch/record/2206093
https://arxiv.org/pdf/2110.11231.pdf


PYTORCH IMPLEMENTATION

• ZH production, analytic model, 500k events

• Single coefficient: cHW (tested with up to 3)

• 4 hidden layers á 32 nodes, 2 networks simultaneously trained

• 104 epochs, Adam optimizer, LR=10-4

• The training is simultaneous and it must be!

• Positivity is a property of the polynomial, 
not of an individual coefficient. 

• several options to emphasise the tails

• bias loss with function of A(x) or choosing base points

• just a proof of principle implementation

39

pT(V)

linear term

quadratic
term

R(pT≈500) = 1 + blue 𝛉 + red 𝛉2

S. Chen, A. Glioti, G. Panico, A. Wulzer
JHEP 05 (2021) 247

https://arxiv.org/abs/2007.10356


”PARTICLE PHYSICS STRUCTURE”
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based on this talk: C. Kranmer, J. Brehmer

K. Cranmer , J. Pavez , and G. Louppe [1506.02169] 
J. Brehmer, K. Cranmer, G. Louppe, J. Pavez [1805.00013] [1805.00020] [1805.12244]
J. Brehmer, F. Kling, I. Espejo, K. Cranmer [1907.10621]

Theory
parameters

Parton-level
momenta

Parton 
shower

Detector &
reconstruction

Observables

calcuable & re-calcuable
(aka tractable) theory prediction

Integration over 
intractable factors

• It’s somewhat of a miracle that one can regress on the observable-level likelihood ratio

superpowers

https://indico.cern.ch/event/945096/attachments/2092094/3516391/BSM-PANDEMIC-Mining-Gold-EFT-DM-2020-08-26_2.pdf
https://arxiv.org/pdf/1506.02169.pdf
https://arxiv.org/pdf/1805.00013.pdf
https://arxiv.org/pdf/1805.00020.pdf
https://arxiv.org/pdf/1805.12244.pdf
https://arxiv.org/pdf/1907.10621.pdf


”JOINT” DISTRIBUTIONS ARE MUCH SIMPLER

• To understand the power of simulation, look at the simpler “joint” pdf

1. The intractable factors cancel in the joint LR

2. Now fit a general function on the join space with a regressor depending only on the observables:

3. Now chose f(x,z) = r(x,z | 𝛉, 𝛉0) which is available in simulation & fit with expressive function:

41… statistical framework of all the parametrized classifiers

Change in likelihood of observation x 
(with history z) going from 𝛉0 to 𝛉

staged simulation:
Intractable factors cancel

Latent space is integrated 

Available from simulation
what we actually want:
change in likelihood of
a specific observation

re-calcuable
theory prediction



• Quantum field theory: Differential cross section have structure

• sampling z at a fixed 𝛉0

• evaluate dσ(𝛉) for sufficient number of base-points 𝛉

• fix polynomial coefficients of event weights wi(𝛉)

• obtain predictions for, e.g., yields for all x,z and 𝛉

EXPLOITING PARAMETRIZED SIMULATION WITH TREES

42
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TREES & BOOSTING

• Let us make a tree-based prediction for R or its coefficient function

• Weak learner: Tree ↔Associates a predictive function Fj (flexible!) with a sub-region j of a partitioning

• Fitting tree: Optimize ”node split positions” on some loss. Trained (e.g. greedily) on the ensemble.

• Rectangular cuts are very limiting. Remove the limitation with “boosting”. 45

cut on x1

cut on x2

cut on x1 again etc.

F…

F1 F2

training phase:
e.g. “CART” algo

phase space
partitioning J

prediction Fj

need to solve for partitioning J and {Fj}

index-function (non-linearity)

weak learner

x1

x2

F1 F2 F3

F4 F5
F7F6

F8

phase-space partitioning

[arXiv:2107.10859, arXiv:2205:12976]

https://arxiv.org/abs/2107.10859
https://arxiv.org/pdf/2205.12976.pdf


• Example: Learn a local version of the model, described by the score function (local LLR)

• Only the joint score  is available in training. This is enough, though.

LEARNING THE SCORE FUNCTION

46

[arXiv:2107.10859, arXiv:2205:12976]

…re-insert Fj into L … 
the predictor does NOT have trainable parameters!

maximise  Fisher information of a Poisson 𝛉a measurement

formal solution:
tree ansatz

https://arxiv.org/abs/2107.10859
https://arxiv.org/pdf/2205.12976.pdf


CONCRETE SOLUTION: TREE BOOSTING

• Boosting: Fit linear model iteratively to pseudo-residuals of the preceding iteration

• Ansatz :

• Insert into the loss function:

47

previous iteration current iteration

pseudo-residual

current 
iteration

current
iteration

previous
iteration

reweighting

MSE structure at iteration b

…. perform this iteratively

[arXiv:2107.10859, arXiv:2205:12976]

https://arxiv.org/abs/2107.10859
https://arxiv.org/pdf/2205.12976.pdf


LEARNING MORE WITH TREES

48

Tree ansatz for each a, ab:
Fj is a constant (per node)

Solve for optimal partitioning with CART algorithm

Regress in one of the coefficient functions of R Regress in R,  including its the polynomial 𝛉 dependence

Tree ansatz for each a, ab:
Fj(𝛉) polynomial with const. coeff.
(per node) 

Solve for optimal partitioning with CART algorithm

→ boost
split only if 
wj(𝛉) is positive ∀𝛉

… Solve for Fj & reinsert … … Solve for Fj & reinsert … 

→ boost

[arXiv:2107.10859, arXiv:2205:12976]

https://arxiv.org/abs/2107.10859
https://arxiv.org/pdf/2205.12976.pdf


• targets t-t-H Yukawa coupling (   ) in 𝜅-framework

• in SM-EFT: “CP” structure (complex phase) of 

• CP violating effects in couplings to bosons (    ) supressed by 𝛬4

• use ML for separating CP-even vs. odd: gradient-BDT  XGBoost
• 38 input features (kinematic properties)

TTH IN THE MULTILEPTON CHANNEL

49

JHEP (submitted)

𝜏

𝜏

6.3%0.23%0%
b

b

58% 0%0.15%2.6%
𝛍

𝛍

0.02%

• example #2: t(t)H multilepton in 2ℓSS+0𝜏, 2ℓSS+1𝜏, 3ℓ final states

• deep convolutional network [DeepTau] for 𝜏 reconstruction

• uses tracking, calorimetry, muons via particle-flow collections

• 3 DNNs for signal/background multi-classification 

21%decay:

ttH multilepton

+ 37 other
observables

https://xgboost.ai/
https://arxiv.org/abs/2208.02686
https://arxiv.org/pdf/2201.08458.pdf


INCLUDING BACKGROUNDS IN THE TRAINING

• Include most important background processes

• Simulate signal using MG5 & SMEFTsim + Delphes

• learn R(x|𝛉) for ZH + Drell-Yan (correctly weighted)

• Train on observables that capture EFT dependence and also discriminate between backgrounds

• Compare with the CMS “Run II” strategy: NN to separate background, then fit pT(Z)

• substantial improvement
51

RHWtil, HWtil

bkgs
sensitive 
portion 
of signal

improvement
over “RunII”

strategy

[arXiv:2107.10859, arXiv:2205:12976]

https://arxiv.org/abs/2107.10859
https://arxiv.org/pdf/2205.12976.pdf


• example #3: top quark – Z boson coupling

• exploit kinematics in ttZ/tZq/tWZ final states

• low-background final states; bkg for tt+Higgs

• 5 SM-EFT operators 

• Extensive use of MVAs

• Multiclassifier to discriminate between 
several SM processes

• using 33 (mostly kinematic) event properties

• 8 neural network binary classifiers to BSM events

TOP QUARKS + X IN SM-EFT 

52

JHEP 12 (2021) 083

tt
811 pb

t (t-channel)
217 pb

tW
72 pb

t (s-channel)
10 pb

ttZ
1 pb

tZq
0.088 pb

2 or 3 hidden layers
50-100 neurons
ReLU activation,
sigmoid output
LR 0.001 (decaying)
Adam optimizer

Weak top dipole
interactions

LH vector couplings

RH vector couplings

https://arxiv.org/abs/2107.13896


TOP AND DIBOSON SECTORS

53

ttW
0.55 pb

ttɣ
0.80 pb

tɣq
0.4 pb

tttt
0.009 pb

W±W∓

EWK 10 fb

W±W±

EWK 4 fb

WZ
EWK 2.15 fb

ZZ
EWK 0.82 fb

Wɣ
EWK 20.4 fb

Zɣ
EWK 7.8 fb

Z 
EWK 37.4 fb

tt
811 pb

t (t-channel)
217 pb

tW
72 pb

t (s-channel)
10 pb

ttZ
1 pb

tZq
0.088 pb



DEEP TAU (DECAY MODES)
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