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Fundamental physics at colliders
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The main goal of the collider program is to deepen our knowledge of 
fundamental physics

Our current knowledge about the properties and dynamics of elementary 
particles is encoded in the Standard Model (SM)

It agrees with what we measured at colliders so far with amazing accuracy
… but there are many hints that it is not the ultimate theory

In practical terms, the collider physics program aims at
testing the SM

looking for its possible failures            evidence of New Physics (BSM)



Testing the SM
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Complementarity

devising different strategies to test the SM predictions 
and to cover different types of new physics

Optimality

improve and optimize the new-physics probes to achieve better sensitivity 



How to look for new physics
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Direct searches:

look for signals of production 
of new particles

• resonant effects in kinematic distributions

• “bump” on top of a smooth SM background 
(that can be often extracted from the data)
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Higgs search 
in di-photon channel

Direct searches:

look for signals of production 
of new particles

• resonant effects in kinematic distributions

• “bump” on top of a smooth SM background 
(that can be often extracted from the data)



How to look for new physics
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New physics

• resonant effects in kinematic distributions

• “bump” on top of a smooth SM background 
(that can be often extracted from the data)

Limitations:

• new particle must be resonantly produced 
and must decay to reconstructable final state

• limited by collider energy range
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collider energy range

Direct searches:

look for signals of production 
of new particles



How to look for new physics
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New physics
Direct searches:

look for signals of production 
of new particles

Looking for the tail:    Indirect searches

even if we can not directly produce 
the new particles,

we can test their indirect effects

‣ LEP data at 200 GeV tested new particles with 
masses up to 3 TeV !

• resonant effects in kinematic distributions

• “bump” on top of a smooth SM background 
(that can be often extracted from the data)
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Tails are “universal”
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Indirect searches have important 
advantages

“universality”
• deviations from SM exhibit small number of behaviors dictated by symmetries

“model independence”
• captures a huge class of new-physics models

“ubiquity”
• deviations are present also in channels with non-resonant new physics production

• can often be seen also in channels where the final state can not be fully reconstructed



The EFT approach
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The Effective Field Theory (EFT) description can be obtained 
“integrating out” heavy particles

‣ interactions mediated by heavy particles are replaced by new contact interactions
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Electroweak theory 
(Fundamental)

Fermi theory 
(Effective Field Theory)

excellent description 
at low energy, 

but with limited range of validity

cut-off

“integrate out” 
heavy particles

The EFT approach
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The Effective Field Theory (EFT) description can be obtained 
“integrating out” heavy particles

‣ interactions mediated by heavy particles are replaced by new contact interactions



‣ only SM particles appear in the EFT

‣ SM symmetries are respected

Rules of the game:

Terms in the EFT Lagrangian can be organized in an expansion in E/Λ

ℒSMEFT = ℒSM +
1

Λ2
ℒ6 +

1
Λ4

ℒ8 + ⋯

“small” number of new terms

The EFT approach
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The Effective Field Theory (EFT) description can be obtained 
“integrating out” heavy particles

‣ interactions mediated by heavy particles are replaced by new contact interactions

energy dimension ≤ 4 dim = 6 dim = 8



‣ only SM particles appear in the EFT

‣ SM symmetries are respected

Rules of the game:

Terms in the EFT Lagrangian can be organized in an expansion in E/Λ

ℒSMEFT = ℒSM +
1

Λ2
ℒ6 +

1
Λ4

ℒ8 + ⋯

“small” number of new terms

The EFT approach
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The Effective Field Theory (EFT) description can be obtained 
“integrating out” heavy particles

‣ interactions mediated by heavy particles are replaced by new contact interactions

leading corrections



The challenges of indirect searches
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Performing indirect searches is a challenging task 
that requires several key ingredients

‣ Accurate theoretical knowledge of the SM and BSM predictions 
(i.e. small theoretical systematic uncertainty)

‣ Accurate experimental measurements 
(i.e. small experimental systematic and statistical uncertainty)

‣ Use of effective search strategies and optimized statistical analysis

needed to compare theoretical expectation with the experimental data

in many cases we expect small deviations with respect to the SM



Optimal tests of new physics
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The differential distribution contain the maximal information about a process

dσ(x; C)
measurable 

kinematic quantities 
new-physics 
parameters

‣ basis to perform optimal statistical tests  (eg. likelihood ratio test)



Optimal tests of new physics
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The differential distribution contain the maximal information about a process

dσ(x; C)
measurable 

kinematic quantities 
new-physics 
parameters

‣ basis to perform optimal statistical tests  (eg. likelihood ratio test)

How to determine the theoretical kinematic distributions?

‣ not known in analytic form

‣ only available knowledge are Monte Carlos event samples following  
• “latent” Monte Carlo variables  do not coincide with measurable quantities  

                                          

• higher-order effects generate “unphysical” events (negative weights)

• showering, hadronization, detector effects not known “analytically”

dσ(x; C)
z x

z x



A simple analysis strategy

13

Simplest approach: exploit partial kinematic information
‣ keep only few kinematic variables and ‘ignore’ the others
‣ reconstruct the distributions through binning



A simple analysis strategy

13

Simplest approach: exploit partial kinematic information
‣ keep only few kinematic variables and ‘ignore’ the others
‣ reconstruct the distributions through binning

three kinematic variables
            invariant mass  
          scattering angle  
             c.o.m. rapidity  

mℓ+ℓ−

θ
y

‣ can focus only on invariant mass

‣ distribution reconstructed with simple 
1-dimensional binning 
                dσ(mℓ+ℓ−; C) �
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Example: di-lepton production  
pp → ℓ+ℓ−



A simple analysis strategy
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Simplest approach: exploit partial kinematic information
‣ keep only few kinematic variables and ‘ignore’ the others
‣ reconstruct the distributions through binning

Example: di-lepton production  
pp → ℓ+ℓ−

Big loss in sensitivity!

1-dim analysis

analysis with
full kinematic distribution

[G.P., L. Ricci, A. Wulzer ’21]



A Machine Learning approach



Full distributions through ML
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p(x|θ) through Machine Learning

14/04/2021 Alfredo Glioti (EPFL) - 2007.10356 6

The result will be fully differential on all observables, quick to evaluate and it can be 

obtained with a relatively small amount of Monte Carlo points. 

No transfer functions modeling required.

Universal and systematically improvable

Brehmer & al. 1805.00013

Basic idea: approximate              with Neural Networks: 

Basic idea: reconstruct  with Neural Networksdσ(x; C)

kinematic variables
x

full distribution ratio
dσ(x; C)
dσ(x; 0)

reference 
hypothesisneural networks

‣ fully differential (analytic) result in all measurable quantities

‣ obtained with a relatively small amount of Monte Carlo data

‣ systematically improvable
• with more data, reacher NN structure, …
• with more accurate Monte Carlo samples (eg. higher-order effects, backgrounds, …)

[Baldi, Cranmer et al. ’16; 
Brehmer, Cranmer, Louppe, Pavez ’18;

Cranmer, Pavez, Louppe ’18;
Stoye, Brehmer at al. ’18;

Brehmer, Louppe at al. ’18;
Brehmer, Cranmer at al. ’18;

Brehmer, Kling at al. “MadMiner” ’19;
Chen, Glioti, G.P., Wulzer ’20]



A Simple Classifier
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A binary classifier can be used to reconstruct the distribution ratio
from Monte Carlo data

‣ two samples, following new physics ( ) and reference ( ) distributionsC = C C = 0

𝒮C = {xi ∼ dσ(x; C)} 𝒮0 = {xi ∼ dσ(x; 0)}
notice that  is fixedC

‣ binary classifier (eg. with quadratic loss)

 L = ∑
xi∈𝒮C

[NN(xi) − 1]2 + ∑
xi∈𝒮0

[NN(xi)]2

‣ in the infinite training sample limit

 δL
δNN

= 0 NN(x) =
dσ(x; C )

dσ(x; C ) + dσ(x; 0)
dσ(x; C )
dσ(x; 0)

=
NN(x)

1 − NN(x)

✦ weighted samples can be treated in an analogous way introducing weights in L



Application to WZ production
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Final state described
by 6 kinematic variables!

  invariant mass            scattering angle 

W decay angles         Z decay angles 

mWZ θ

θW, ϕW θZ, ϕZ

‣ standard binned analysis can not take into account all kinematic variables 
(at most two or three)

             important features characterizing new-physics distributions are lost

huge loss in sensitivity

pp → W±Z → (ℓ±ν)(ℓ+ℓ−)
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Simple Classifier performance
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‣ must be trained for ‘every’ value of     (with new Monte Carlo sample!)

‣ becomes inefficient for small values of  
(differential distribution very close to reference, large amount of training data are needed 
to reconstruct the ratio)

C

C

‣ The Simple Classifier approach works, but there is still some gap

Technical details

• fully connected feed-forward NN 
               {6, 32, 32, 1}

• sigmoid activation

• 500k + 500k training events
(also checked: {6, 4x32, 1}, {6, 6x32, 1}; 3M + 3M 

training events; ReLU activation functions; 
but not much improvement)

Drawbacks:

deformation of 
ZWW coupling

deformation of 
W,Z-quark couplings



Joining Machine Learning with Theory



The Quadratic Classifier
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Theory fixes the structure of the differential distribution

 dσ(x; C) = dσ(x; 0)[(1 + C α(x))2 + C2 β2(x)]
positive quadratic 
polynomial in C

We can exploit this information to solve the drawbacks 
of the Simple Classifier approach



The Quadratic Classifier
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Theory fixes the structure of the differential distribution

 dσ(x; C) = dσ(x; 0)[(1 + C α(x))2 + C2 β2(x)]
positive quadratic 
polynomial in C

‣ but the distribution ratio is parametrized in terms of two neural networks

 F(x; C) =
1

1 + (1 + C NNα(x))2 + C2 NN2
β(x)

‣ we use a standard binary classifier loss

 L = ∑
{Ci}

{ ∑
xi∈𝒮0

[F(xi; Ci) − 1]2 + ∑
xi∈𝒮Ci

[F(xi; Ci)]2}

‣ training data must include different values of 
 

C
NNα(x) → α(x) NNβ(x) → β(x)



The Quadratic Classifier
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Exact Quadratic Classifier
Simple Classifier Binned analysis
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‣ The Quadratic Classifier provides a significantly better performance

Technical details

• fully connected feed-forward NN 
         {10, 32, 32 32, 32, 1}

• ReLU activation

• 12 x 500k training events
(Adam, 104 training epochs, 

5 hours w/ pytorch 
on NVIDIA GeForce GTX 1070)

‣ a single training can reconstruct the distribution ratio for any 

‣ training with “large” values of  avoids small differences from reference 
          limit  properly reconstructed

C

C

C → 0



The Quadratic Classifier
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Additional effects can be included by changing the training data

Toy Data MG LO MG NLO
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‣ realistic Monte Carlo data can be used  (eg. MadGraph @ LO or @ NLO)

‣ performance remains very stable
[for applications to LHC analyses 

see talk by R. Schöfbeck]



The Quadratic Classifier validation
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Figure 4: Evolution of the p-value for di↵erent architectures and training sample sizes. On the
left plot we compare the baseline setup with the baseline architecture Network trained with
200k points per value of c (for a total of 2.4M points), and with the baseline number of training
points (500k, times 12) on architectures with one less (“3⇥32”) and one more (“5⇥32”) hidden
layer. On the right plot, a similar analysis is performed, but with 3M points per value of c.

the Wilson coe�cient employed in the parametrization (12) were scaled to have unit variance
on the training sample. Employing the redundant variables (i.e., pT,Z, and the cosines and
sines of 'W,Z) is helpful for the performances, especially the angular ones, which enforce the
periodicity of the azimuthal angular variables. The “baseline” results presented in Figures 2,
3 and in Table 1 were all obtained with the features vector above and employing a total of
6 million training Monte Carlo points for each of the two Wilson coe�cients. Training was
always performed with a single batch (which was found to perform better in all cases), even if
in practice the gradients calculation was split in mini-batches of 100k points in order to avoid
saturating the memory of the GPU. Apart from these common aspects, the optimization of the
Neural Network design and of the training strategy is rather di↵erent for the Quadratic and for
the Standard Classifier methods. They are thus discussed separately in what follows.

6.1 The Quadratic Classifier

For the Quadratic Classifier, best performances were obtained with ReLU activation functions
and with the Adam Pytorch optimizer. The initial learning rate (set to 10�3) does not strongly
a↵ect the performances. Other attempts, with Sigmoid activation and/or with SGD optimizer,
produced longer execution time and worse performances. The baseline architecture for the two
Neural Networks n↵ and n� in eq. (12) consists of 4 hidden layers with 32 neurons, namely the
architecture {10, 32, 32, 32, 32, 1}, including the input and the output layers. Weight Clipping
was implemented as a bound on the L1 norm of the weights in each layer, but found not to play
a significant role. The total training time, for 104 training epochs, is around 5 hours for the
baseline architecture and with the baseline number (6 million) of training points.

The Neural Network architecture was selected based on plots like those in Figure 4. The left
panel shows the evolution with the number of training epochs of the median p-value (see eq. (30))
on Toy data for c = GW = 0.8 ⇥ 10�2TeV�2, with the baseline and with larger and smaller
Networks. We see that adding or removing one hidden layer to the baseline architecture does
not change the performances significantly. The plot also shows that 104 epochs are su�cient for
the convergence and that no overfitting occurs. The degradation of the performances with less
training point is also illustrated in the plot. Of course, the p-value is evaluated using independent
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Validation for change in NN size and training data size

Baseline NN (4 x 32)
12 x 200k training events

12 x 500k training events 12 x 3M training events

good convergence improvement in bounds 
with larger training set / 

bigger NN



Conclusions and Outlook



Conclusions
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Key ingredient: reconstruction of differential distributions from MC data

Machine learning provides new tools to optimize the sensitivity in model-
independent new-physics searches at colliders

‘Minimal’ ML approach:   Simple binary Classifier

‣ fair performance
‣ some drawbacks (lack of embedded theory knowledge)

Improved ML approach:   Quadratic Classifier

‣ directly embeds theory knowledge (analytic dependence on parameters)

‣ only one training needed to test different new-physics parameters 



Outlook
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Further developments:

✦ Simultaneous treatment of many new-physics deformations

✦ Exploitation of event ‘reweighting’ to improve performance
‣ faster generation of training data
‣ better NN reconstruction   (significantly smaller training sets needed)

✦ Inclusion of systematic errors  (eg. pdf errors)

[see also talk by J. Ter Hoeve]


