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Fundamental physics at colliders

The main goal of the collider program is to deepen our knowledge of
fundamental physics

Our current knowledge about the properties and dynamics of elementary
particles is encoded in the Standard Model (SM)

[t agrees with what we measured at colliders so far with amazing accuracy
... but there are many hints that it is not the ultimate theory

In practical terms, the collider physics program aims at
testing the SM

looking for its possible failures ——# evidence of New Physics (BSM)



Testing the SM

Complementarity

devising different strategies to test the SM predictions
and to cover different types of new physics

Optimality

improve and optimize the new-physics probes to achieve better sensitivity



How to look for new physics

Direct searches:

look for signals of production
of new particles

e resonant effects in kinematic distributions

e "bump’ on top of a smooth SM background
(that can be often extracted from the data)
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How to look for new physics

Direct searches:

look for signals of production
of new particles

e resonant effects in kinematic distributions

e "bump’ on top of a smooth SM background
(that can be often extracted from the data)

collider energy range

Limrtations: ' !
e new particle must be resonantly produced 0 M//”? “
and must decay to reconstructable final state SM } /
o limited by collider energy range //
D




How to look for new physics

Direct searches:

look for signals of production
of new particles

e resonant effects in kinematic distributions

e "bump’ on top of a smooth SM background
(that can be often extracted from the data)
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Looking for the tall:  Indirect searches

even If we can not directly produce
the new particles,
we can test their indirect effects

» LEP data at 200 GeV tested new particles with
masses up to 3 TeV !
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Tails are “universal”

N\

2

Indirect searches have important > /
advantages / //

“universality”

e deviations from SM exhibit small number of behaviors dictated by symmetries

"model independence”

e captures a huge class of new-physics models

“ubiquity”
e deviations are present also In channels with non-resonant new physics production

e can often be seen also in channels where the final state can not be fully reconstructed



The EFT approach

The Effective Field Theory (EFT) description can be obtained
“Integrating out’ heavy particles

> Interactions mediated by heavy particles are replaced by new contact interactions

\. / . odim—d
< = X Y

heavy particle of mass M ~ A effective interaction




The EFT approach

The Effective Field Theory (EFT) description can be obtained
“Integrating out’ heavy particles

> Interactions mediated by heavy particles are replaced by new contact interactions

Electroweak theory Fermi theory
(Fundamental) (Effective Field Theory)
n > p n . p

“integrate out”
heavy particles

excellent description
at low energy,
but with limited range of validity

E <A~ my =380 GeV

X
cut-off




The EFT approach

The Effective Field Theory (EFT) description can be obtained
“Integrating out’ heavy particles

> Interactions mediated by heavy particles are replaced by new contact interactions

Rules of the game:

» only SM particl in the EFT |
ONly S particies appearin the ——Pp  “small” number of new terms

» SM symmetries are respected

Terms in the EFT Lagrangian can be organized in an expansion in E/A

1 1
ZLsyerr = Lsu + F°<Z6 + FfZS T
/ T T
energy dimension < 4 dm =6 dim =8




The EFT approach

The Effective Field Theory (EFT) description can be obtained
“Integrating out’ heavy particles

> Interactions mediated by heavy particles are replaced by new contact interactions

Rules of the game:

» only SM particl in the EFT |
ONly S particies appearin the ——Pp  “small” number of new terms

» SM symmetries are respected

Terms in the EFT Lagrangian can be organized in an expansion in E/A

1
Zsyerr = ZLsu "‘ FfZS + -

/

leading corrections




The challenges of indirect searches

Performing indirect searches is a challenging task
that requires several key ingredients

» Accurate theoretical knowledge of the SM and BSM predictions
(1.e. small theoretical systematic uncertainty)

—$ needed to compare theoretical expectation with the experimental data

» Accurate experimental measurements
(1.e. small experimental systematic and statistical uncertainty)

—§ IN Many cases we expect small deviations with respect to the SM

» Use of effective search strategies and optimized statistical analysis



Optimal tests of new physics

The differential distribution contain the maximal information about a process

do(x; C)
measurable _/ \_ new-physics

kinematic quantities parameters

» basis to perform optimal statistical tests (eg. likelihood ratio test)
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How to determine the theoretical kinematic distributions?

» not known in analytic form

» only available knowledge are Monte Carlos event samples following do(x; C)

» “latent” Monte Carlo variables z do not coincide with measurable quantities x

'\)V

* higher-order effects generate "unphysical” events (negative weights)

* showering, hadronization, detector effects not known “analytically”



A simple analysis strategy

Simplest approach: exploit partial kinematic information

» keep only few kinematic variables and ‘ignore’ the others
» reconstruct the distributions through binning
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Simplest approach: exploit partial kinematic information

» keep only few kinematic variables and ‘ignore’ the others
» reconstruct the distributions through binning

—

Example: di-lepton production
pp = 7€~

three kinematic variables ¢+
invariant mass e - /
: q q
scattering angle 6 /
y
-

c.om. rapidity y
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1000 =[]

» can focus only on invariant mass

> distribution reconstructed with simple I -
: : ; - Z oL :b
| -dimensional binning :

do(my.,; C)

My+p—



A simple analysis strategy

Simplest approach: exploit partial kinematic information

» keep only few kinematic variables and ‘ignore’ the others
» reconstruct the distributions through binning

Example: di-lepton production
pp = 7€~

[G.R, L Rica, A-Wulzer 21]
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Big loss in sensitivity!
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A Machine Learning approach



Full distributions through ML

Basic idea: reconstruct do(x; C) with Neural Networks

kinematic variables
X

» fully differential (analytic) result in all measurable quantrties

N\

neural networks

[Baldi, Cranmer et al. | 6;
Brehmer, Cranmer, Louppe, Pavez ' 1 8;
Cranmer, Pavez, Louppe ' 8;
Stoye, Brehmer at al.’| ;
Brehmer, Louppe at al. | 8;
Brehmer, Cranmer at al. | 8;
Brehmer; Kling at al.“"MadMiner” "1 9;
Chen, Glioti, G.P, Wulzer 20]

full distribution ratio
do(x; C)
do(x; 0)

J

\ reference

hypothesis

» obtained with a relatively small amount of Monte Carlo data

» systematically improvable

e With more data, reacher NN structure, ...

e with more accurate Monte Carlo samples (eg. higher-order effects, backgrounds, ...)



A Simple Classifier

A binary classifier can be used to reconstruct the distribution ratio

from Monte Carlo data

» two samples, following new physics (C = C) and reference (C = 0) distributions

Se={x; ~do(x;C)} Sy = {x; ~ do(x;0)}

notice that C is fixed

» binary classifier (eg. with quadratic loss)

L= Y NN = 1P+ > [NNP

» In the infinite training sample limit

5L do(x; C) do(x;C)

0

vy 0 —» WN=

+ weighted samples can be treated in an analogous way introducing weights in L

NN(x)

do(x;C) +do(x;0) % do(x;0) 1-NNQ)



Application to W/Z production

pp = W*Z = (£*0)(f7¢)

Final state described
by 6 kinematic variables!

Invariant mass my,, scattering angle 6

W decay angles 0y, ¢y Z decay angles 8, ¢,

» standard binned analysis can not take into account all kinematic variables
(at most two or three)

- Important features characterizing new-physics distributions are lost

—gp huge loss In sensitivity



Simple Classifier performance

» The Simple Classifier approach works, but there s still some gap

20 exclusion reach : :
: : Technical detalls
1.5 B Exact ]
- [ Simple Classifier
- 7 m Bimfecelana:;sise e fully connected feed-forward NN
5 (6,32,32, 1}
= O'Ogi e sigmoid activation
L —0.5F
S L G Gy e 500k + 500k training events
s ) ( (also checked: {6, 4x32, 11, {6, 6x32, }: 3M + 3M
def . / \ | training events; RelLU activation functions;
eformation of deformation of but not H ¢
WZ-quark couplings ZWW coupling ut not much improvement)
Drawbacks:

» must be trained for‘every’ value of C  (with new Monte Carlo sample!)

» becomes inefficient for small values of C
(differential distribution very close to reference, large amount of training data are needed

to reconstruct the ratio)
18



Joining Machine Learning with [heory



The Quadratic Classifier

Theory fixes the structure of the differential distribution

do(x; C) = do(x; 0)[(1 + C a(x))* + C* f*(x)]

\ positive quadratic

polynomial in C

We can exploit this information to solve the drawbacks
of the Simple Classifier approach

20



The Quadratic Classifier

Theory fixes the structure of the differential distribution

do(x; C) = do(x; 0)[(1 + C a(x))* + C* f*(x)]

\ positive quadratic

polynomial in C

» we use a standard binary classifier loss

L=y { Y FoC) = 1P+ Y [F(x; C,->]2}

{1C} XES XE€S ¢,

» but the distribution ratio Is parametrized in terms of two neural networks
1

F(x;C) = L+ (1 + CNN,(x)? + C> NN3(x)

» training data must include different values of C
NN,(x) = a(x) NNy(x) = p(x)

20



The Quadratic Classifier

» The Quadratic Classifier provides a significantly better performance

20 exclusion reach | |
o exclusion reac _ Tech N |Ca| de‘tal |S

1.5- B Exact | ] Quadratic Classifier

105 | Simple Classifier [ Binned analysis

e fully connected feed-forward NN
{10,32,32 32,32, 1}

e Rel U activation
e |2 x 500k training events

0.5F

-0.5F

Cyo [1072 TeV2]

-10- (Adam, 0% training epochs,
5 hours w/ pytorch

on NVIDIA GeForce GTX 1070)

-1.5F

» a single training can reconstruct the distribution ratio for any C

» training with “large” values of C avoids small differences from reference

—% limit C — 0 properly reconstructed

21



The Quadratic Classifier

Additional effects can be included by changing the training data

3)
G(Pq

B ME | | QC [ BA

- ToyData MG LO

MG NLO -

10.5

0.0

Gy

B ME [ | QCc B BA

Toy Data

MG LO

MG NLO 1

» realistic Monte Carlo data can be used (eg. MadGraph @ LO or @ NLO)

» performance remains very stable

[for applications to LHC analyses

see talk by R. Schofbeck]

22



The Quadratic Classifier validation

Baseline NN (4 x 32)
|2 x 200k training events
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Conclusions and Outlook



Conclusions

Machine learning provides new tools to optimize the sensitivity in model-
independent new-physics searches at colliders

Key ingredient: reconstruction of differential distributions from MC data

‘™inimal’ ML approach: Simple binary Classifier
> fair performance

> some drawbacks (lack of embedded theory knowledge)

Improved ML approach: Quadratic Classifier
> directly embeds theory knowledge (analytic dependence on parameters)

> only one training needed to test different new-physics parameters

25



Outlook

Further developments:

+ Simultaneous treatment of many new-physics deformations

[see also talk by |. Ter Hoeve]

4+ Inclusion of systematic errors (eg. pdf errors)

+ Exploitation of event ‘reweighting’ to improve performance
> faster generation of training data

> better NN reconstruction (significantly smaller training sets needed)

26



