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Introduction



Introduction

We started this project aiming to build a model with:

• well suited for pdf estimation and pdf sampling

• built-in pdf normalization (close form expression)

• very flexible with a small number of parameters

We started from Boltzmann Machines
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Theory



Boltzmann Machine

Graphical representation

Main Features:

• Visible sector with Nv nodes

• Hidden sector with Nh nodes

• Binary valued states {0,1} all the nodes

• Connection matrices Q, T and W between
the nodes

This can be viewed as a statistical system with the following energy for a given state (v, h):

E(v, h) =
1

2
vtTv +

1

2
htQh+ vtWh+Bhh+Bvv

2



Boltzmann Machine

Following a statistical mechanics approach we can compute the canonical partition function as:

Z =
∑
h,v

e−E(v,h)

The probability of finding the system is given by the Boltzmann distribution:

P (v, h) =
e−E(v,h)

Z

The probability of finding the system in the state v can be computed by marginalizing h

P (v) =
∑
h

e−E(v,h)

Z
=

e−F (v)

Z

where F (v) is the the free energy of the system.
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Boltzmann Machine (BM)

P (v) is a parametric density probability which depends on the connection matrices Q, T and
W and the biases Bv and Bh. Theoretically one could adjust these parameters to learn an
unknown probability distribution of a given dataset.

However, this approach is practically not feasible.

How can we change BMs to perform density estimation?
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Riemann-Theta Boltzmann Machine [Krefl et al., 2017]

We can obtain a non-trivial model if we change the domain from binary values states to
continuous/quantized values. If we consider v ∈ RNv and h ∈ ZNh , under mild constraints on
the connection matrices we can compute P (v) in a closed form:

P (v) =

√
detT

(2π)Nv
e−

1
2 v

t
Tv−B

t
vv−B

t
vT

−1
Bv

θ̃(Bt
h + vtW |Q)

θ̃(Bt
h −Bt

vT
−1W |Q−W tT−1W )

.

which corresponds to a multi-variate gaussian moldulated by the functions θ̃, which are known
as Riemann-Theta (RT) functions.
We called this model the Riemann-Theta Boltzmann Machine (RTBM).
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Properties of RTBMs



Learning [Krefl et al., 2017]

The RTBM can be used to perform density estimation by adjusting the values of the connection
matrices and of the biases. In particular, we need to solve the following optimization problem:

argmin
Q,T,W,Bh,Bv

C

where C is an arbitrary cost function.

In the case of Maximum Likelihood Estimation (MLE) we get:

argmin
Q,T,W,Bh,Bv

−
N∑
i=1

logP (xi) = argmax
Q,T,W,Bh,Bv

N∑
i=1

logP (xi)

Since we have an analytical expression for P (v) we have the possibility to use both gradient or
non-gradient based techniques.

6



Examples [Krefl et al., 2017]
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Sampling algorithm [Carrazza and Krefl, 2018]

The probability for the visible sector can be expressed as:

P (v) =
∑
[h]

P (v|h)P (h) ,

where P (v|h) is a multivariate gaussian. P (v) can be
easily sampled using the following algorithm:

• sample h ∼ P (h) using RT numerical evaluation
θ = θn + ϵ(R) with ellipsoid radius R such that

p =
ϵ(R)

θn + ϵ(R)
≪ 1

is the probability that a point is sampled outside the
ellipsoid of radius R, while∑

[h](R)

P (h) =
θn

θn + ϵ(R)
≈ 1 ,

is the sum over the lattice points inside the ellipsoid.

• sample v ∼ P (v|h)
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Sampling examples [Carrazza and Krefl, 2018]

One dimensional case:
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Multi-dimensional case

−6 −4 −2 0 2 4 6
v1

−6

−4

−2

0

2

4

6

v2

0.0

0.2

0.4
P(v1)

0.00 0.25 0.50
P(v2)

• Blue line: Real distribution

• Red line: RTBM

• Histogram: sample from RTBM

9



Affine Transformations [Carrazza and Krefl, 2018]

We observe that P (v) stays in the same
distribution under affine transformations, i.e.
rotation and translation

w = Av + b , w ∼ PA,b(v) ,

if the linear transformation A has a full column
rank. The connection matrices and the biases
of the transformed RTBM are given by:

T−1 → AT−1At , Bv → (A+)tBv − Tb ,

W → (A+)tW , Bh → Bh −W tb .

where A+ is the left pseudo-inverse defined as

A+ = (AtA)−1At .

Example: rotation of θ/4 and scailing of 1/2
(Nv = 2, Nh = 2)
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Limitations



Limitations

Despite the promising results there is one major issue:

The learning process can become slow for (Nh > 5).

Therefore, it can become challenging to estimate the density of models which require a large
hidden sector such as:

• Complicated low-dimensional models

• High dimensional models (Nh ≥ Nv)

Why this happens?

θ(z,Ω) :=
∑
n∈ZN

e2πi
(

1
2n

t
Ωn+n

t
z
)
.

The computation of the RT and its derivatives is computationally challenging due to the
infinite sum over an N -dimensional integer lattice ZN .

The computational times increase exponentially with Nh.
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Improving the RTBM



Factorizability [Pasquale et al., 2022 in preparation]

The RT function has an interesting property that can become useful when dealing with large
matrices. Lets consider the following RT function θ(z,Ω), if we assume that Ω is diagonal the
RT can be factorized as follows:

θ(z,Ω) =

n∏
i=1

θ(zi,Ωii) (1)

We have reduce the computation of a RT in n dimension to the evaluation of n
one-dimensional RT functions!

Average time to compute
the RT using Deconinck
et al., 2002
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Factorizability [Pasquale et al., 2022 in preparation]

Can we speed up the learning process just be evaluating 1d-RT functions? Let’s recall the
expression of the probability distribution obtained by a RTBM:

P (v) =

√
detT

(2π)Nv
e−

1
2v

t
Tv−B

t
v−B

t
vT

−1
Bv

θ̃(Bt
h + vtW |Q)

θ̃(Bt
h −Bt

vT
−1W |Q−W tT−1W )

.

We have to compute two RT function to evaluate P (v)

• θ̃(Bt
h + vtW |Q) if Q diagonal −→ restricted RTBM

• θ̃(Bt
h −Bt

vT
−1W |Q−W tT−1W ) Q−W tT−1W diagonal? not feasible

However, we can observe that the second term is a just for normalization.

Idea: Is there a learning process in which we can avoid computing the partition function for all
system?
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Score Matching [Lyu, 2012]

A particular parameter learning methodology that can address this issue is Score Matching,
which is based on the Fisher divergence.

DF (p||qθ) =
∫

p(x)

∣∣∣∣∣∇x p(x)

p(x)
− ∇x q(x, θ)

q(x, θ)

∣∣∣∣∣
2

dx ,

which slightly different from the Kullback-Leiber divergence:

DKL(p||qθ) =
∫

p(x) log
p(x)

q(x, θ)
dx ,

In the score matching there is no need to evaluate the partition function since all the terms are

of the from
∇x p(x)

p(x)
which leads to the cancellation of the normalizing terms.

Therefore we can get rid of the the non diagonal term in P (v) during the learning process.
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Score Matching [Pasquale et al., 2022 in preparation]

We can simplify the espression for DF under the assumption that our model q(x, θ) is
sufficiently regular, which is the case of the RTBM.

DF (p||qθ) =
∫

p(x)

(∣∣∇x log q(x, θ)
∣∣2 + 2∆x log q(x, θ)

)
+ const

≈
∑N

i=1

∣∣∣∣∣∇vi
log q(vi, θ)

∣∣∣∣∣
2

+ 2∆vi
log q(vi, θ) + const .

We will now show how the Fisher cost function can be evaluated only by computing
1-dimensional RT functions.
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Gradients for RTBM [Pasquale et al., 2022 in preparation]

∂vi logP (v) = −(Tv)i − (Bv)i + (WD)i ,

∂2
vi
logP (v) = −Tii + (WHW t)ii + (WD)2i ,

with D the normalized gradient and H the normalized hessian

(D)i =
∇iθ̃(B

t
h + vtW |Q)

θ̃(Bt
h + vtW |Q)

, (H)ij =
∇i∇j θ̃(B

t
h + vtW |Q)

θ̃(Bt
h + vtW |Q)

.

If Q is diagonal

∂vi logP (v) = −(Tv)i − (Bv)i +

Nh∑
j=1

∂vi θ̃((B
t
h + vtW )j |Qjj)

θ̃((Bt
h + vtW )j |Qjj)

Wji ,

∂2
vi
logP (v) =− Tii +

Nh∑
j=1

∂2
vi
θ̃((Bt

h + vtW )j |Qjj)

θ̃((Bt
h + vtW )j |Qjj)

W 2
ji

−
Nh∑
j=1

(∂vi θ̃((B
t
h + vtW )j |Qjj))

2

θ̃((Bt
h + vtW )j |Qjj)

Wji .

The cost function can be evaluated using only 1d RT functions!
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Applications



Uranium dataset [Pasquale et al., 2022 in preparation]

Figure 1: rRTBMs modelling the concentrations of Uranium and Cesium (first row), Cobalt and Titanium (second row)
and, Cesium and Scandium (third row) for Nh = 2, 4, 6 (left,center,right). The rRTBM contours and histograms of the
original data are shown. 17



Uranium dataset [Pasquale et al., 2022 in preparation]
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Faithful dataset [Pasquale et al., 2022 in preparation]

Figure 2: rRTBMs trained to model the waiting time between eruptions and the duration of the eruption for the Old
Faithful geyser for Nh = 2 (top left), Nh = 4 (top right), Nh = 6 (bottom left) and Nh = 8 (bottom right). The curves
correspond to the rRTBM model and the gray histogram is obtained from the original data with 30 bins.
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Iris dataset [Pasquale et al., 2022 in preparation]

Figure 3: rRTBMs trained to model the joint distribution of sepal width and sepal length from the Iris dataset for Nh = 2

(top left), Nh = 4 (top right), Nh = 6 (bottom left) and Nh = 8 (bottom right). The curves correspond to the rRTBM
model and the gray histogram is obtained from the original data with 30 bins.
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Results [Pasquale et al., 2022 in preparation]

The RTBM in this case does not reach a better perfomance but it is still competitive.
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Conclusion



Outlook

In summary

• The (r)RTBM is a valid model to perform density estimation

• Using score matching we are able to train efficiently using large values of Nh

• Open source code soon available here: https://github.com/RiemannAI/theta

For the future

• Speed up the computation of the RT by moving to a GPU implementation

• Possibility to use this mechanism to perform MC multi-dimensional integration for physics
related problem

22
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Efficient calculation of the 1d RT [Pasquale et al., 2022 in preparation]

The computation of the RT and its derivatives is computationally challenging due to the
infinite sum over an N -dimensional integer lattice ZN

θ(z,Ω) :=
∑
n∈ZN

e2πi
(

1
2n

t
Ωn+n

t
z
)
.

For the multi-dimensional case we can obtain a numerical approximation by summing over an
finite subset of lattice points.

For the 1d case there exist more efficient methods. A possibility is to truncate the series:

θ(z,Ω) ≈ SB(z,Ω) = 1 +
∑

0<n<B

qn
2

(e2πinz + e−2πinz) =: 1 +
∑

0<n<B

vn .

It can be shown (see Labrande, 2015) that vn can be computed recursively, giving us a fast
algorithm to evaluate the RT in dim 1.

vn+1 = q2nv1vn − q4nvn−1 . (2)

where q = eiπΩ .

23



What about the gradients? [Pasquale et al., 2022 in preparation]

To speed up the learning process for the RTBM we would like to have a similar algorithm for
the derivatives of the RT function. In our work he prove that this is possible:

d

dz
θ(z,Ω) ≈ UB(z,Ω) =

∑
1<n<B

−4πnqn
2

sin(2πnz) =:
∑

1<n<B

wn ,

d2

dz2
θ(z,Ω) ≈ VB(z,Ω) =

∑
1<n<B

−8π2n2qn
2

cos(2πnz) =:
∑

1<n<B

ξn .

After a few mathematical passages it can be shown that there exist a recurrence to compute
both wn and ξn.

wn+1 = (n+ 1)

[
2 cos(2πz)

n
q2n+1wn − q4n

n− 1
wn−1

]
,

ξn+1 = (n+ 1)2
[
2 cos(2πz)

n2 q2n+1ξn − 1

(n− 1)2
q4nξn−1

]
.
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Results [Pasquale et al., 2022 in preparation]
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