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LHC: Generative Modeling:

CaloFlow



Fast ML for Surrogate Modeling

CERN-LHCC-2022-005

https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults

Detector simulation (GEANT4) and event generation (MG5, Pythia, Herwig, …) 
are major — and growing — bottlenecks at LHC and other experiments
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Fast ML for Surrogate Modeling

GEANT4  events1010

Surrogate model

SLOW but ACCURATE

FAST and ACCURATE?

4

GEANT4  events105

(GAN, VAE, Normalizing Flow, …)

Learn underlying distribution of GEANT4 events
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CaloFlow

We showed that normalizing flows offer impressive performance gains over 
previous state of the art (GANs) in surrogate modeling of GEANT4 calorimeter 
showers.

Krause & DS 2106.05285, 2110.11377We use the same calorimeter geometry as CaloGAN

We consider a toy calorimeter inspired by the ATLAS ECal:
flat alternating layers of lead and LAr

They form three instrumented layers of dimension
3⇥ 96, 12⇥ 12, and 12⇥ 6
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Used toy calorimeter based on 
ATLAS ECAL


3 layers: 
3x96+12x12+12x6=504 voxels



• , ,  showers (100k each)


• incident E uniformly sampled 1-100 GeV


• goal: train generative model on the showers and learn 

e+ γ π+

p( ⃗E voxels |Einc)

We use the same calorimeter geometry as CaloGAN

The Geant4 configuration of CaloGAN is available at
https://github.com/hep-lbdl/CaloGAN

We produce our own dataset: available at [DOI: 10.5281/zenodo.5904188]

Showers of e+, �, and ⇡+ (100k each)

All are centered and perpendicular

Einc is uniform in [1, 100] GeV and given in addition to the energy
deposits per voxel:

CaloGAN: Paganini, de Oliveira, Nachman [1705.02355, PRL; 1712.10321, PRD]

Claudius Krause (Rutgers) Normalizing Flows at the LHC September 12, 2022 19 / 37

CaloFlow
Krause & DS 2106.05285, 2110.11377



CaloFlow I MAF with RQS 
transformationsKrause & DS 2106.05285those voxels are always zero. This is a sign of mode collapse, since the GAN did not learn to

cover the full available phase space.

Figure 5. Average shower shapes for e
+. Columns are calorimeter layers 0 to 2, top row shows

CaloFlow, center row Geant4, and bottom row CaloGAN
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especially the performance increase in E2/Êtot compared to CaloGAN is remarkable.

• The third rows of figs. 11 – 13 show the layer (depth)- weighted total energy, ld =P2
k=0 kEk, on the left; the layer-weighted energy normalized to the total energy, sd =

ld/Êtot, in the center; and the standard deviation of sd, called shower depth width �sd ,

on the right. The quantity sd was called “shower depth” in [8]. In ld we see CaloFlow

better maps out the low-energy region compared to CaloGAN. Notice also how well

CaloFlow learns the sharp feature in �sd .

Figure 11. Distributions that are sensitive to Flow I for e
+. Top row: energy deposition per layer

and total energy deposition; center row: layer energy normalized to total energy deposition; bottom
row: weighted energy depositions, see text for detailed definitions.

– 20 –

Performance vs GAN much improved!



CaloFlow I MAF with RQS 
transformationsKrause & DS 2106.05285

Figure 14. Distributions that are sensitive to Flow II for e
+. Top row: energy of brightest voxel

compared to the layer energy; second row: energy of second brightest voxel compared to the layer
energy; third row: di↵erence of brightest and second brightest voxel, normalized to their sum; last
row: sparsity of the showers, see text for detailed definitions.
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First to ever pass the “ultimate classifier metric” test: 

DNN binary classifier, generated vs reference samples


Perfect generative model  => 

classifier AUC=0.5


pgen(x) = pref(x)

Table 1. blahblabblah

AUC GEANT4 vs. CaloGAN GEANT4 vs. CaloFlow

e+ 1.000(0) 0.847(8)

� 1.000(0) 0.660(6)

⇡+ 1.000(0) 0.632(2)

1



5.5 Timing benchmarks

Having generated our own CaloGAN sample for this analysis, we are able to perform a

head-to-head comparison of the time required for shower generation between CaloGAN and

CaloFlow. Training times on a Titan V GPU are about 210 min for CaloGAN and

about 22 min for CaloFlow Flow I and 82 min for CaloFlow Flow II. In table 4 we show

the time per shower in ms for di↵erent batch sizes also with a Titan V GPU. For the best

CaloGAN case, we see a saturation around 0.07 ms, compared to 36 ms for CaloFlow,

yielding a relative factor of about 500. Since CaloGAN and CaloFlow have roughly the

same size — CaloGAN has 29,726,280 trainable parameters and Flow I and Flow II of

CaloFlow have a total of 37,914,414 trainable parameters — we believe that the essential

di↵erence in generation time must be due to the MAF architecture that needs to loop over

the full 504-dimensional voxel space in generation. We are currently investigating [73] the

possibility of switching over to a MAF-IAF pair as in Parallel Wavenet [74], which could yield

a speed-up of CaloFlow of the same order of magnitude as the dimensionality of the data,

bringing it in line with CaloGAN’s speed.

Another source of the di↵erence between CaloGAN and CaloFlow generation speeds

is indicated by the two columns listed under CaloGAN in table 4. For CaloGAN we

report two di↵erent timings: one for generating a single batch of size “batch size” and one for

generating a total of 100,000 events. The di↵erence in those two timings arises from Keras-

Tensorflow building the graph for the prediction at the beginning of the function call and

then reusing it for subsequent batches. CaloFlow is using the pytorch [87] based package

nflows [68] and batches are handled using a simple for-loop. We therefore observe no timing

di↵erence for CaloFlow when requesting more samples than the batch size. So it is possible

that we could further speed up the per-event generation time of CaloFlow by implementing

it in Keras-Tensorflow and requesting more events than the batch size.

Table 4. Generation time of a single calorimeter shower in ms. Times were obtained on a Titan V

GPU. Geant4 needs 1772 ms per shower [8].

CaloGAN CaloFlow

batch size batch size requested 100k requested

10 455 2.2 835

100 45.5 0.3 96.1

1000 4.6 0.08 41.4

5000 1.0 0.07 36.2

10000 0.5 0.07 36.2

– 32 –

CaloFlow I
Krause & DS 2106.05285

MAF with RQS 
transformations

Main drawback of MAF: sampling is slow 

Accurate, but not fast!



CaloFlow II
Krause & DS 2110.11377
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Figure 1. Schematic view of the construction of the loss function. Top: x-loss, actual data x is
fed through the teacher and student starting from the top right (indicated in blue). Bottom: z-loss,
generated noise z is fed through the student and teacher starting from the lower left (indicated in
blue). Intermediate coordinates (top: xi; bottom: zi) and RQS parameters (pi) are compared in an
MSE loss and then summed.

the input energy, p1(E0, E1, E2|Etot). In the second step, we use a much larger flow, called

Flow II, to learn the shower shapes conditioned on the energies, p2(~I|E0, E1, E2, Etot).

Flow I is exactly as it was in [17]. In fact, we use the saved weights of [17] throughout

this paper. We did not bother to train an IAF for Flow I, since the time to sample from Flow

I is much, much smaller than the time to sample from Flow II, so a factor of ⇠ 3 speed-up of

Flow I would have a negligible e↵ect on the overall sampling time of CaloFlow v2.

Instead, we focus our attention in this work on training a student IAF for Flow II, based

on the teacher MAF for Flow II from [17]. We use the same hyperparameters (8 blocks, 378

hidden neurons etc.) for the teacher as we used in [17]. (In fact, we use the saved weights

of the MAF trainings from [17] for the training the student here.) Since the student is much

– 8 –

IAF cannot be trained with MLE loss.


Instead we developed a new teacher/student method 
to train it. Based on “Probability Density Distillation”.  
van den Oord et al 1711.10433

Huang et al PMLR 2020


Idea: constrain IAF to be exact inverse of MAF, layer 
by layer and coupling by coupling

The various loss terms are illustrated in fig. 1. In table 1, we demonstrate the successive

improvements to the negative log-likelihood (NLL) for e+ showers due to including these

loss terms, after training for 150 epochs as described in section 4.2. We observe a clear

improvement of the NLL the more terms are added to the loss. 4 Evidently, the student does

best if it is guided as closely as possible. 5

In summary, our final objective function for the teacher-student training is:

L = 0.5

0

BBBB@
MSE(z, z0) +

X

i

MSE(z(i), z0(i)) +
X

i

MSE(p(i)
z , p0(i)z )

| {z }
z-loss

1

CCCCA

+ 0.5

0

BBBB@
MSE(x, x0) +

X

i

MSE(x(i), x0(i)) +
X

i

MSE(p(i)
x , p0(i)x )

| {z }
x-loss

1

CCCCA

(2.16)

We will refer to training with the objective given by (2.16) as “fully-guided” student training.

3 Calorimeter Data

Since this is an improvement of CaloFlow v1 [17], we use the same calorimeter setup as

there, which was based on CaloGAN [7, 8]. Here we provide a very brief description; we

refer the reader to [17] for details. The calorimeter is a simplified version of the ATLAS

electromagnetic calorimeter. It has three layers of sizes 3 ⇥ 96, 12 ⇥ 12 and 12 ⇥ 6 voxels

respectively. The training data are showers of e+, � and ⇡+ with energies uniformly sampled

from 1–100 GeV and perpendicularly incident on the calorimeter simulated with Geant4.

These are the exact same samples that were used to train and evaluate CaloFlow v1. For

each particle, we have: a set of 70,000 showers to train the flow; a set of 30,000 showers for

model selection and validation of the flow; as well as additional sets of 60,000/20,000/20,000

showers to train, validate/calibrate and test the classifier metric of section 5.4.

4 CaloFlow v2

4.1 Architecture

As in [17], we preserve the two-step structure of CaloFlow. In the first step, we use a small

normalizing flow, called Flow I, to learn the distribution of deposited energies conditioned on

4
However, the di↵erence between the last two is quite small, so not adding Lx(i) and Lz(i) to the loss

function provides a further viable loss candidate.
5
In principle, the student does not have to be an IAF, it could also be a simple, fully-connected neural

network [25]. However, in this case we would not have access to the LL as a measure of quality and we would

not be able to train it with the additional loss terms of (2.12)–(2.15).

– 7 –

IAF with RQS transformations

Training only involves fast directions of MAF and IAF

https://arxiv.org/abs/1711.10433


Similarly impressive accuracy

Table 3. AUC and JSD metrics for the classification of Geant4 vs. CaloFlow student showers
(lower numbers are better). Classifiers were trained on each particle type (e+, �, ⇡+) separately.
All entries show mean and standard deviation of 10 classifier re-trainings on the same sample and
are rounded to 3 digits. For comparison, we also give the classifier scores of the CaloFlow teacher
of [17].

DNN

AUC / JSD Geant4 vs. Geant4 vs.

CaloFlow v2 (student) CaloFlow v1 (teacher) [17]

e+
unnormalized 0.785(7) / 0.200(10) 0.847(8) / 0.345(12)

normalized 0.824(5) / 0.255(8) 0.869(2) / 0.376(4)

�
unnormalized 0.761(14) / 0.167(18) 0.660(6) / 0.067(4)

normalized 0.761(4) / 0.159(6) 0.794(4) / 0.213(7)

⇡+
unnormalized 0.729(2) / 0.144(3) 0.632(2) / 0.048(1)

normalized 0.807(2) / 0.231(4) 0.751(4) / 0.148(4)

5.4 Classifier metrics

Next, we exhibit the result of the “ultimate classifier metric” introduced in [17] that gauges the

quality of the generative model through the score of a binary classifier trained to discriminate

between the reference data sample and the generative model sample. Unlike in [17], here

we focus on a simple DNN classifier trained on all of the pixels of the calorimeter shower.8

For simplicity we do not consider a CNN classifier (which takes considerably longer to train

and did not di↵er qualitatively from the DNN in [17]), but we do consider the same two

preprocessing approaches. These are: “unnormalized”, i.e. using the showers as they were

generated as input to the classifier; and “normalized”, i.e. using showers that are normalized

such that they sum to 1 in each calorimeter layer as input to the classifier. In addition to

the energy depositions of each voxel, we give the total energy and the energy deposition per

calorimeter layer to the classifier. Before the final evaluation, we calibrate the classifier using

isotonic regression [32] of sklearn [33] based on the validation dataset, see [17] for more

details.

We see in tab. 3 that in all cases, the classifier scores of the student are in line with those of

the teacher, sometimes slightly worse, and sometimes even slightly better. Most importantly,

8
The DNN architecture is the same as in [17], but a few hyperparameters changed: We now run the

training for 150 epochs (the selected epoch with the largest test accuracy is around epoch 90/135 for normal-

ized/unnormalized data) with a learning rate of 10
�3

.

– 20 –

CaloFlow II
Krause & DS 2110.11377

IAF with RQS transformations

Table 4. Training and evaluation times of CaloFlow and CaloGAN.

CaloFlow CaloGAN Geant4

v1 (teacher) [17] v2 (student)

training 22+82 min + 480 min 210 min 0 min

generation time per shower

batch size batch size req. 100k req.

10 835 ms 5.81 ms 455 ms 2.2 ms 1772 ms

100 96.1 ms 0.60 ms 45.5 ms 0.3 ms 1772 ms

1000 41.4 ms 0.12 ms 4.6 ms 0.08 ms 1772 ms

10000 36.2 ms 0.08 ms 0.5 ms 0.07 ms 1772 ms

they are always significantly di↵erent from unity which indicates that they always remain

much higher-fidelity than the GAN. The fact that the student quality surpasses the teacher’s

in some cases can be explained by the observation we made in section 5.3: Some features that

are not perfectly modeled by the teacher can get accidentally better in a student that does

not exactly follow the teacher.

5.5 Timing benchmarks

Finally, we come to the main raison d’être for the student IAF: realizing the factor of d ⇠ 500

gain in sampling speed compared to the MAF. We summarize training and generation times of

CaloFlow v1, CaloFlow v2, CaloGAN, and Geant4 in table 4. Timings are evaluated

on our Titan V GPU, except for the Geant4 runtime, which is taken from [8]. The training

of the student is understood as being in addition to training the teacher. The di↵erence

in generation times for di↵erent batch sizes in CaloGAN is due to Keras-TensorFlow con-

structing a graph at the beginning of the execution, whereas CaloFlow is based on pytorch

[34] and does the batching only with a Python for-loop with no additional speed-ups. We

see that with the largest batch sizes, CaloFlow v2 fully matches the impressive speed of

CaloGAN (0.08 ms vs. 0.07 ms per shower).

In fig. 12, we show the time needed to generate the samples vs. the size of the requested

dataset, including the times needed to train the generative models.9 Given that many millions

(or even billions!) of simulated events are required by the LHC collaborations for their

analyses, with each event typically involving hundreds or thousands of showers, this figure

demonstrates that the initial computational cost of training the generative models will barely

matter when real-world applications are called for. It is clear that fast and accurate Geant4

emulation will be an extremely worthwhile endeavor at the LHC.

9
Note that fig. 12 and tab. 4 do not include the time needed to generate the Geant4 training data for the

deep generative models.

– 21 –

And a factor of 500 faster, 
on par with GAN!



CaloChallenge 2022

https://calochallenge.github.io/homepage/

Ongoing data challenge for fast calorimeter simulation 

Organizers: Giannelli, Kasieczka, Krause, Nachman, Salamani, DS, Zaborowska


3 datasets: 

• “easy” — official ATLAS CaloSim (~  voxels)

• “medium” — GEANT4 example detector (~  voxels)

• “hard” — GEANT4 example detector (~  voxels)


Tentative deadline: ML4Jets2022@Rutgers in November

102

103

104
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LHC: Anomaly Detection:

ANODE and CATHODE



A Classic (Semi-)Model-Agnostic Search
1D Bump Hunt

14

Idea: assume signal is localized in some feature (usually invariant mass) while 
background is smooth. 


Interpolate from sidebands into signal region (eg window in invariant mass), search 
for an excess. 

Used in many discoveries!



Enhancing the Bump Hunt

Q: If the signal is localized in additional features, can we find it in 
a model-independent way?

15
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primary resonant feature ( )mJJ additional features



A general strategy

16

Claim: the optimal model-agnostic discriminant would be (Neyman & Pearson) 

“Idealized Anomaly Detector”R(x) =
pdata(x)
pbg(x)



A general strategy

16

Claim: the optimal model-agnostic discriminant would be (Neyman & Pearson) 

“Idealized Anomaly Detector”

Proof:

R(x) =
pdata(x)
pbg(x)

pdata(x) = ϵsigpsig(x) + (1 − ϵsig)pbg(x)

R(x) = (1 − ϵsig) + ϵsig
psig(x)
pbg(x)



A general strategy

16

Claim: the optimal model-agnostic discriminant would be (Neyman & Pearson) 

“Idealized Anomaly Detector”

 is monotonic with signal-to-background likelihood 
ratio regardless of unknown, arbitrary signal strength 
and probability density

R(x)

Proof:

R(x) =
pdata(x)
pbg(x)

pdata(x) = ϵsigpsig(x) + (1 − ϵsig)pbg(x)

R(x) = (1 − ϵsig) + ϵsig
psig(x)
pbg(x)



A general strategy

• Cutting on  can greatly enhance the 
significance of the signal over the background.


• Can combine with regular bump hunt in primary 
resonant feature  for data-driven background 
estimation.

R(x) > Rc

mJJ

17

from 1902.02634

Figure 4. Scatter plot of R(x|m) versus log pbackground(x|m) across the test set in the SR. Background
events are shown (as a two-dimensional histogram) in grayscale and individual signal events are shown
in red.

Figure 5. Left: Histogram of R(x|m) evaluated on the test set; Right: the integrated number of
events that survive a threshold on R(x|m). The two distributions are scaled to represent the rates for
500,000 total background events and 500 total signal events, as introduced in Sec. 4.

on R. The Area Under the Curve (AUC) for ANODE is 0.82. For comparison, the CWoLa
hunting approach is also shown in the same plots. The CWoLa classifier is trained using
sideband regions that are 200 GeV wide on either side of the SR. The sidebands are weighted
to have the same number of events as each other and in total, the same as the SR. A single NN
with four hidden layers with 64 nodes each is trained using Keras [122] and TensorFlow [123].
Dropout [124] of 10% is used for each intermediate layer. Intermediate layers use rectified

– 14 –

from 2001.04990

https://arxiv.org/abs/1902.02634
https://arxiv.org/abs/2001.04990


Idea: data vs sideband classifier

18

Collins, Howe & Nachman 1805.02664,1902.02634

2

m

a.u.

SB SR SB

x

pdata(x|m 2 SB)
= pbg(x|m 2 SB)

x

pdata(x|m 2 SR)

x

pdata(x|m 2 SB)
= pbg(x|m 2 SB)

FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

optimal test statistic for a data-versus-background hy-
pothesis test [75].

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events

should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)
from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data
vs. perfectly simulated background). The latter places
an upper bound on the performance of any data-vs-
background anomaly detection technique, and we show
how Cathode essentially saturates its performance.
This means that for the first time, a fully-simulation-
independent anomaly detection method has been demon-
strated to achieve the theoretical upper bound in sensi-
tivity to new physics. The Cathode method is basically
the best that it could possibly be.

Finally, as in [39], we study the case where x and m
are correlated, by adding artificial linear correlations to
two of the features in x. Again we show that Cathode
(like Anode, and unlike CWoLa Hunting) is largely ro-
bust against such correlations, and continues to match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

optimal test statistic for a data-versus-background hy-
pothesis test [75].

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events

should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)
from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data
vs. perfectly simulated background). The latter places
an upper bound on the performance of any data-vs-
background anomaly detection technique, and we show
how Cathode essentially saturates its performance.
This means that for the first time, a fully-simulation-
independent anomaly detection method has been demon-
strated to achieve the theoretical upper bound in sensi-
tivity to new physics. The Cathode method is basically
the best that it could possibly be.

Finally, as in [39], we study the case where x and m
are correlated, by adding artificial linear correlations to
two of the features in x. Again we show that Cathode
(like Anode, and unlike CWoLa Hunting) is largely ro-
bust against such correlations, and continues to match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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Train a NN classifier on SR vs SB data, learn

Rclassifier(x) ≈
pdata,SR(x)
pdata,SB(x)

=
pdata,SR(x)
pbg,SB(x)
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

optimal test statistic for a data-versus-background hy-
pothesis test [75].

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events

should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)
from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data
vs. perfectly simulated background). The latter places
an upper bound on the performance of any data-vs-
background anomaly detection technique, and we show
how Cathode essentially saturates its performance.
This means that for the first time, a fully-simulation-
independent anomaly detection method has been demon-
strated to achieve the theoretical upper bound in sensi-
tivity to new physics. The Cathode method is basically
the best that it could possibly be.

Finally, as in [39], we study the case where x and m
are correlated, by adding artificial linear correlations to
two of the features in x. Again we show that Cathode
(like Anode, and unlike CWoLa Hunting) is largely ro-
bust against such correlations, and continues to match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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Train a NN classifier on SR vs SB data, learn

If  [i.e. features  are independent 
of  in the background] then the classifier gives the 
desired likelihood ratio.

pbg,SB(x) = pbg,SR(x) x
m

Rclassifier(x) →
pdata,SR(x)
pbg,SR(x)

Rclassifier(x) ≈
pdata,SR(x)
pdata,SB(x)

=
pdata,SR(x)
pbg,SB(x)
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

optimal test statistic for a data-versus-background hy-
pothesis test [75].

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events

should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)
from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data
vs. perfectly simulated background). The latter places
an upper bound on the performance of any data-vs-
background anomaly detection technique, and we show
how Cathode essentially saturates its performance.
This means that for the first time, a fully-simulation-
independent anomaly detection method has been demon-
strated to achieve the theoretical upper bound in sensi-
tivity to new physics. The Cathode method is basically
the best that it could possibly be.

Finally, as in [39], we study the case where x and m
are correlated, by adding artificial linear correlations to
two of the features in x. Again we show that Cathode
(like Anode, and unlike CWoLa Hunting) is largely ro-
bust against such correlations, and continues to match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.

from 2109.00546

Train a NN classifier on SR vs SB data, learn

If  [i.e. features  are independent 
of  in the background] then the classifier gives the 
desired likelihood ratio.

pbg,SB(x) = pbg,SR(x) x
m

Rclassifier(x) →
pdata,SR(x)
pbg,SR(x)

Rclassifier(x) ≈
pdata,SR(x)
pdata,SB(x)

=
pdata,SR(x)
pbg,SB(x)

“CWoLa Hunting”
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

optimal test statistic for a data-versus-background hy-
pothesis test [75].

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events

should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)
from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data
vs. perfectly simulated background). The latter places
an upper bound on the performance of any data-vs-
background anomaly detection technique, and we show
how Cathode essentially saturates its performance.
This means that for the first time, a fully-simulation-
independent anomaly detection method has been demon-
strated to achieve the theoretical upper bound in sensi-
tivity to new physics. The Cathode method is basically
the best that it could possibly be.

Finally, as in [39], we study the case where x and m
are correlated, by adding artificial linear correlations to
two of the features in x. Again we show that Cathode
(like Anode, and unlike CWoLa Hunting) is largely ro-
bust against such correlations, and continues to match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

optimal test statistic for a data-versus-background hy-
pothesis test [75].

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events

should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)
from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data
vs. perfectly simulated background). The latter places
an upper bound on the performance of any data-vs-
background anomaly detection technique, and we show
how Cathode essentially saturates its performance.
This means that for the first time, a fully-simulation-
independent anomaly detection method has been demon-
strated to achieve the theoretical upper bound in sensi-
tivity to new physics. The Cathode method is basically
the best that it could possibly be.

Finally, as in [39], we study the case where x and m
are correlated, by adding artificial linear correlations to
two of the features in x. Again we show that Cathode
(like Anode, and unlike CWoLa Hunting) is largely ro-
bust against such correlations, and continues to match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.

from 2109.00546

Train two separate normalizing flows (MAFs) on SR 
and SB events to learn  and 

. 
pdata(x |m ∈ SR)

pdata(x |m ∈ SB) = pbg(x |m ∈ SB)
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

optimal test statistic for a data-versus-background hy-
pothesis test [75].

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events

should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)
from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data
vs. perfectly simulated background). The latter places
an upper bound on the performance of any data-vs-
background anomaly detection technique, and we show
how Cathode essentially saturates its performance.
This means that for the first time, a fully-simulation-
independent anomaly detection method has been demon-
strated to achieve the theoretical upper bound in sensi-
tivity to new physics. The Cathode method is basically
the best that it could possibly be.

Finally, as in [39], we study the case where x and m
are correlated, by adding artificial linear correlations to
two of the features in x. Again we show that Cathode
(like Anode, and unlike CWoLa Hunting) is largely ro-
bust against such correlations, and continues to match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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Train two separate normalizing flows (MAFs) on SR 
and SB events to learn  and 

. 
pdata(x |m ∈ SR)

pdata(x |m ∈ SB) = pbg(x |m ∈ SB)

The SB MAF automatically interpolates into the 
SR, giving an estimate of .pbg(x |m ∈ SR)
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

optimal test statistic for a data-versus-background hy-
pothesis test [75].

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events

should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)
from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data
vs. perfectly simulated background). The latter places
an upper bound on the performance of any data-vs-
background anomaly detection technique, and we show
how Cathode essentially saturates its performance.
This means that for the first time, a fully-simulation-
independent anomaly detection method has been demon-
strated to achieve the theoretical upper bound in sensi-
tivity to new physics. The Cathode method is basically
the best that it could possibly be.

Finally, as in [39], we study the case where x and m
are correlated, by adding artificial linear correlations to
two of the features in x. Again we show that Cathode
(like Anode, and unlike CWoLa Hunting) is largely ro-
bust against such correlations, and continues to match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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Train two separate normalizing flows (MAFs) on SR 
and SB events to learn  and 

. 
pdata(x |m ∈ SR)

pdata(x |m ∈ SB) = pbg(x |m ∈ SB)

The SB MAF automatically interpolates into the 
SR, giving an estimate of .pbg(x |m ∈ SR)

Construct likelihood ratio explicitly.
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

optimal test statistic for a data-versus-background hy-
pothesis test [75].

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events

should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)
from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data
vs. perfectly simulated background). The latter places
an upper bound on the performance of any data-vs-
background anomaly detection technique, and we show
how Cathode essentially saturates its performance.
This means that for the first time, a fully-simulation-
independent anomaly detection method has been demon-
strated to achieve the theoretical upper bound in sensi-
tivity to new physics. The Cathode method is basically
the best that it could possibly be.

Finally, as in [39], we study the case where x and m
are correlated, by adding artificial linear correlations to
two of the features in x. Again we show that Cathode
(like Anode, and unlike CWoLa Hunting) is largely ro-
bust against such correlations, and continues to match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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Train two separate normalizing flows (MAFs) on SR 
and SB events to learn  and 

. 
pdata(x |m ∈ SR)

pdata(x |m ∈ SB) = pbg(x |m ∈ SB)

The SB MAF automatically interpolates into the 
SR, giving an estimate of .pbg(x |m ∈ SR)

Construct likelihood ratio explicitly.

• Pros: robust against correlations!
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

optimal test statistic for a data-versus-background hy-
pothesis test [75].

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events

should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)
from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data
vs. perfectly simulated background). The latter places
an upper bound on the performance of any data-vs-
background anomaly detection technique, and we show
how Cathode essentially saturates its performance.
This means that for the first time, a fully-simulation-
independent anomaly detection method has been demon-
strated to achieve the theoretical upper bound in sensi-
tivity to new physics. The Cathode method is basically
the best that it could possibly be.

Finally, as in [39], we study the case where x and m
are correlated, by adding artificial linear correlations to
two of the features in x. Again we show that Cathode
(like Anode, and unlike CWoLa Hunting) is largely ro-
bust against such correlations, and continues to match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.

from 2109.00546

Train two separate normalizing flows (MAFs) on SR 
and SB events to learn  and 

. 
pdata(x |m ∈ SR)

pdata(x |m ∈ SB) = pbg(x |m ∈ SB)

The SB MAF automatically interpolates into the 
SR, giving an estimate of .pbg(x |m ∈ SR)

Construct likelihood ratio explicitly.

• Pros: robust against correlations!

• Cons: density estimation much harder than classification
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

optimal test statistic for a data-versus-background hy-
pothesis test [75].

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events

should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)
from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data
vs. perfectly simulated background). The latter places
an upper bound on the performance of any data-vs-
background anomaly detection technique, and we show
how Cathode essentially saturates its performance.
This means that for the first time, a fully-simulation-
independent anomaly detection method has been demon-
strated to achieve the theoretical upper bound in sensi-
tivity to new physics. The Cathode method is basically
the best that it could possibly be.

Finally, as in [39], we study the case where x and m
are correlated, by adding artificial linear correlations to
two of the features in x. Again we show that Cathode
(like Anode, and unlike CWoLa Hunting) is largely ro-
bust against such correlations, and continues to match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.

from 2109.00546

“ANOmaly detection with  
Density Estimation (ANODE)”

Train two separate normalizing flows (MAFs) on SR 
and SB events to learn  and 

. 
pdata(x |m ∈ SR)

pdata(x |m ∈ SB) = pbg(x |m ∈ SB)

The SB MAF automatically interpolates into the 
SR, giving an estimate of .pbg(x |m ∈ SR)

Construct likelihood ratio explicitly.

• Pros: robust against correlations!

• Cons: density estimation much harder than classification
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

optimal test statistic for a data-versus-background hy-
pothesis test [75].

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events

should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)
from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data
vs. perfectly simulated background). The latter places
an upper bound on the performance of any data-vs-
background anomaly detection technique, and we show
how Cathode essentially saturates its performance.
This means that for the first time, a fully-simulation-
independent anomaly detection method has been demon-
strated to achieve the theoretical upper bound in sensi-
tivity to new physics. The Cathode method is basically
the best that it could possibly be.

Finally, as in [39], we study the case where x and m
are correlated, by adding artificial linear correlations to
two of the features in x. Again we show that Cathode
(like Anode, and unlike CWoLa Hunting) is largely ro-
bust against such correlations, and continues to match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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C. Classifier

The third step of the Cathode method is to train
a classifier to distinguish the generated sample events
(that should follow the background distribution in the
SR) from the mock data (that follow the background plus
signal distribution in the SR). For all the variations we
will explore (including CWoLa Hunting), we will use the
same classifier architecture. This consists of 3 hidden

layers with 64 nodes each and a binary cross-entropy loss.

The binary classifier, also implemented with Py-
Torch [93], is trained for 100 epochs, using the Adam [94]
optimizer with a learning rate of 10�3. When the classes
are imbalanced (as will be the case when we oversam-
ple the background model), they are reweighted in the
loss computation accordingly, such that they contribute
equally. Note that here classes refer to the sampled
events and the mock data, not signal and background
events.

For this step, we divide the mock data in the SR in half,
reserving 60,000 events for training the classifier and the
remaining 60,000 events for validation (model selection).
In a real-life application one would want to perform k-
fold cross validation so as to not throw away half of the
events. However, as this is a proof of concept we do not
employ this here.

Unless stated otherwise, we sample in total 400,000
events from the MAF generative model (so N = 40, 000
in the description of Section III B), which are distributed
equally (200,000 each) into the training and validation set
for the classifier. Di↵erent choices will then be compared
in Section IVD.

During training, the loss is recorded on the validation
set, as shown in Fig. 5. The model states of the 10 epochs
with the lowest validation losses are used to construct an
ensemble prediction. As in the density estimator ensem-
ble, these epochs do not need to be consecutive. In the
ensembling, the individual predictions of each data point
are averaged. Since the loss is defined with respect to
labels indicating whether a data point is from mock data
or sampled events, this approach does not rely on any
truth information pertaining to the anomaly.

FIG. 5. Training and validation loss of the classifier (dotted
lines) and the 5 epoch moving average (solid lines) during
training. The accuracy is also shown, which in the case of
low signal contamination should oscillate around 0.5 if the
two classes are indistinguishable.
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

optimal test statistic for a data-versus-background hy-
pothesis test [75].

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events

should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)
from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data
vs. perfectly simulated background). The latter places
an upper bound on the performance of any data-vs-
background anomaly detection technique, and we show
how Cathode essentially saturates its performance.
This means that for the first time, a fully-simulation-
independent anomaly detection method has been demon-
strated to achieve the theoretical upper bound in sensi-
tivity to new physics. The Cathode method is basically
the best that it could possibly be.

Finally, as in [39], we study the case where x and m
are correlated, by adding artificial linear correlations to
two of the features in x. Again we show that Cathode
(like Anode, and unlike CWoLa Hunting) is largely ro-
bust against such correlations, and continues to match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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Before the mock data and sampled events are passed on
to the classifier, the features are re-standardized, this
time using the mean and standard deviation of the SR
data features. Here, a logit transformation is not used
as it has consistently resulted in sub-optimal anomaly
detection performance.

The resulting distributions of the sampled events and
the mock data background in the validation dataset are
shown in Fig. 4. One can see that there is a notable over-
lap between the two distributions in all auxiliary features,
as well as on the mJJ distribution drawn from the KDE
fit.
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C. Classifier

The third step of the Cathode method is to train
a classifier to distinguish the generated sample events
(that should follow the background distribution in the
SR) from the mock data (that follow the background plus
signal distribution in the SR). For all the variations we
will explore (including CWoLa Hunting), we will use the
same classifier architecture. This consists of 3 hidden

layers with 64 nodes each and a binary cross-entropy loss.

The binary classifier, also implemented with Py-
Torch [93], is trained for 100 epochs, using the Adam [94]
optimizer with a learning rate of 10�3. When the classes
are imbalanced (as will be the case when we oversam-
ple the background model), they are reweighted in the
loss computation accordingly, such that they contribute
equally. Note that here classes refer to the sampled
events and the mock data, not signal and background
events.

For this step, we divide the mock data in the SR in half,
reserving 60,000 events for training the classifier and the
remaining 60,000 events for validation (model selection).
In a real-life application one would want to perform k-
fold cross validation so as to not throw away half of the
events. However, as this is a proof of concept we do not
employ this here.

Unless stated otherwise, we sample in total 400,000
events from the MAF generative model (so N = 40, 000
in the description of Section III B), which are distributed
equally (200,000 each) into the training and validation set
for the classifier. Di↵erent choices will then be compared
in Section IVD.

During training, the loss is recorded on the validation
set, as shown in Fig. 5. The model states of the 10 epochs
with the lowest validation losses are used to construct an
ensemble prediction. As in the density estimator ensem-
ble, these epochs do not need to be consecutive. In the
ensembling, the individual predictions of each data point
are averaged. Since the loss is defined with respect to
labels indicating whether a data point is from mock data
or sampled events, this approach does not rely on any
truth information pertaining to the anomaly.

FIG. 5. Training and validation loss of the classifier (dotted
lines) and the 5 epoch moving average (solid lines) during
training. The accuracy is also shown, which in the case of
low signal contamination should oscillate around 0.5 if the
two classes are indistinguishable.
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

optimal test statistic for a data-versus-background hy-
pothesis test [75].

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events

should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)
from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data
vs. perfectly simulated background). The latter places
an upper bound on the performance of any data-vs-
background anomaly detection technique, and we show
how Cathode essentially saturates its performance.
This means that for the first time, a fully-simulation-
independent anomaly detection method has been demon-
strated to achieve the theoretical upper bound in sensi-
tivity to new physics. The Cathode method is basically
the best that it could possibly be.

Finally, as in [39], we study the case where x and m
are correlated, by adding artificial linear correlations to
two of the features in x. Again we show that Cathode
(like Anode, and unlike CWoLa Hunting) is largely ro-
bust against such correlations, and continues to match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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time using the mean and standard deviation of the SR
data features. Here, a logit transformation is not used
as it has consistently resulted in sub-optimal anomaly
detection performance.
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shown in Fig. 4. One can see that there is a notable over-
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as well as on the mJJ distribution drawn from the KDE
fit.
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The binary classifier, also implemented with Py-
Torch [93], is trained for 100 epochs, using the Adam [94]
optimizer with a learning rate of 10�3. When the classes
are imbalanced (as will be the case when we oversam-
ple the background model), they are reweighted in the
loss computation accordingly, such that they contribute
equally. Note that here classes refer to the sampled
events and the mock data, not signal and background
events.

For this step, we divide the mock data in the SR in half,
reserving 60,000 events for training the classifier and the
remaining 60,000 events for validation (model selection).
In a real-life application one would want to perform k-
fold cross validation so as to not throw away half of the
events. However, as this is a proof of concept we do not
employ this here.

Unless stated otherwise, we sample in total 400,000
events from the MAF generative model (so N = 40, 000
in the description of Section III B), which are distributed
equally (200,000 each) into the training and validation set
for the classifier. Di↵erent choices will then be compared
in Section IVD.

During training, the loss is recorded on the validation
set, as shown in Fig. 5. The model states of the 10 epochs
with the lowest validation losses are used to construct an
ensemble prediction. As in the density estimator ensem-
ble, these epochs do not need to be consecutive. In the
ensembling, the individual predictions of each data point
are averaged. Since the loss is defined with respect to
labels indicating whether a data point is from mock data
or sampled events, this approach does not rely on any
truth information pertaining to the anomaly.

FIG. 5. Training and validation loss of the classifier (dotted
lines) and the 5 epoch moving average (solid lines) during
training. The accuracy is also shown, which in the case of
low signal contamination should oscillate around 0.5 if the
two classes are indistinguishable.
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).
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sifier (as in CWoLa Hunting) to distinguish pdata(x|m)
from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data
vs. perfectly simulated background). The latter places
an upper bound on the performance of any data-vs-
background anomaly detection technique, and we show
how Cathode essentially saturates its performance.
This means that for the first time, a fully-simulation-
independent anomaly detection method has been demon-
strated to achieve the theoretical upper bound in sensi-
tivity to new physics. The Cathode method is basically
the best that it could possibly be.

Finally, as in [39], we study the case where x and m
are correlated, by adding artificial linear correlations to
two of the features in x. Again we show that Cathode
(like Anode, and unlike CWoLa Hunting) is largely ro-
bust against such correlations, and continues to match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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these were the parameters used by the density estimator).
Before the mock data and sampled events are passed on
to the classifier, the features are re-standardized, this
time using the mean and standard deviation of the SR
data features. Here, a logit transformation is not used
as it has consistently resulted in sub-optimal anomaly
detection performance.

The resulting distributions of the sampled events and
the mock data background in the validation dataset are
shown in Fig. 4. One can see that there is a notable over-
lap between the two distributions in all auxiliary features,
as well as on the mJJ distribution drawn from the KDE
fit.

FIG. 4. Normalized distributions of the features of the actual
background and of the synthetic samples.

C. Classifier

The third step of the Cathode method is to train
a classifier to distinguish the generated sample events
(that should follow the background distribution in the
SR) from the mock data (that follow the background plus
signal distribution in the SR). For all the variations we
will explore (including CWoLa Hunting), we will use the
same classifier architecture. This consists of 3 hidden

layers with 64 nodes each and a binary cross-entropy loss.

The binary classifier, also implemented with Py-
Torch [93], is trained for 100 epochs, using the Adam [94]
optimizer with a learning rate of 10�3. When the classes
are imbalanced (as will be the case when we oversam-
ple the background model), they are reweighted in the
loss computation accordingly, such that they contribute
equally. Note that here classes refer to the sampled
events and the mock data, not signal and background
events.

For this step, we divide the mock data in the SR in half,
reserving 60,000 events for training the classifier and the
remaining 60,000 events for validation (model selection).
In a real-life application one would want to perform k-
fold cross validation so as to not throw away half of the
events. However, as this is a proof of concept we do not
employ this here.

Unless stated otherwise, we sample in total 400,000
events from the MAF generative model (so N = 40, 000
in the description of Section III B), which are distributed
equally (200,000 each) into the training and validation set
for the classifier. Di↵erent choices will then be compared
in Section IVD.

During training, the loss is recorded on the validation
set, as shown in Fig. 5. The model states of the 10 epochs
with the lowest validation losses are used to construct an
ensemble prediction. As in the density estimator ensem-
ble, these epochs do not need to be consecutive. In the
ensembling, the individual predictions of each data point
are averaged. Since the loss is defined with respect to
labels indicating whether a data point is from mock data
or sampled events, this approach does not rely on any
truth information pertaining to the anomaly.

FIG. 5. Training and validation loss of the classifier (dotted
lines) and the 5 epoch moving average (solid lines) during
training. The accuracy is also shown, which in the case of
low signal contamination should oscillate around 0.5 if the
two classes are indistinguishable.
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

optimal test statistic for a data-versus-background hy-
pothesis test [75].

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events

should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)
from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data
vs. perfectly simulated background). The latter places
an upper bound on the performance of any data-vs-
background anomaly detection technique, and we show
how Cathode essentially saturates its performance.
This means that for the first time, a fully-simulation-
independent anomaly detection method has been demon-
strated to achieve the theoretical upper bound in sensi-
tivity to new physics. The Cathode method is basically
the best that it could possibly be.

Finally, as in [39], we study the case where x and m
are correlated, by adding artificial linear correlations to
two of the features in x. Again we show that Cathode
(like Anode, and unlike CWoLa Hunting) is largely ro-
bust against such correlations, and continues to match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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these were the parameters used by the density estimator).
Before the mock data and sampled events are passed on
to the classifier, the features are re-standardized, this
time using the mean and standard deviation of the SR
data features. Here, a logit transformation is not used
as it has consistently resulted in sub-optimal anomaly
detection performance.

The resulting distributions of the sampled events and
the mock data background in the validation dataset are
shown in Fig. 4. One can see that there is a notable over-
lap between the two distributions in all auxiliary features,
as well as on the mJJ distribution drawn from the KDE
fit.

FIG. 4. Normalized distributions of the features of the actual
background and of the synthetic samples.

C. Classifier

The third step of the Cathode method is to train
a classifier to distinguish the generated sample events
(that should follow the background distribution in the
SR) from the mock data (that follow the background plus
signal distribution in the SR). For all the variations we
will explore (including CWoLa Hunting), we will use the
same classifier architecture. This consists of 3 hidden

layers with 64 nodes each and a binary cross-entropy loss.

The binary classifier, also implemented with Py-
Torch [93], is trained for 100 epochs, using the Adam [94]
optimizer with a learning rate of 10�3. When the classes
are imbalanced (as will be the case when we oversam-
ple the background model), they are reweighted in the
loss computation accordingly, such that they contribute
equally. Note that here classes refer to the sampled
events and the mock data, not signal and background
events.

For this step, we divide the mock data in the SR in half,
reserving 60,000 events for training the classifier and the
remaining 60,000 events for validation (model selection).
In a real-life application one would want to perform k-
fold cross validation so as to not throw away half of the
events. However, as this is a proof of concept we do not
employ this here.

Unless stated otherwise, we sample in total 400,000
events from the MAF generative model (so N = 40, 000
in the description of Section III B), which are distributed
equally (200,000 each) into the training and validation set
for the classifier. Di↵erent choices will then be compared
in Section IVD.

During training, the loss is recorded on the validation
set, as shown in Fig. 5. The model states of the 10 epochs
with the lowest validation losses are used to construct an
ensemble prediction. As in the density estimator ensem-
ble, these epochs do not need to be consecutive. In the
ensembling, the individual predictions of each data point
are averaged. Since the loss is defined with respect to
labels indicating whether a data point is from mock data
or sampled events, this approach does not rely on any
truth information pertaining to the anomaly.

FIG. 5. Training and validation loss of the classifier (dotted
lines) and the 5 epoch moving average (solid lines) during
training. The accuracy is also shown, which in the case of
low signal contamination should oscillate around 0.5 if the
two classes are indistinguishable.
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

optimal test statistic for a data-versus-background hy-
pothesis test [75].

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events

should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)
from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data
vs. perfectly simulated background). The latter places
an upper bound on the performance of any data-vs-
background anomaly detection technique, and we show
how Cathode essentially saturates its performance.
This means that for the first time, a fully-simulation-
independent anomaly detection method has been demon-
strated to achieve the theoretical upper bound in sensi-
tivity to new physics. The Cathode method is basically
the best that it could possibly be.

Finally, as in [39], we study the case where x and m
are correlated, by adding artificial linear correlations to
two of the features in x. Again we show that Cathode
(like Anode, and unlike CWoLa Hunting) is largely ro-
bust against such correlations, and continues to match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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as it has consistently resulted in sub-optimal anomaly
detection performance.
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shown in Fig. 4. One can see that there is a notable over-
lap between the two distributions in all auxiliary features,
as well as on the mJJ distribution drawn from the KDE
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reserving 60,000 events for training the classifier and the
remaining 60,000 events for validation (model selection).
In a real-life application one would want to perform k-
fold cross validation so as to not throw away half of the
events. However, as this is a proof of concept we do not
employ this here.

Unless stated otherwise, we sample in total 400,000
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in the description of Section III B), which are distributed
equally (200,000 each) into the training and validation set
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set, as shown in Fig. 5. The model states of the 10 epochs
with the lowest validation losses are used to construct an
ensemble prediction. As in the density estimator ensem-
ble, these epochs do not need to be consecutive. In the
ensembling, the individual predictions of each data point
are averaged. Since the loss is defined with respect to
labels indicating whether a data point is from mock data
or sampled events, this approach does not rely on any
truth information pertaining to the anomaly.

FIG. 5. Training and validation loss of the classifier (dotted
lines) and the 5 epoch moving average (solid lines) during
training. The accuracy is also shown, which in the case of
low signal contamination should oscillate around 0.5 if the
two classes are indistinguishable.
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labels indicating whether a data point is from mock data
or sampled events, this approach does not rely on any
truth information pertaining to the anomaly.

FIG. 5. Training and validation loss of the classifier (dotted
lines) and the 5 epoch moving average (solid lines) during
training. The accuracy is also shown, which in the case of
low signal contamination should oscillate around 0.5 if the
two classes are indistinguishable.“Classifying Anomalies THrough 

Outer Density Estimation 
(CATHODE)”

https://arxiv.org/abs/2109.00546
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

optimal test statistic for a data-versus-background hy-
pothesis test [75].

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events

should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)
from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data
vs. perfectly simulated background). The latter places
an upper bound on the performance of any data-vs-
background anomaly detection technique, and we show
how Cathode essentially saturates its performance.
This means that for the first time, a fully-simulation-
independent anomaly detection method has been demon-
strated to achieve the theoretical upper bound in sensi-
tivity to new physics. The Cathode method is basically
the best that it could possibly be.

Finally, as in [39], we study the case where x and m
are correlated, by adding artificial linear correlations to
two of the features in x. Again we show that Cathode
(like Anode, and unlike CWoLa Hunting) is largely ro-
bust against such correlations, and continues to match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.

from 2109.00546

• CWoLa Hunting: classifier between SB and SR 
data


• ANODE: two conditional density estimators on 
SB and SR data; interpolate SB density estimator 
into SR


• CATHODE: single conditional density estimator 
on SB data; sample interpolated SB density 
estimator in SR; classifier between sampled 
events and data in SR
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• Simulated with Pythia8 + Delphes

• pT(J1)>1.2 TeV trigger

• 4-vectors of every reconstructed 

particle in the event

https://doi.org/10.5281/zenodo.2629072


LHCO2020 R&D Dataset

23

Figure 2. Histograms for the invariant mass of the leading two jets for the Standard Model background
as well as the injected signal. There are 1 million background events and 1000 signal events.

epochs results in a stable result. Averaging over more epochs does not further improve the
stability. All results with ANODE present the SB density estimator with this averaging scheme
for the last 10 epochs.

Figure 4 shows a scatter plot of R(x|m) versus log pbackground(x|m) for the test set in the
SR. As desired, the background is mostly concentrated around R(x|m) = 1, while there is a long
tail for signal events at higher values of R(x|m) and between ≠2 < log pbackground(x|m) < 2.
This is exactly what is expected for this signal: it is an over-density (R > 1) in a region of
phase space that is relatively rare for the background (pbackground(x|m) π 1).

The background density in Fig. 4 also shows that the R(x|m) is narrower around 1 when
pbackground(x|m) is large and more spread out when pbackground(x|m) π 1. This is evidence
that the density estimation is more accurate when the densities are high and worse when
the densities are low. This is also to be expected: if there are many data points close to one
another, it should be easier to estimate their density than if the data points are very sparse.

Another view of the results is presented in Fig. 5, with one-dimensional information
about R(x|m) in the SR. The left plot of Fig. 5 shows that the background is centered and
approximately symmetric around R = 1 with a standard deviation of approximately 17%.
This width is due to various sources, including the accuracy of the SR density, the accuracy of
the SB density, and the quality of the interpolation from SB to SR. Each of these sources has
contributions from the finite size of the datasets used for training, the neural network flexibility,
and the training procedure. The right plot of Fig. 5 presents the number of background and
signal events as a function of a threshold R > Rc. The starting point are the original numbers
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Benchmark signal strength:
Figure 3. The four features used for classification: mJ1 (top left), mJ1 ≠ mJ2 (top right), ·J1

21 (bottom
left), and ·J2

21 (bottom right). These histograms are inclusive in mJJ . There are 1 million background
events and 1000 signal events for the mass histograms.

background (40,000) and signal (400) numbers in the SR window and the fiducial window.
Starting from low S/B and S/

Ô
B one can achieve S/B > 1 and a high S/

Ô
B with a threshold

requirement on R. Figure 6 shows that the signal is clearly visible in the x distribution after
applying such a threshold requirement.

The performance of R as an anomaly detector is further quantified by the Receiver
Operating Characteristic (ROC) and Significance Improvement Characteristic (SIC) curves in
Fig. 7. These metrics are obtained by scanning R and computing the signal e�ciency (true
positive rate) and background e�ciency (false positive rate) after a threshold requirement
on R. The Area Under the Curve (AUC) for ANODE is 0.82. For comparison, the CWoLa
hunting approach is also shown in the same plots. The CWoLa classifier is trained using
sideband regions that are 200 GeV wide on either side of the SR. The sidebands are weighted
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FIG. 6. Background rejection (left) and significance improvement (right) of the various anomaly classifiers as a function of
the signal e�ciency. The solid lines are deduced from a median value of 10 fully independent trainings on the same training,
validation and evaluation set. The uncertainty bands quantify the variance from retraining the NNs on the same, fixed dataset
and are defined such that they contain 68% of the runs around the median.

FIG. 7. Left: Median maximum significance improvement of each method with 10 di↵erent signal injections (leading to a
di↵erent split of training, validation and evaluation sets in each run) at each decreasing value of signal/background ratios.
Here, the 68% hatched uncertainty bands quantify the variance (around the median) from both retrainings of the NN and

random realizations of the training and validation data, including di↵erent realizations of the 1,000 injected signal events.
Right: Achieved maximum significance, which is computed by multiplying the uncut significance by the maximum significance
improvement. Both plots feature the significance without any cut applied in the upper horizontal axis. The dotted lines on the
right hand side denote 3 and 5 sigma significance values.

and the simulation-dependent methods. The fact
that Cathode is only marginally worse than the
idealized anomaly detector (in fact, they are over-
lapping within their respective error bands al-
most everywhere) is truly striking. The idealized
anomaly detector is meant to provide an upper
bound on the performance of any data vs. back-
ground anomaly detection method. The fact that
the Cathode method is nearly saturating it in-
dicates that Cathode is achieving close to opti-
mal performance on the LHCO R&D dataset. Evi-

dently, the background in the SR is being extremely
well modeled by the interpolated conditional den-
sity estimator.

• Finally, we see from Fig. 6 that while Cathode and
the idealized anomaly detector are outperformed
by the supervised classifier at higher signal e�cien-
cies, at lower signal e�ciencies their performances
are all increasingly comparable. The behavior at
high signal e�ciency may be explained by the fact
that there is simply too much background to find
the signal; meanwhile, at low signal e�ciency, the

Significance 
improvement 
characteristic 
(SIC): ϵS / ϵB
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CATHODE outperforms CWoLa and ANODE and nearly saturates the idealized anomaly detector!
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CATHODE outperforms CWoLa and ANODE and nearly saturates the idealized anomaly detector!
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Initial significance was ~2.2σ  
=> a ~30σ anomaly could be hiding in the data right now!
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Stellar Streams

Stellar streams are cold, tidally-stripped remnants of globular clusters and 
dwarf galaxies, orbiting our galaxy
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https://www.youtube.com/watch?v=vXDF0UQd_n8
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Stellar streams are cold, tidally-stripped remnants of globular clusters and 
dwarf galaxies, orbiting our galaxy
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https://www.youtube.com/watch?v=vXDF0UQd_n8


Known Stellar Streams (candidates)
https://github.com/cmateu/galstreams
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Stellar Streams and Dark Matter

They are very interesting objects of study for astrophysicists and particle physicists. 


In particular, they could be unique probes into dark matter substructure. 

dynamical evidence of a dark halo substructure 3

Figure 1. (Top) Likely members of the GD-1 stellar stream, cleanly selected using Gaia proper motions and PanSTARRS
photometry, reveal two significant gaps located at �1 ⇡ �20� and �1 ⇡ �40�, and dubbed G-20 and G-40, respectively. There
is a long, thin spur extending for ⇡ 10� from the G-40 gap. (Bottom) An idealized model of GD-1, whose progenitor disrupted
at �1 ⇡ �20� to produce the G-20 gap, and which has been perturbed by a compact, massive object to produce the G-40 gap.
The orbital structure of stars closest to the passing perturber is distorted into a loop of stars that after 0.5Gyr appears as an
underdensity coinciding with the observed gap, and extends out of the stream similar to the observed spur.

To highlight the complex structure of the GD-1
stream, we present the distribution of likely stream
members at the top of Figure 1. As a first step in find-
ing likely members, we followed Price-Whelan & Bonaca
(2018) in selecting stars consistent with an old and
metal-poor population at a distance of 8 kpc, and mov-
ing retrograde with respect to the Galactic disk, with
proper motions in the GD-1 reference frame (µ�1 , µ�2) ⇡
(�7, 0) mas yr�1. The spatial distribution of these stars
in the �2 direction (i.e. perpendicular to the stream) is
modeled as a combination of a constant background, a
stream component at the location of the main stream
track, and one additional Gaussian component on ei-
ther side of the main stream to capture stream features
beyond the main track. We solved for the normaliza-
tion, position and width of every component by explor-
ing the parameter space with an ensemble MCMC sam-
pler (Foreman-Mackey et al. 2013). We used 256 walkers
that ran for a total of 1280 steps, and kept the final 256
steps to generate posterior samples in these parameters.
The above procedure is a full-stream generalization of
the calculation in (Price-Whelan & Bonaca 2018) that
quantified the fraction of stars in the additional compo-
nents at the locations of the spur and the blob. Finally,
we define a stream membership probability, pmem, as
the joint probability of a star belonging either to the
main stream or the additional feature, evaluate these
probabilities using MCMC samples and apply them to
every star. The upper panel of Figure 1 shows stars with

pmem > 0.5, with larger and darker points representing
stars with a higher membership probability.
Most likely GD-1 members trace a thin stream, whose

width varies between � ⇡ 100 and 300. As noted by
Price-Whelan & Bonaca (2018), the stellar density along
the stream is not uniform, and there are two signifi-
cant underdensities, or gaps, located at �1 ⇡ �40� and
�1 ⇡ �20�, which we refer to as G-40 and G-20, respec-
tively. The main focus of this work are structures related
to the G-40 gap, so if not specified, the gap refers to G-
40. The additional, feature components are above the
background density in the spur region, �1 ⇡ �35�, and
the blob region, �1 ⇡ �15�, and consistent with zero
along the rest of the stream. In the following section we
present a model of GD-1 that simultaneously explains
the gap in the stream and the spur extending from the
stream.

3. MODELING THE PERTURBED GD-1 STREAM

3.1. Setup and the fiducial model

Unlike the observed GD-1, a globular cluster disrupt-
ing on the GD-1 orbit in a simple — analytic and smooth
— galaxy creates a stream that is also smooth (Price-
Whelan & Bonaca 2018). This model follows stars as
they leave the progenitor, and accounts for their epicylic
motion relative to the progenitor’s orbit (Küpper et al.
2008, 2010; Fardal et al. 2015). The resulting pattern
of over- and underdensities is much more uniform than
the observed stream, so the full extent of density varia-

Bonaca et al 2019
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Properties of stellar streams

6 Malhan, Ibata & Martin

Figure 4. Properties of a sample of previously-discovered streams, as recovered by the STREAMFINDER. The first, second, third and fourth
rows show the properties of the GD-1, Jhelum, Indus and Orphan streams, respectively. The columns reproduce, from left to right, the
equatorial coordinates of the structures, the distance solutions found by the algorithm (for representative metallicity values), the proper
motion distribution (with observations in red, model solutions in blue, and the full DR2 sample in grey), and the colour-magnitude
distribution of the stars (with observations in red and template model in blue) selected by STREAMFINDER. The distance solutions found
by the algorithm match closely the distance values that have been previously derived for these streams: D� ⇠ 8 kpc for GD-1 (Grillmair
& Dionatos 2006), D� ⇠ 13.2 kpc and ⇠ 16.6 kpc for Jhelum and Indus, respectively (Shipp et al. 2018) and D� = [33 � 38] kpc for
Orphan (Newberg et al. 2010). The CMD template models, shown in blue in the last column, have been plotted at the appropriate
distance for the respective streams. The colour-magnitude diagram of the Orphan stream might seem peculiar, but here we only see the
red-giant branch due to the trimming of the data sample below G = 19.5.

the stream-like structures recovered by the algorithm are not
associated with the extinction correction. In Figures 7 and
8, we present our summary plots made by combining the dis-
tance and metallicity samples for the north and south hemi-
spheres, respectively. The top panels of these diagrams show
the estimate of the distances of these structures (provided
by the algorithm), while the bottom panels show an esti-
mate of the magnitude of the tangential velocity calculated
using the measured Gaia proper motions combined with the
distance estimates. Many structures are beautifully resolved
in this multi-parameter space.

Our aim in this contribution is not to present a thorough
or complete census of halo streams (since it would require

considerable more processing time to examine the necessary
parameter space), but rather to present a preview of the
large-scale stream structure of our Galaxy. Nevertheless, we
have selected by hand a small number of structures that
appear clearly in our maps, with kinematic properties that
distinguish them from the contaminating Galactic popula-
tion, and that are clearly not artefacts produced by Gaia’s
scanning law. A large number of other stream candidates
have a clearly-defined stream-like morphology, but possess
proper motions distributions that are similar to that of the
halo, and we deem that they require further follow-up to be
confident of their nature.

The locations of the five structures we selected are
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using the measured Gaia proper motions combined with the
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tion, and that are clearly not artefacts produced by Gaia’s
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distance for the respective streams. The colour-magnitude diagram of the Orphan stream might seem peculiar, but here we only see the
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Streams are local overdensities in position, proper motion, and photometric space.
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STREAMFINDER
Malhan & Ibata 2018

STREAMFINDER is the current state of the art and 
has found many new stream candidates in the Gaia 
data. 


They assume a particular form of the Galactic 
potential and isochrones, and integrate trial orbits to 
find statistically significant groups of stars consistent 
with a stream.

2 Malhan & Ibata

2006), Lethe, Cocytos, and Styx (Grillmair 2016), and most
recently the Eridanus and Palomar 15 streams (Myeong
et al. 2017) and the 11 new streams detected in the DES
(Shipp et al. 2018) were all found with this technique. How-
ever, the drawback of this method is that it does not incor-
porate kinematics and its performance is expected to drop
significantly if the structure possesses a significant distance
gradient.

(ii) Detection of co-moving groups of stars: Several halo
substructures were initially identified as groups of stars of
similar type (e.g. RR Lyrae, Blue Horizontal Branch Stars)
that are contained within a small phase-space volume. Sev-
eral streams in the Milky Way have been detected by em-
ploying this or a variation of this technique (Aquarius by
Williams et al. 2011, Arcturus by Arifyanto & Fuchs 2006
and the Virgo stream by Du↵au et al. 2006). The drawback
of this approach lies in the fact that it requires the stars to
have complete kinematic information. This requirement will
not be completely fulfilled in the Galactic halo (where the
streams of interest for dark matter studies lie) even in Gaia
DR2.

(iii) Pole counts: The Pole Count technique (Johnston
et al. 1996), works well for identifying substructures that
are on great circle paths around the Milky Way and are of
high contrast (it was useful in detecting structures like the
Sagittarius stream Ibata et al. 2002b). This method can be
further improved by supplying the algorithm the available
kinematic information (Mateu et al. 2017). The method is
expected to reveal only those streams that lie almost along
great circular paths on the sky, and the streams on rather
complex orbits can again go undetected.

However, in light of the revolutionary dataset that Gaia
will deliver, we desired to build an algorithm that is able
to use as much as possible of our prior knowledge of stel-
lar streams to maximise the detection e�ciency. In this pa-
per we introduce the STREAMFINDER algorithm that we have
built, explain the physical motivation behind it and demon-
strate its workings by running a suite of test simulations. We
find that our algorithm can detect very faint stream features
in the dataset of the quality that will soon be delivered by
Gaia DR2.

This paper is arranged as follows. In Section 2 we
present the motivation and the basic idea behind the work-
ings of our algorithm. Section 3 gives a proof of concept
of our method through the detection of a simplistic orbital
stream model. Section 4 presents the success of our tech-
nique by demonstrating the detection of an N-body tidal
stream structure. Section 5 exhibits the ability to detect
multiple streams criss-crossing each other in a given patch
of sky. In Section 6 we detail additional criteria incorporated
into the algorithm that improve the contrast of the streams.
We test the detection limit of our algorithm in finding ex-
tremely faint stream structures in Section 7. In Section 8 we
study the e↵ect of assuming a wrong Galactic mass model.
Finally, in Section 9 we discuss the implications of our study.

2 STREAMFINDER

Di↵erent surveys of the Milky Way cover di↵erent sky re-
gions, probe di↵erent depths of the sky and deliver di↵erent
combinations of phase-space measurements. We sought to

Figure 1. The STREAMFINDER concept. (a) The red dots represent
schematically the spatial positions along a segment of an orbit,
part of a stream that we are interested in detecting. The dots
labelled ‘1’ and ’2’ mark, respectively, the beginning and the end
of this orbit segment. The blue dashed curve represents the orbit
integrated using the 6D phase-space value of stellar point ‘1’ as
initial conditions. This trial orbit passes close to other stream
members, allowing them to be associated with the structure. (b)
The red dots now represent a more realistic scenario of a stellar
stream where the tidal arms and the progenitor possess slightly
di↵erent energies and hence lie along di↵erent orbits. Therefore,
the trial orbit (blue-dashed curve) calculated using the phase-
space measurement of some stream star corresponding to some
(E, Lz) value fails to fit the entire stream structure. But if the
same 6D orbit is upgraded to a 6D hyper-dimensional-tube (black
cylinder), then the stream becomes circumscribed within it.

develop a generic algorithm that would work with any mix of
datasets containing any combination of positions and kine-
matics. We also desired the algorithm to have the property
of being able to handle datasets with partial sky coverage
and incomplete information on some parameters, so as to
make the most of the available surveys.

Since we suspect that the most massive star streams
in the Milky Way have already been discovered, we decided
to design the STREAMFINDER algorithm to detect primarily
narrow low-mass tidal streams, and we expect these faint
structures to lie hidden under a dominant “background” of
contaminants (in most cases the contaminants will actually
be in the foreground).

MNRAS 000, 1–16 (2018)

30



Via Machinae
DS, Buckley, Necib & Tamanas 2104.12789 and 2209.xxxxx

• We were interested if a more model-independent search for stellar streams could be performed, 
one that didn’t assume anything about the form of the Galactic potential or isochrones. 


• Streams are local overdensities in multiple features — ideal for enhanced bump hunt methods!
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Figure 4. Properties of a sample of previously-discovered streams, as recovered by the STREAMFINDER. The first, second, third and fourth
rows show the properties of the GD-1, Jhelum, Indus and Orphan streams, respectively. The columns reproduce, from left to right, the
equatorial coordinates of the structures, the distance solutions found by the algorithm (for representative metallicity values), the proper
motion distribution (with observations in red, model solutions in blue, and the full DR2 sample in grey), and the colour-magnitude
distribution of the stars (with observations in red and template model in blue) selected by STREAMFINDER. The distance solutions found
by the algorithm match closely the distance values that have been previously derived for these streams: D� ⇠ 8 kpc for GD-1 (Grillmair
& Dionatos 2006), D� ⇠ 13.2 kpc and ⇠ 16.6 kpc for Jhelum and Indus, respectively (Shipp et al. 2018) and D� = [33 � 38] kpc for
Orphan (Newberg et al. 2010). The CMD template models, shown in blue in the last column, have been plotted at the appropriate
distance for the respective streams. The colour-magnitude diagram of the Orphan stream might seem peculiar, but here we only see the
red-giant branch due to the trimming of the data sample below G = 19.5.

the stream-like structures recovered by the algorithm are not
associated with the extinction correction. In Figures 7 and
8, we present our summary plots made by combining the dis-
tance and metallicity samples for the north and south hemi-
spheres, respectively. The top panels of these diagrams show
the estimate of the distances of these structures (provided
by the algorithm), while the bottom panels show an esti-
mate of the magnitude of the tangential velocity calculated
using the measured Gaia proper motions combined with the
distance estimates. Many structures are beautifully resolved
in this multi-parameter space.

Our aim in this contribution is not to present a thorough
or complete census of halo streams (since it would require

considerable more processing time to examine the necessary
parameter space), but rather to present a preview of the
large-scale stream structure of our Galaxy. Nevertheless, we
have selected by hand a small number of structures that
appear clearly in our maps, with kinematic properties that
distinguish them from the contaminating Galactic popula-
tion, and that are clearly not artefacts produced by Gaia’s
scanning law. A large number of other stream candidates
have a clearly-defined stream-like morphology, but possess
proper motions distributions that are similar to that of the
halo, and we deem that they require further follow-up to be
confident of their nature.

The locations of the five structures we selected are
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Orphan (Newberg et al. 2010). The CMD template models, shown in blue in the last column, have been plotted at the appropriate
distance for the respective streams. The colour-magnitude diagram of the Orphan stream might seem peculiar, but here we only see the
red-giant branch due to the trimming of the data sample below G = 19.5.
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large-scale stream structure of our Galaxy. Nevertheless, we
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distinguish them from the contaminating Galactic popula-
tion, and that are clearly not artefacts produced by Gaia’s
scanning law. A large number of other stream candidates
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proper motions distributions that are similar to that of the
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distance for the respective streams. The colour-magnitude diagram of the Orphan stream might seem peculiar, but here we only see the
red-giant branch due to the trimming of the data sample below G = 19.5.
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tion, and that are clearly not artefacts produced by Gaia’s
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proper motions distributions that are similar to that of the
halo, and we deem that they require further follow-up to be
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Figure 4. Properties of a sample of previously-discovered streams, as recovered by the STREAMFINDER. The first, second, third and fourth
rows show the properties of the GD-1, Jhelum, Indus and Orphan streams, respectively. The columns reproduce, from left to right, the
equatorial coordinates of the structures, the distance solutions found by the algorithm (for representative metallicity values), the proper
motion distribution (with observations in red, model solutions in blue, and the full DR2 sample in grey), and the colour-magnitude
distribution of the stars (with observations in red and template model in blue) selected by STREAMFINDER. The distance solutions found
by the algorithm match closely the distance values that have been previously derived for these streams: D� ⇠ 8 kpc for GD-1 (Grillmair
& Dionatos 2006), D� ⇠ 13.2 kpc and ⇠ 16.6 kpc for Jhelum and Indus, respectively (Shipp et al. 2018) and D� = [33 � 38] kpc for
Orphan (Newberg et al. 2010). The CMD template models, shown in blue in the last column, have been plotted at the appropriate
distance for the respective streams. The colour-magnitude diagram of the Orphan stream might seem peculiar, but here we only see the
red-giant branch due to the trimming of the data sample below G = 19.5.
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the estimate of the distances of these structures (provided
by the algorithm), while the bottom panels show an esti-
mate of the magnitude of the tangential velocity calculated
using the measured Gaia proper motions combined with the
distance estimates. Many structures are beautifully resolved
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red-giant branch due to the trimming of the data sample below G = 19.5.
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spheres, respectively. The top panels of these diagrams show
the estimate of the distances of these structures (provided
by the algorithm), while the bottom panels show an esti-
mate of the magnitude of the tangential velocity calculated
using the measured Gaia proper motions combined with the
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tion, and that are clearly not artefacts produced by Gaia’s
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proper motions distributions that are similar to that of the
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Figure 4. Properties of a sample of previously-discovered streams, as recovered by the STREAMFINDER. The first, second, third and fourth
rows show the properties of the GD-1, Jhelum, Indus and Orphan streams, respectively. The columns reproduce, from left to right, the
equatorial coordinates of the structures, the distance solutions found by the algorithm (for representative metallicity values), the proper
motion distribution (with observations in red, model solutions in blue, and the full DR2 sample in grey), and the colour-magnitude
distribution of the stars (with observations in red and template model in blue) selected by STREAMFINDER. The distance solutions found
by the algorithm match closely the distance values that have been previously derived for these streams: D� ⇠ 8 kpc for GD-1 (Grillmair
& Dionatos 2006), D� ⇠ 13.2 kpc and ⇠ 16.6 kpc for Jhelum and Indus, respectively (Shipp et al. 2018) and D� = [33 � 38] kpc for
Orphan (Newberg et al. 2010). The CMD template models, shown in blue in the last column, have been plotted at the appropriate
distance for the respective streams. The colour-magnitude diagram of the Orphan stream might seem peculiar, but here we only see the
red-giant branch due to the trimming of the data sample below G = 19.5.
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Figure 4. Properties of a sample of previously-discovered streams, as recovered by the STREAMFINDER. The first, second, third and fourth
rows show the properties of the GD-1, Jhelum, Indus and Orphan streams, respectively. The columns reproduce, from left to right, the
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motion distribution (with observations in red, model solutions in blue, and the full DR2 sample in grey), and the colour-magnitude
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by the algorithm match closely the distance values that have been previously derived for these streams: D� ⇠ 8 kpc for GD-1 (Grillmair
& Dionatos 2006), D� ⇠ 13.2 kpc and ⇠ 16.6 kpc for Jhelum and Indus, respectively (Shipp et al. 2018) and D� = [33 � 38] kpc for
Orphan (Newberg et al. 2010). The CMD template models, shown in blue in the last column, have been plotted at the appropriate
distance for the respective streams. The colour-magnitude diagram of the Orphan stream might seem peculiar, but here we only see the
red-giant branch due to the trimming of the data sample below G = 19.5.
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Figure 4. Properties of a sample of previously-discovered streams, as recovered by the STREAMFINDER. The first, second, third and fourth
rows show the properties of the GD-1, Jhelum, Indus and Orphan streams, respectively. The columns reproduce, from left to right, the
equatorial coordinates of the structures, the distance solutions found by the algorithm (for representative metallicity values), the proper
motion distribution (with observations in red, model solutions in blue, and the full DR2 sample in grey), and the colour-magnitude
distribution of the stars (with observations in red and template model in blue) selected by STREAMFINDER. The distance solutions found
by the algorithm match closely the distance values that have been previously derived for these streams: D� ⇠ 8 kpc for GD-1 (Grillmair
& Dionatos 2006), D� ⇠ 13.2 kpc and ⇠ 16.6 kpc for Jhelum and Indus, respectively (Shipp et al. 2018) and D� = [33 � 38] kpc for
Orphan (Newberg et al. 2010). The CMD template models, shown in blue in the last column, have been plotted at the appropriate
distance for the respective streams. The colour-magnitude diagram of the Orphan stream might seem peculiar, but here we only see the
red-giant branch due to the trimming of the data sample below G = 19.5.
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Figure 4. Properties of a sample of previously-discovered streams, as recovered by the STREAMFINDER. The first, second, third and fourth
rows show the properties of the GD-1, Jhelum, Indus and Orphan streams, respectively. The columns reproduce, from left to right, the
equatorial coordinates of the structures, the distance solutions found by the algorithm (for representative metallicity values), the proper
motion distribution (with observations in red, model solutions in blue, and the full DR2 sample in grey), and the colour-magnitude
distribution of the stars (with observations in red and template model in blue) selected by STREAMFINDER. The distance solutions found
by the algorithm match closely the distance values that have been previously derived for these streams: D� ⇠ 8 kpc for GD-1 (Grillmair
& Dionatos 2006), D� ⇠ 13.2 kpc and ⇠ 16.6 kpc for Jhelum and Indus, respectively (Shipp et al. 2018) and D� = [33 � 38] kpc for
Orphan (Newberg et al. 2010). The CMD template models, shown in blue in the last column, have been plotted at the appropriate
distance for the respective streams. The colour-magnitude diagram of the Orphan stream might seem peculiar, but here we only see the
red-giant branch due to the trimming of the data sample below G = 19.5.
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the estimate of the distances of these structures (provided
by the algorithm), while the bottom panels show an esti-
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using the measured Gaia proper motions combined with the
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Figure 4. Properties of a sample of previously-discovered streams, as recovered by the STREAMFINDER. The first, second, third and fourth
rows show the properties of the GD-1, Jhelum, Indus and Orphan streams, respectively. The columns reproduce, from left to right, the
equatorial coordinates of the structures, the distance solutions found by the algorithm (for representative metallicity values), the proper
motion distribution (with observations in red, model solutions in blue, and the full DR2 sample in grey), and the colour-magnitude
distribution of the stars (with observations in red and template model in blue) selected by STREAMFINDER. The distance solutions found
by the algorithm match closely the distance values that have been previously derived for these streams: D� ⇠ 8 kpc for GD-1 (Grillmair
& Dionatos 2006), D� ⇠ 13.2 kpc and ⇠ 16.6 kpc for Jhelum and Indus, respectively (Shipp et al. 2018) and D� = [33 � 38] kpc for
Orphan (Newberg et al. 2010). The CMD template models, shown in blue in the last column, have been plotted at the appropriate
distance for the respective streams. The colour-magnitude diagram of the Orphan stream might seem peculiar, but here we only see the
red-giant branch due to the trimming of the data sample below G = 19.5.
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tance and metallicity samples for the north and south hemi-
spheres, respectively. The top panels of these diagrams show
the estimate of the distances of these structures (provided
by the algorithm), while the bottom panels show an esti-
mate of the magnitude of the tangential velocity calculated
using the measured Gaia proper motions combined with the
distance estimates. Many structures are beautifully resolved
in this multi-parameter space.
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Figure 4. Properties of a sample of previously-discovered streams, as recovered by the STREAMFINDER. The first, second, third and fourth
rows show the properties of the GD-1, Jhelum, Indus and Orphan streams, respectively. The columns reproduce, from left to right, the
equatorial coordinates of the structures, the distance solutions found by the algorithm (for representative metallicity values), the proper
motion distribution (with observations in red, model solutions in blue, and the full DR2 sample in grey), and the colour-magnitude
distribution of the stars (with observations in red and template model in blue) selected by STREAMFINDER. The distance solutions found
by the algorithm match closely the distance values that have been previously derived for these streams: D� ⇠ 8 kpc for GD-1 (Grillmair
& Dionatos 2006), D� ⇠ 13.2 kpc and ⇠ 16.6 kpc for Jhelum and Indus, respectively (Shipp et al. 2018) and D� = [33 � 38] kpc for
Orphan (Newberg et al. 2010). The CMD template models, shown in blue in the last column, have been plotted at the appropriate
distance for the respective streams. The colour-magnitude diagram of the Orphan stream might seem peculiar, but here we only see the
red-giant branch due to the trimming of the data sample below G = 19.5.
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mate of the magnitude of the tangential velocity calculated
using the measured Gaia proper motions combined with the
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tion, and that are clearly not artefacts produced by Gaia’s
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have a clearly-defined stream-like morphology, but possess
proper motions distributions that are similar to that of the
halo, and we deem that they require further follow-up to be
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Figure 4. Properties of a sample of previously-discovered streams, as recovered by the STREAMFINDER. The first, second, third and fourth
rows show the properties of the GD-1, Jhelum, Indus and Orphan streams, respectively. The columns reproduce, from left to right, the
equatorial coordinates of the structures, the distance solutions found by the algorithm (for representative metallicity values), the proper
motion distribution (with observations in red, model solutions in blue, and the full DR2 sample in grey), and the colour-magnitude
distribution of the stars (with observations in red and template model in blue) selected by STREAMFINDER. The distance solutions found
by the algorithm match closely the distance values that have been previously derived for these streams: D� ⇠ 8 kpc for GD-1 (Grillmair
& Dionatos 2006), D� ⇠ 13.2 kpc and ⇠ 16.6 kpc for Jhelum and Indus, respectively (Shipp et al. 2018) and D� = [33 � 38] kpc for
Orphan (Newberg et al. 2010). The CMD template models, shown in blue in the last column, have been plotted at the appropriate
distance for the respective streams. The colour-magnitude diagram of the Orphan stream might seem peculiar, but here we only see the
red-giant branch due to the trimming of the data sample below G = 19.5.

the stream-like structures recovered by the algorithm are not
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tance and metallicity samples for the north and south hemi-
spheres, respectively. The top panels of these diagrams show
the estimate of the distances of these structures (provided
by the algorithm), while the bottom panels show an esti-
mate of the magnitude of the tangential velocity calculated
using the measured Gaia proper motions combined with the
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appear clearly in our maps, with kinematic properties that
distinguish them from the contaminating Galactic popula-
tion, and that are clearly not artefacts produced by Gaia’s
scanning law. A large number of other stream candidates
have a clearly-defined stream-like morphology, but possess
proper motions distributions that are similar to that of the
halo, and we deem that they require further follow-up to be
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Figure 4. Properties of a sample of previously-discovered streams, as recovered by the STREAMFINDER. The first, second, third and fourth
rows show the properties of the GD-1, Jhelum, Indus and Orphan streams, respectively. The columns reproduce, from left to right, the
equatorial coordinates of the structures, the distance solutions found by the algorithm (for representative metallicity values), the proper
motion distribution (with observations in red, model solutions in blue, and the full DR2 sample in grey), and the colour-magnitude
distribution of the stars (with observations in red and template model in blue) selected by STREAMFINDER. The distance solutions found
by the algorithm match closely the distance values that have been previously derived for these streams: D� ⇠ 8 kpc for GD-1 (Grillmair
& Dionatos 2006), D� ⇠ 13.2 kpc and ⇠ 16.6 kpc for Jhelum and Indus, respectively (Shipp et al. 2018) and D� = [33 � 38] kpc for
Orphan (Newberg et al. 2010). The CMD template models, shown in blue in the last column, have been plotted at the appropriate
distance for the respective streams. The colour-magnitude diagram of the Orphan stream might seem peculiar, but here we only see the
red-giant branch due to the trimming of the data sample below G = 19.5.
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mate of the magnitude of the tangential velocity calculated
using the measured Gaia proper motions combined with the
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tion, and that are clearly not artefacts produced by Gaia’s
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have a clearly-defined stream-like morphology, but possess
proper motions distributions that are similar to that of the
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Figure 4. Properties of a sample of previously-discovered streams, as recovered by the STREAMFINDER. The first, second, third and fourth
rows show the properties of the GD-1, Jhelum, Indus and Orphan streams, respectively. The columns reproduce, from left to right, the
equatorial coordinates of the structures, the distance solutions found by the algorithm (for representative metallicity values), the proper
motion distribution (with observations in red, model solutions in blue, and the full DR2 sample in grey), and the colour-magnitude
distribution of the stars (with observations in red and template model in blue) selected by STREAMFINDER. The distance solutions found
by the algorithm match closely the distance values that have been previously derived for these streams: D� ⇠ 8 kpc for GD-1 (Grillmair
& Dionatos 2006), D� ⇠ 13.2 kpc and ⇠ 16.6 kpc for Jhelum and Indus, respectively (Shipp et al. 2018) and D� = [33 � 38] kpc for
Orphan (Newberg et al. 2010). The CMD template models, shown in blue in the last column, have been plotted at the appropriate
distance for the respective streams. The colour-magnitude diagram of the Orphan stream might seem peculiar, but here we only see the
red-giant branch due to the trimming of the data sample below G = 19.5.
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tance and metallicity samples for the north and south hemi-
spheres, respectively. The top panels of these diagrams show
the estimate of the distances of these structures (provided
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mate of the magnitude of the tangential velocity calculated
using the measured Gaia proper motions combined with the
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Figure 4. Properties of a sample of previously-discovered streams, as recovered by the STREAMFINDER. The first, second, third and fourth
rows show the properties of the GD-1, Jhelum, Indus and Orphan streams, respectively. The columns reproduce, from left to right, the
equatorial coordinates of the structures, the distance solutions found by the algorithm (for representative metallicity values), the proper
motion distribution (with observations in red, model solutions in blue, and the full DR2 sample in grey), and the colour-magnitude
distribution of the stars (with observations in red and template model in blue) selected by STREAMFINDER. The distance solutions found
by the algorithm match closely the distance values that have been previously derived for these streams: D� ⇠ 8 kpc for GD-1 (Grillmair
& Dionatos 2006), D� ⇠ 13.2 kpc and ⇠ 16.6 kpc for Jhelum and Indus, respectively (Shipp et al. 2018) and D� = [33 � 38] kpc for
Orphan (Newberg et al. 2010). The CMD template models, shown in blue in the last column, have been plotted at the appropriate
distance for the respective streams. The colour-magnitude diagram of the Orphan stream might seem peculiar, but here we only see the
red-giant branch due to the trimming of the data sample below G = 19.5.
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8, we present our summary plots made by combining the dis-
tance and metallicity samples for the north and south hemi-
spheres, respectively. The top panels of these diagrams show
the estimate of the distances of these structures (provided
by the algorithm), while the bottom panels show an esti-
mate of the magnitude of the tangential velocity calculated
using the measured Gaia proper motions combined with the
distance estimates. Many structures are beautifully resolved
in this multi-parameter space.
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halo, and we deem that they require further follow-up to be
confident of their nature.

The locations of the five structures we selected are

MNRAS 000, 1–15 (2018)

6 Malhan, Ibata & Martin

Figure 4. Properties of a sample of previously-discovered streams, as recovered by the STREAMFINDER. The first, second, third and fourth
rows show the properties of the GD-1, Jhelum, Indus and Orphan streams, respectively. The columns reproduce, from left to right, the
equatorial coordinates of the structures, the distance solutions found by the algorithm (for representative metallicity values), the proper
motion distribution (with observations in red, model solutions in blue, and the full DR2 sample in grey), and the colour-magnitude
distribution of the stars (with observations in red and template model in blue) selected by STREAMFINDER. The distance solutions found
by the algorithm match closely the distance values that have been previously derived for these streams: D� ⇠ 8 kpc for GD-1 (Grillmair
& Dionatos 2006), D� ⇠ 13.2 kpc and ⇠ 16.6 kpc for Jhelum and Indus, respectively (Shipp et al. 2018) and D� = [33 � 38] kpc for
Orphan (Newberg et al. 2010). The CMD template models, shown in blue in the last column, have been plotted at the appropriate
distance for the respective streams. The colour-magnitude diagram of the Orphan stream might seem peculiar, but here we only see the
red-giant branch due to the trimming of the data sample below G = 19.5.
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mate of the magnitude of the tangential velocity calculated
using the measured Gaia proper motions combined with the
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• General idea: train enhanced bump hunt method with  (for example) 
and  

m = μα
x = (μδ, α, δ, G, B − R)

• ANODE in space:


• DS, Buckley, Necib & Tamanas (2104.12789 and 2208.xxxxx)


• CWoLa in space:


• Thanvantri, Pettee, Nachman, DS, Buckley, Collins … (22xx.xxxxx)


• CATHODE in space:


• Hallin, Krause, DS, Buckley, … (22xx.xxxxx)

Multivariate Bump Hunting…in Space!
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Example: GD-1

• GD-1 is one of the most prominent and well-studied cold stellar streams

Price-Whelan & Bonaca (2018)

6 Malhan, Ibata & Martin

Figure 4. Properties of a sample of previously-discovered streams, as recovered by the STREAMFINDER. The first, second, third and fourth
rows show the properties of the GD-1, Jhelum, Indus and Orphan streams, respectively. The columns reproduce, from left to right, the
equatorial coordinates of the structures, the distance solutions found by the algorithm (for representative metallicity values), the proper
motion distribution (with observations in red, model solutions in blue, and the full DR2 sample in grey), and the colour-magnitude
distribution of the stars (with observations in red and template model in blue) selected by STREAMFINDER. The distance solutions found
by the algorithm match closely the distance values that have been previously derived for these streams: D� ⇠ 8 kpc for GD-1 (Grillmair
& Dionatos 2006), D� ⇠ 13.2 kpc and ⇠ 16.6 kpc for Jhelum and Indus, respectively (Shipp et al. 2018) and D� = [33 � 38] kpc for
Orphan (Newberg et al. 2010). The CMD template models, shown in blue in the last column, have been plotted at the appropriate
distance for the respective streams. The colour-magnitude diagram of the Orphan stream might seem peculiar, but here we only see the
red-giant branch due to the trimming of the data sample below G = 19.5.

the stream-like structures recovered by the algorithm are not
associated with the extinction correction. In Figures 7 and
8, we present our summary plots made by combining the dis-
tance and metallicity samples for the north and south hemi-
spheres, respectively. The top panels of these diagrams show
the estimate of the distances of these structures (provided
by the algorithm), while the bottom panels show an esti-
mate of the magnitude of the tangential velocity calculated
using the measured Gaia proper motions combined with the
distance estimates. Many structures are beautifully resolved
in this multi-parameter space.

Our aim in this contribution is not to present a thorough
or complete census of halo streams (since it would require

considerable more processing time to examine the necessary
parameter space), but rather to present a preview of the
large-scale stream structure of our Galaxy. Nevertheless, we
have selected by hand a small number of structures that
appear clearly in our maps, with kinematic properties that
distinguish them from the contaminating Galactic popula-
tion, and that are clearly not artefacts produced by Gaia’s
scanning law. A large number of other stream candidates
have a clearly-defined stream-like morphology, but possess
proper motions distributions that are similar to that of the
halo, and we deem that they require further follow-up to be
confident of their nature.

The locations of the five structures we selected are
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STREAMFINDER, Malhan et al (2018)

• ~2000 stars stretching across ~100  
of the sky


• Age ~10 Gyr, distance ~8 kpc


• Discovered by Grillmair & Dionatos 
in SDSS data (2006)


• Many subsequent studies with Gaia 
and other instruments

∘
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Figure 3. Upper row: Angular position in (q, _) coordinates (left), proper motion in (`⇤

q , `_) coordinates (center), and photometry (right) of all stars in the
patch centered on (U, X) = (148.6�, 24.2�) . (Note the streaking in angular position due to non-uniform coverage in Gaia DR2.) Bottom row: As above, with
stars identified by PWB18 as likely GD-1 stars shown in red, along with an example search region `_ 2 [�17, �11] mas/yr in proper motion.

Each of these choices of (U0, X0, `
min
_ ) furnishes a search region

and control region pair for the ANODE training step. Overlapping
the SRs in this way allows us to fully capture potential streams in at
least one `_ window when performing a blind search – if the SRs
were not overlapping, then a stream could easily fall at the edge of
two SRs, diluting the signal in each. By selecting SRs which are wide
enough in proper motion to fully contain a kinematically cold stream
and overlapping them by shifts which are smaller than the proper
motion width of a typical stream, we minimize the possibility of this
dilution.

SRs with fewer than 20k stars or more than 1M stars (before the
fiducial cuts) are rejected for ANODE training. The former require-
ment is because too few stars in the SR results in poor density estima-
tion performance, and the latter requirement is to avoid overly-long
training times. In addition, SRs that contained a GC candidate (iden-
tified using a simple algorithm described in App. B) were cut from
the analysis, as the presence of the GC would completely overwhelm
the training (i.e. in an SR containing a GC, the GC would correspond
to such a large, delta-function-like overdensity, that ANODE would
be unable to identify any other overdensity in the SR, such as one
coming from a stream). In the end, we are left with a total of 545 SRs
across the 21 patches of the sky containing GD-1.

To provide an example of an SR, we turn to our sam-
ple GD-1 patch defined in the previous section, centered on
(U0, X0) = (148.6�, 24.2�). We select the SR defined by `_ 2

[�17,�11] mas/yr, which encompasses the majority of the GD-1
stars contained within this patch. This SR is shown in Fig. 3 and

contains 34,823 stars in total, of which 252 are tagged by PWB18 as
possible GD-1 members.

3.2 ANODE: Density estimation

Having defined the search regions, we turn to the probability density
estimation step of the ANODE algorithm. As discussed in Sec. 2,
the stars in our dataset are characterized by two position coordinates,
two proper motion coordinates, color, and magnitude. Having set
aside one of the proper motion coordinates `_ to define the search
regions with, the remaining features (q, _, `⇤q , 1 � A, 6) we will refer
to collectively as ÆG.

Suppose the stars in a patch consist of “signal stars" coming
from a cold stellar stream, and “background stars" coming from
the stellar halo. Let the conditional probability density of the back-
ground stars be %bg (ÆG |`_), and the conditional density for the
data (consisting of background stars plus signal stream stars) be
%data (ÆG |`_) = (1�U)%bg (ÆG |`_) +U%sig (ÆG |`_) where U is a measure
of the signal strength. Then the optimal test statistic for distinguishing
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Figure 4. Left: ' distribution for the SR `_ = [�17, �11] mas/yr in the patch centered at (U, X) = (148.6�, 24.2�) . Stars identified as likely members of GD-1
by PWB18 are shown in red, while the “background" stars (those not tagged as likely GD-1 members by PWB18) are in blue. Right: Significance Improvement
Characteristic (SIC) curve for the same SR, showing the signal e�ciency n( and the significance improvement (signal e�ciency over square root of background
e�ciency, n(/

p
n⌫) as the cut on ' is varied. The vertical lines in both plots designate the ' value that maximizes the SIC curve.
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Figure 5. Upper row: Angular position in (q, _) coordinates (left), proper motion in (`⇤

q , `_) coordinates (center), and photometry (right) of all stars (blue)
in the `_ 2 [�17, �11] mas/yr SR of our example patch centered on (U, X) = (148.6�, 24.2�) . Bottom row: As the upper row, applying the ' > 'cut cut on
the stars in the SR (purple). The GD-1 stream becomes immediately apparent. See text for details.

are anomalous compared to the interpolation into the SR of the CR
density estimate. Stars with proper motion near zero are predomi-
nantly distant stars; this population is not well-represented in a CR
that does not contain (`⇤q , `_) ⇠ (0, 0) mas/yr. An example can be
seen in Fig. 6. If the SR contains this zero point, the distant stars
are (correctly) identified as anomalous relative to the population in
the control regions, but their sheer number completely overwhelms

any other signal in the SR, requiring their removal after training is
complete.

• Cold stellar streams, produced by tidally stripped globular clus-
ters or dwarf galaxies, are predominantly composed of old, low metal-
licity stars. Many existing stream-finding algorithms leverage this by
fitting stars in the stream candidate to isochrones appropriate to this
assumption (see e.g. Malhan & Ibata (2018)). Although the ANODE
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Figure 5. Upper row: Angular position in (q, _) coordinates (left), proper motion in (`⇤

q , `_) coordinates (center), and photometry (right) of all stars (blue)
in the `_ 2 [�17, �11] mas/yr SR of our example patch centered on (U, X) = (148.6�, 24.2�) . Bottom row: As the upper row, applying the ' > 'cut cut on
the stars in the SR (purple). The GD-1 stream becomes immediately apparent. See text for details.

are anomalous compared to the interpolation into the SR of the CR
density estimate. Stars with proper motion near zero are predomi-
nantly distant stars; this population is not well-represented in a CR
that does not contain (`⇤q , `_) ⇠ (0, 0) mas/yr. An example can be
seen in Fig. 6. If the SR contains this zero point, the distant stars
are (correctly) identified as anomalous relative to the population in
the control regions, but their sheer number completely overwhelms

any other signal in the SR, requiring their removal after training is
complete.

• Cold stellar streams, produced by tidally stripped globular clus-
ters or dwarf galaxies, are predominantly composed of old, low metal-
licity stars. Many existing stream-finding algorithms leverage this by
fitting stars in the stream candidate to isochrones appropriate to this
assumption (see e.g. Malhan & Ibata (2018)). Although the ANODE
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All stars in a patch of the sky 
containing (part of) GD-1


(ra,dec)=(148.6,24.2)

All stars in a SR containing GD-1 
μλ ∈ [−17, − 11]

Stars in SR after cut on R(x) 
obtained from ANODE
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ANODE on Gaia data

6 Malhan, Ibata & Martin

Figure 4. Properties of a sample of previously-discovered streams, as recovered by the STREAMFINDER. The first, second, third and fourth
rows show the properties of the GD-1, Jhelum, Indus and Orphan streams, respectively. The columns reproduce, from left to right, the
equatorial coordinates of the structures, the distance solutions found by the algorithm (for representative metallicity values), the proper
motion distribution (with observations in red, model solutions in blue, and the full DR2 sample in grey), and the colour-magnitude
distribution of the stars (with observations in red and template model in blue) selected by STREAMFINDER. The distance solutions found
by the algorithm match closely the distance values that have been previously derived for these streams: D� ⇠ 8 kpc for GD-1 (Grillmair
& Dionatos 2006), D� ⇠ 13.2 kpc and ⇠ 16.6 kpc for Jhelum and Indus, respectively (Shipp et al. 2018) and D� = [33 � 38] kpc for
Orphan (Newberg et al. 2010). The CMD template models, shown in blue in the last column, have been plotted at the appropriate
distance for the respective streams. The colour-magnitude diagram of the Orphan stream might seem peculiar, but here we only see the
red-giant branch due to the trimming of the data sample below G = 19.5.

the stream-like structures recovered by the algorithm are not
associated with the extinction correction. In Figures 7 and
8, we present our summary plots made by combining the dis-
tance and metallicity samples for the north and south hemi-
spheres, respectively. The top panels of these diagrams show
the estimate of the distances of these structures (provided
by the algorithm), while the bottom panels show an esti-
mate of the magnitude of the tangential velocity calculated
using the measured Gaia proper motions combined with the
distance estimates. Many structures are beautifully resolved
in this multi-parameter space.

Our aim in this contribution is not to present a thorough
or complete census of halo streams (since it would require

considerable more processing time to examine the necessary
parameter space), but rather to present a preview of the
large-scale stream structure of our Galaxy. Nevertheless, we
have selected by hand a small number of structures that
appear clearly in our maps, with kinematic properties that
distinguish them from the contaminating Galactic popula-
tion, and that are clearly not artefacts produced by Gaia’s
scanning law. A large number of other stream candidates
have a clearly-defined stream-like morphology, but possess
proper motions distributions that are similar to that of the
halo, and we deem that they require further follow-up to be
confident of their nature.

The locations of the five structures we selected are
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motion distribution (with observations in red, model solutions in blue, and the full DR2 sample in grey), and the colour-magnitude
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mate of the magnitude of the tangential velocity calculated
using the measured Gaia proper motions combined with the
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have a clearly-defined stream-like morphology, but possess
proper motions distributions that are similar to that of the
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confident of their nature.
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MNRAS 000, 1–15 (2018)

38



ANODE on Gaia data
• How to set the cut on R(x)?

• We found a defining a single threshold on R(x) across 
all SRs was insufficient to find other known streams 
besides GD-1. 

6 Malhan, Ibata & Martin

Figure 4. Properties of a sample of previously-discovered streams, as recovered by the STREAMFINDER. The first, second, third and fourth
rows show the properties of the GD-1, Jhelum, Indus and Orphan streams, respectively. The columns reproduce, from left to right, the
equatorial coordinates of the structures, the distance solutions found by the algorithm (for representative metallicity values), the proper
motion distribution (with observations in red, model solutions in blue, and the full DR2 sample in grey), and the colour-magnitude
distribution of the stars (with observations in red and template model in blue) selected by STREAMFINDER. The distance solutions found
by the algorithm match closely the distance values that have been previously derived for these streams: D� ⇠ 8 kpc for GD-1 (Grillmair
& Dionatos 2006), D� ⇠ 13.2 kpc and ⇠ 16.6 kpc for Jhelum and Indus, respectively (Shipp et al. 2018) and D� = [33 � 38] kpc for
Orphan (Newberg et al. 2010). The CMD template models, shown in blue in the last column, have been plotted at the appropriate
distance for the respective streams. The colour-magnitude diagram of the Orphan stream might seem peculiar, but here we only see the
red-giant branch due to the trimming of the data sample below G = 19.5.

the stream-like structures recovered by the algorithm are not
associated with the extinction correction. In Figures 7 and
8, we present our summary plots made by combining the dis-
tance and metallicity samples for the north and south hemi-
spheres, respectively. The top panels of these diagrams show
the estimate of the distances of these structures (provided
by the algorithm), while the bottom panels show an esti-
mate of the magnitude of the tangential velocity calculated
using the measured Gaia proper motions combined with the
distance estimates. Many structures are beautifully resolved
in this multi-parameter space.

Our aim in this contribution is not to present a thorough
or complete census of halo streams (since it would require

considerable more processing time to examine the necessary
parameter space), but rather to present a preview of the
large-scale stream structure of our Galaxy. Nevertheless, we
have selected by hand a small number of structures that
appear clearly in our maps, with kinematic properties that
distinguish them from the contaminating Galactic popula-
tion, and that are clearly not artefacts produced by Gaia’s
scanning law. A large number of other stream candidates
have a clearly-defined stream-like morphology, but possess
proper motions distributions that are similar to that of the
halo, and we deem that they require further follow-up to be
confident of their nature.

The locations of the five structures we selected are

MNRAS 000, 1–15 (2018)

38



ANODE on Gaia data
• How to set the cut on R(x)?

• We found a defining a single threshold on R(x) across 
all SRs was insufficient to find other known streams 
besides GD-1. 

• What worked instead was to further subdivide SRs 
into slices by the orthogonal proper motion => “ROIs”

6 Malhan, Ibata & Martin
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Orphan (Newberg et al. 2010). The CMD template models, shown in blue in the last column, have been plotted at the appropriate
distance for the respective streams. The colour-magnitude diagram of the Orphan stream might seem peculiar, but here we only see the
red-giant branch due to the trimming of the data sample below G = 19.5.

the stream-like structures recovered by the algorithm are not
associated with the extinction correction. In Figures 7 and
8, we present our summary plots made by combining the dis-
tance and metallicity samples for the north and south hemi-
spheres, respectively. The top panels of these diagrams show
the estimate of the distances of these structures (provided
by the algorithm), while the bottom panels show an esti-
mate of the magnitude of the tangential velocity calculated
using the measured Gaia proper motions combined with the
distance estimates. Many structures are beautifully resolved
in this multi-parameter space.

Our aim in this contribution is not to present a thorough
or complete census of halo streams (since it would require

considerable more processing time to examine the necessary
parameter space), but rather to present a preview of the
large-scale stream structure of our Galaxy. Nevertheless, we
have selected by hand a small number of structures that
appear clearly in our maps, with kinematic properties that
distinguish them from the contaminating Galactic popula-
tion, and that are clearly not artefacts produced by Gaia’s
scanning law. A large number of other stream candidates
have a clearly-defined stream-like morphology, but possess
proper motions distributions that are similar to that of the
halo, and we deem that they require further follow-up to be
confident of their nature.

The locations of the five structures we selected are

MNRAS 000, 1–15 (2018)
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ANODE on Gaia data
• How to set the cut on R(x)?

• We found a defining a single threshold on R(x) across 
all SRs was insufficient to find other known streams 
besides GD-1. 

• What worked instead was to further subdivide SRs 
into slices by the orthogonal proper motion => “ROIs”

• In each ROI, take the 100 highest R stars

• Increases the sensitivity to real streams, but at the 
cost of a bigger look elsewhere effect.

6 Malhan, Ibata & Martin

Figure 4. Properties of a sample of previously-discovered streams, as recovered by the STREAMFINDER. The first, second, third and fourth
rows show the properties of the GD-1, Jhelum, Indus and Orphan streams, respectively. The columns reproduce, from left to right, the
equatorial coordinates of the structures, the distance solutions found by the algorithm (for representative metallicity values), the proper
motion distribution (with observations in red, model solutions in blue, and the full DR2 sample in grey), and the colour-magnitude
distribution of the stars (with observations in red and template model in blue) selected by STREAMFINDER. The distance solutions found
by the algorithm match closely the distance values that have been previously derived for these streams: D� ⇠ 8 kpc for GD-1 (Grillmair
& Dionatos 2006), D� ⇠ 13.2 kpc and ⇠ 16.6 kpc for Jhelum and Indus, respectively (Shipp et al. 2018) and D� = [33 � 38] kpc for
Orphan (Newberg et al. 2010). The CMD template models, shown in blue in the last column, have been plotted at the appropriate
distance for the respective streams. The colour-magnitude diagram of the Orphan stream might seem peculiar, but here we only see the
red-giant branch due to the trimming of the data sample below G = 19.5.

the stream-like structures recovered by the algorithm are not
associated with the extinction correction. In Figures 7 and
8, we present our summary plots made by combining the dis-
tance and metallicity samples for the north and south hemi-
spheres, respectively. The top panels of these diagrams show
the estimate of the distances of these structures (provided
by the algorithm), while the bottom panels show an esti-
mate of the magnitude of the tangential velocity calculated
using the measured Gaia proper motions combined with the
distance estimates. Many structures are beautifully resolved
in this multi-parameter space.

Our aim in this contribution is not to present a thorough
or complete census of halo streams (since it would require

considerable more processing time to examine the necessary
parameter space), but rather to present a preview of the
large-scale stream structure of our Galaxy. Nevertheless, we
have selected by hand a small number of structures that
appear clearly in our maps, with kinematic properties that
distinguish them from the contaminating Galactic popula-
tion, and that are clearly not artefacts produced by Gaia’s
scanning law. A large number of other stream candidates
have a clearly-defined stream-like morphology, but possess
proper motions distributions that are similar to that of the
halo, and we deem that they require further follow-up to be
confident of their nature.

The locations of the five structures we selected are
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Building streams from fragments

• We end up with ~10  ROIs —> need an automated way to scan them for 
potential streams and a way to cut down on trials factor!


• Hough transform for line finding => significance


• Cluster together ROIs from independent runs of ANODE => build stream 
fragments in each patch and cut down on LEE


• Cluster together significant stream fragments in different patches to build 
full stream candidate

5
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Galaxia false positive rate
To quantify our false positive rate, we ran our 
full method on a semi-realistic Gaia mock 
catalog called Galaxia (Rybizki et al 2018) 
which does not have stellar streams

2

Figure 1. Stellar source density map of GDR1 (top) and our

mock catalog (bottom) in Galactic coordinates using Aito↵

projection. The Galactic center is in the middle and Galactic

longitude ` increasing towards the left. The color represents

the density of star counts down to G = 20.7mag in each

healpix (NSIDE = 128, 1 healpix ⇡ 0.21deg2) and saturates

at both ends to enhance Galactic structures.

Galaxia is a tool that allows one to sample stars from
the Besançon Galactic model (Robin et al. 2003), us-
ing a specific set of stellar isochrones to obtain their
astrophysical parameters. The Galactic warp was
switched on during the simulations and the solar zero-
point was set to (X,Y, Z) = (�8.0, 0.0, 0.015) kpc and
the velocities to (U, V,W ) = (11.1, 239.08, 7.25) km

s .
Transformations from phase-space to observable coor-
dinates on the sky (ra, dec, pm ra cosdec, pm dec and
radial velocity) were done using astropy4 (The As-
tropy Collaboration et al. 2018). And we used the latest
PARSEC isochrones5 – PARSEC v1.2S+ COLIBRI PR16
(Bressan et al. 2012; Marigo et al. 2017; Rosenfield
et al. 2016; Marigo et al. 2013) – which also provide
photometric values for each star using the nominal Gaia
DR1 photometric bands G, BP, and RP (Jordi et al.
2010). GDR2 passbands where not available during the
construction of this catalog.
At this stage, we were already able to account for the

magnitude limit of Gaia and only selected stars with
apparent magnitude brighter than G = 20.7mag, which
preliminarily resulted in over six billion sources.

2.2. Dust-attenuated photometry

4
http://www.astropy.org

5
PARSEC = Padova Trieste evolution code (including the pre-

main sequence phase); http://stev.oapd.inaf.it/cgi-bin/cmd

A crucial step in transforming a Galaxia simulation
into a catalog resembling actual observations is the ap-
plication of a dust distribution, which will change the
apparent colors and luminosities of the stars.
Since the Gaia photometric bands span a broad wave-

length range (⇠ 300 nm), the simple conversion of ex-
tinction coe�cients from e.g. Schlafly & Finkbeiner
(2011, tab. 6) to reddening and extinction into the Gaia
bands, e.g. AG, is only a poor approximation and may
lead to significant inconsistency across the broad range
of stellar spectra. Instead we must account for non-
linearities in particular with respect to the stars’ col-
ors. Fortunately, the PARSEC isochrones also provide
dust attenuated photometry in various photometric sys-
tems, including the Gaia passbands (DR1, nominal pass-
bands).
To include a realistic dust distribution on the Galaxia

model, we used the combined 3D extinction map from
Bovy et al. (2016), through its python package mwdust6,
which is capable of returning line-of-sight extinctions
when provided with sky coordinates and distances. This
3D dust map combines the results of Marshall et al.
(2006), Green et al. (2015), and Drimmel et al. (2003)
and it provides E(B-V)SFD values on the scale defined
in Schlegel et al. (1998)7. As discussed in Schlafly &
Finkbeiner (2011), the E(B-V)SFD scale overestimates
the extinction by 14% with respect to their own find-
ings. Hence we corrected for this overestimation and
adopted the prescription associated with the PARSEC
isochrones of Cardelli et al. (1989); O’Donnell (1994)
with R0 = 3.1 to derive the monochromatic extinction
(in mag) at wavelength � = 547.7 nm as

A0 = 3.1⇥ E(B�V)SFD ⇥ 0.86 (1)

Matching each star from Galaxia to an isochrone and
a proper amount of extinction is a challenging task for
6 billion stars. Instead, we approximated each star to
its closest match from a precomputed collection of dust
attenuated stellar isochrones. The grid spans A0 values
ranging from 0 to 15mag with in steps of 0.025mag (for
stars with even higher extinction we linearly extrapo-
lated the extinction values) and [Fe/H] values from -2 to
0.5 dex in steps of 0.25 dex. We further bin in log(Te↵)
in 0.02 dex steps and log(lum) in 0.2 dex steps on a
star-by-star basis. Each star in our catalog is associated
with an index parsec number that records this match-
ing step and maps each star onto the grid of isochrones
and thus allows us to query photometric measurements
in other bands from the supplementary parsec photom-
etry and extinction table. Figure 2 shows the resulting
color magnitude and absolute magnitude diagrams of

6
https://github.com/jobovy/mwdust

7
For a few 3D positions the map returns negative extinctions,

but we truncated these to zero.

We find 80 stream candidates with a 95% UL on fpr of 13%! 40



Results: known streams

We find essentially all of GD-1, plus possibly a slight extension
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Results: known streams

We also find (and potentially extend)  
many other known streams
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Results: known streams

We also find (and potentially extend)  
many other known streams

43



Results: new streams

Potentially many new streams (~50-60) discovered!44



Gaia: Density Estimation:

Measuring Galactic Mass Density



Mass density from phase space density

• We also realized the same normalizing flows we trained on the sky for ViaMachinae 
could also have other interesting applications


• Having access to the full 6D phase space density  of all the stars in the 
Galaxy (or at least all the nearby ones) could be very powerful.


• In particular, we can directly infer the mass density  of the Galaxy from 
knowledge of , and from that the mass density  of the dark matter.

p( ⃗x , ⃗v )

ρ( ⃗x )
p( ⃗x , ⃗v ) ρDM( ⃗x )
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Buckley, Lim, Putney & DS 2205.01129

Green et al 2011.04673, 2205.02244, Naik et al 2112.07657, An et al 2106.05981

https://arxiv.org/abs/2205.01129


• Liouville theorem: phase space density is conserved


• Stars are well-approximated as collisionless, only interacting through long-
ranged gravitational force


• So they must obey the collisionless Boltzmann equation:

47

[ ∂
∂t

+ ⃗v ⋅
∂

∂ ⃗x
+ ⃗a ( ⃗x ) ⋅

∂
∂ ⃗v ] p( ⃗x , ⃗v ; t) = 0

⃗a ( ⃗x ) = −
dΦ( ⃗x )

d ⃗x
 is the gravitational potential of the Galaxy (DM+stars+gas…)Φ( ⃗x )

Mass density from phase space density

Accelerations

Buckley, Lim, Putney & DS 2205.01129

Green et al 2011.04673, 2205.02244, Naik et al 2112.07657, An et al 2106.05981

https://arxiv.org/abs/2205.01129


• If the stars are also in dynamical equilibrium, then  and we get:


• Just from knowledge of  and its derivatives we can determine the 
accelerations 


• Taking another derivative gives us the mass density of the Galaxy!

∂p/∂t = 0

p( ⃗x , ⃗v )
⃗a = − ∇Φ

48

4πGρ = ∇2Φ = ∇ ⋅ ⃗a

[ ⃗v ⋅
∂

∂ ⃗x
+ ⃗a ( ⃗x ) ⋅

∂
∂ ⃗v ] p( ⃗x , ⃗v ) = 0

Mass density from phase space density
Buckley, Lim, Putney & DS 2205.01129

Green et al 2011.04673, 2205.02244, Naik et al 2112.07657, An et al 2106.05981

https://arxiv.org/abs/2205.01129


More on determining the accelerations

• How can we solve for 3 acceleration functions  with just a single equation?


•  doesn’t depend on velocity! So this is actually an infinite number of equations for 
, one for each choice of 


• We choose to perform least-squares minimization over a sample of velocities to determine 
best-fit  

⃗a ( ⃗x )

⃗a ( ⃗x )
⃗a ( ⃗x ) ⃗v

⃗a ( ⃗x )
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L( ⃗a ( ⃗x )) =
1
N

N

∑
α=1 ([ ⃗v α ⋅

∂
∂ ⃗x

+ ⃗a ( ⃗x ) ⋅
∂

∂ ⃗v ] p( ⃗x , ⃗v α))
2

[ ⃗v ⋅
∂

∂ ⃗x
+ ⃗a ( ⃗x ) ⋅

∂
∂ ⃗v ] p( ⃗x , ⃗v ) = 0

Green & Ting 2011.04673, An et al 2106.06981, Naik et al 2112.07657, Buckley, Lim, Putney & DS 2205.01129
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Proof-of-concept

• Training data: state-of-the-art Nbody+hydro galaxy simulation from “Nbody shop” 
collaboration  
[https://b2share.eudat.eu/records/c9f232d8ac804785aad35004177a704e]


• Milky Way like Galaxy h277

50

11 / 27 

Training Dataset:
h277 at present

12 / 27 

Training Dataset
- number of stars  
   153,174  (<< size of Gaia 6D dataset) 
- observer’s location 
    [8.122, 0., 0.0208] kpc
- observing radius = 3.5 kpc
- simulation resolution: 0.173 kpc
- Using only kinematic information:
    position and velocity

Our work: first to use Nbody+hydro simulation

Buckley, Lim, Putney & DS 2205.01129


star particles

https://b2share.eudat.eu/records/c9f232d8ac804785aad35004177a704e
https://arxiv.org/abs/2205.01129


Results: density estimation
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FIG. 4: One-dimensional density distributions in galactocentric Cartesian coordinates of 106 stars sampled from 10 MAFs
trained on datasets of stars within within 3.5 kpc of the Solar position ~x� = (8.122, 0.0, 0.0208) kpc. Sampled stars from
MAFs trained on the original dataset before errors are applied are shown in blue, and after error smearing in red, while the
original (unsmeared) dataset is shown in black. Shaded regions indicate the 1� error from the ensemble of 10 MAFs. Vertical
dashed lines show the Solar velocity. The subplots show the di↵erence in in the one-dimensional histogram between the sampled
stars and the original distribution of the data without errors: �f ⌘ fMAF � ftrue (where ftrue is obtained via one-dimensional
binning). The grey ellipse corresponds to expected 1� Gaussian errors based on the number of original dataset stars in each
bin, and the colored shading indicates 1� errors from the ensemble of 10 MAFs.

tioned on location are an order of magnitude larger than
those for the entire dataset, reflecting the fact that the
fewer tracers are available to constrain the velocity dis-
tribution when conditioning on position, versus sampling
the velocity distribution over the entire observation win-
dow.

IV. ACCELERATION FROM THE
BOLTZMANN EQUATION

Having introduced the simulated dataset and our
method of learning the density and derivatives of that
dataset, we can now turn to determining the accelera-
tion and overall density in which these tracer stars were
evolving. Our initial goal is to determine the poten-
tial gradient at any position ~x which lies within the do-
main of our tracer dataset, starting with the Boltzmann

Equation in Cartesian coordinates Eq. (1). As pointed
out in Ref. [60–62], as � is a function of ~x only, multi-
ple velocities sampled from p(~v|~x) at the same ~x must
obey the Boltzmann Equation given the same accelera-
tion ~a ⌘ �@�/@~x.

As the MAFs do not perfectly reconstruct the phase
space densities and local equilibrium is not perfectly
achieved, we expect the time derivative of the phase-
space density df/dt to di↵er from zero, star-by-star.
However, under the assumptions of approximate equilib-
rium and that the MAFs are approximately correct, this
time derivative will be on average zero. We can then ob-
tain an estimator for the the acceleration at a location ~x

Buckley, Lim, Putney & DS 2205.01129
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Results: accelerations
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Accelerations to within 5% accuracy!

We estimated uncertainties from:

• random training initialization

• finite training data statistics (bootstrap)

• measurement error

Buckley, Lim, Putney & DS 2205.01129
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Results: mass density
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Mass density to within 10-20% accuracy!

Buckley, Lim, Putney & DS 2205.01129


We estimated uncertainties from:

• random training initialization

• finite training data statistics (bootstrap)

• measurement error

https://arxiv.org/abs/2205.01129


Comparison to existing  
measurements
• Existing measurements typically use Jean’s equation 

(second moment of Boltzmann equation)


• Assume axisymmetry, reflection symmetry…


• Bin data and perform parametric fits to extract 


• Results can seem precise but might not be accurate 
(biased)

Φ( ⃗x )
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Figure 1: Summary of recent ⇢DM,� estimates. The marker type indicates the main observa-
tion of the analyses: triangles for local observations, squares for circular velocities, a diamond
for disc stars in an extended local region, and circles for halo stars. From top to bottom:
the brown triangles correspond to the local studies presented in section 4.1.1; the dark blue
squares to the circular velocity analyses from section 4.2; the red triangles to the Galactic
mass models based on local observations, discussed in section 4.3.1; the pink diamond to the
Jeans anisotropic modelling of disc stars presented in section 4.3.2; the cyan squares to the
circular-velocity-based Galactic mass models included in section 4.3.3; and the green circles
to the analyses of halo stars from section 4.3.4. We do not include the very local analyses
from section 4.1.2 because of their large error bars.

estimates of vc(R) within R ⇠ 5–25 kpc are currently available [47]. However, without a corre-
spondingly precise knowledge of how baryons are distributed, it is not possible to disentangle
the contribution to vc(R) from baryons and dark matter. Therefore, the uncertainty of the
resulting ⇢DM,� is dominated by the uncertainties in the baryonic distribution (e.g., [82]).

The results of recent global mass models (section 4.3) are also included in figure 1. Some
studies focused on fitting the distribution function of disc stars—section 4.3.1 and estimates
in figure 1 shown in red with triangular markers—complementing their analyses with other
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From de Salas & Widmark 2012.11477

Measuring Galactic Dark Matter through Unsupervised Machine Learning

Matthew R. Buckley, Sung Hak Lim, Eric Putney, and David Shih
Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854, USA

Measuring the density profile of dark matter in the Solar neighborhood has important implications
for both dark matter theory and experiment. In this work, we apply autoregressive flows to stars
from a realistic simulation of a Milky Way-type galaxy to learn – in an unsupervised way – the stellar
phase space density and its derivatives. With these as inputs, and under the assumption of dynamic
equilibrium, the gravitational acceleration field and mass density can be calculated directly from the
Boltzmann Equation without the need to assume either cylindrical symmetry or specific functional
forms for the galaxy’s mass density. We demonstrate our approach can accurately reconstruct the
mass density and acceleration profiles of the simulated galaxy, even in the presence of Gaia-like
errors in the kinematic measurements.

I. INTRODUCTION

Dark matter is definitive evidence for physics beyond
the Standard Model. No known particle has the nec-
essary properties to resolve the gravitational anomalies
which arise in spiral galaxies [1–3], galaxy clusters [4, 5],
early Universe cosmology [6], and gravitational lensing [7]
if non-relativistic energy density was only sourced by the
visible baryonic material. Despite an extensive experi-
mental particle physics program across direct detection,
indirect detection, and collider searches, astrophysics re-
mains the only source of definitive positive knowledge
about the particle nature of dark matter. Analyzing the
gravitational influence of dark matter remains a critical
source of new information which informs theoretical ideas
about this mysterious substance (see e.g., Ref. [8] for a
review).

With this context in mind, the distribution of dark
matter in the Solar neighborhood and more broadly
throughout the Milky Way galaxy is of immense interest
to the study of the physics of the dark sector. The density
of dark matter at the Earth’s location enters directly into
the scattering rate for direct detection experiments, and
the distribution of dark matter within the Galaxy deter-
mines the intensity and angular distribution of indirect
detection signals of dark matter annihilation and decay
at the Galactic Center. Additionally, non-trivial physics
within the dark sector – for example, self-interacting [9],
fuzzy [10], or dark disk [11, 12] dark matter – can modify
the density profile of the Galaxy’s dark matter halo. Re-
latedly, measurements of the acceleration field o↵ of the
Galactic disk can discriminate between dark matter and
modified gravity solutions [13].

A large literature exists [13–52] which seeks to mea-
sure the dark matter density in the local volume of space
via its e↵ect on the statistical properties of a popula-
tion of visible tracer stars’ kinematics. These stars are
moving within the Galactic gravitational potential �(~x),
sourced by stars, gas, and dark matter. For a popula-
tion of tracers which are well-mixed into the Galaxy, the
phase space density as a function of position and velocity

f(~x,~v) respects the collisionless Boltzmann Equation:1

df

dt
+ vi

@f

@xi
=

@�

@xi

@f

@vi
. (1)

If the tracer population is in equilibrium, then @f/@t is
zero. There is compelling evidence that the Milky Way
local to the Sun is not currently in dynamic equilibrium
[53–55], due to interactions with the Sagittarius stream
as well as the Magellanic Clouds. Despite this, when
inferring density and acceleration using the Boltzmann
equation, equilibrium is typically assumed (see for exam-
ple Ref. [56]); we will do the same in this work. However,
in the absence of equilibrium our proposed direct mea-
surements of f(~x,~v) provide interesting possibilities when
combined with other measurements of Galactic accelera-
tion; we will return to this point later in the paper.
Using the Boltzmann equation – which relates the

derivative of the potential (that is, the gravitational
acceleration) to derivatives of the full six-dimensional
phase space density of a stellar population – has histor-
ically proven di�cult. The high dimensionality of phase
space implies that any attempt to construct f from data
through binning will result in poor statistics of most
bins in ~x and ~v. These inaccuracies will then propa-
gate and amplify in the calculation of the derivatives.
While other methods have been developed (distribution
function modeling [25, 34, 35, 41] or made-to-measure
methods [19, 46]) a common approach to overcome this
problem is to take the first moment of the Boltzmann
equation and integrate over velocity. With the spatial
phase space of the tracers defined as ⌫(~x) =

R
d3~vf(~x,~v),

the resulting Jeans Equation is
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where the average squared velocity matrix
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1
Here, and throughout this paper, Cartesian coordinates are in-

dexed by Latin characters i, j, k and the Einstein summation

convention is assumed.
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