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In this talk

I’ll introduce a little bit of collider physics and motivate the need for better modelling in a few areas

Detail one possible avenue: probabilistic graphical models or Bayesian networks

I’ll show one very detailed example detailed on arxiv:2107.00668, you can ask me also about 

arxiv:2112.11352 where we apply graphical models to quark/gluon jets to get a truly unsupervised 

tagger
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Motivation

The Standard Model of particle physics represents our understanding of (some of) the most fundamental 

aspects of Nature.

However, experimental observations (dark matter,  neutrino masses and gravity,...) and theoretical  issues 

(θ
QCD

problem, the Higgs hierarchy problem,...)  make clear the limitations of the SM.

How do we explore the SM and beyond?
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Motivation

Colliders are among the most powerful tools we have to test and expand our knowledge

p

p

??? Information about the 
building bricks of Nature

Theory + Simulators
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Monte Carlo based strategies
We perform dedicated analyses with specific topologies in mind.

Dedicated searches rely on good modelling: the simulation pipeline is fundamental. 

BKG + S
 hypotheses

Event generators

Expected 
events at a 

given 
channel 
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Monte Carlo based strategies
With the expected events, we can turn from estimation to inference. In collider studies, there is a primacy 

of frequentist methods to estimate or set limits to the parameters of interest or even for model selection.

Meaningful 
statements 

about the POI
Statistical analysis

Measured 
events at a 

given 
channel

6



MC based strategies for detecting a given signal
BKG-only hypothesis discarded → Discovery (similar to Higgs discovery)

BKG + S hypothesis discarded → Exclusion regions on the specific model parameter space (with possibility of recasting)

BKG + S measured → Parameter estimation 

BKG + S 
hypotheses Modelling + Frequentist techniques Measurements
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Example from an ATLAS search 
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https://atlas.cern/updates/press-statement/observation-higgs-boson-decay-pair-bottom-quarks#_ftn1


Motivation

With colliders, we have been able to test our predictions to astounding precision.  The discovery of the 

Higgs for instance, and the incredible precision in measuring its properties.

However, one may fear we’re getting to the end of the line due to the energies/luminosities achievable 

and the systematic limitations of our current analysis methodology. 

Namely, the need for precision in a high statistics environment can drive the computational costs. And 

there is no guarantee that the modelling can be precise enough!
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Machine Learning based

Semi-supervised and unsupervised algorithms could ease the dependency on Monte Carlo.  Although 

there is no such thing as a free lunch.

Some model 
hypotheses, data 

representation 
choices

Algorithm applied to data + MC

Improved task 
(anomaly detection, 

event 
generation/compress

ion, unfolding…)
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Surrogate models

Surrogate models emulate a given process, and can be preferable to the true process probability density 

by a variety of reasons: accessibility, speed, storage size.

We already use empirical models for non-perturbative MC simulations (mainly, hadronization) and there 

are known pitfalls due to additional systematic uncertainties and unphysical behavior.
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p( data | theory )

p( stable particles | theory )p( data | stable particles )

p( showered partons | pQFT partons ) p( pQFT partons | theory)p( stable particles | showered partons )
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Bayesian techniques

They already permeate event generators and their surrogate models extensions: NNPDFs, Bayesian 

Neural Networks, cINN surrogate models.

Bayesian inference allows for a better evaluation of uncertainties and for improved unfolding (as long as 

one can make probabilistic statements).

Intuitively, Bayesian always sounds good… Now it is becoming more possible. Differentiable 

programming is a key development. So are different approaches to inference like Black Box Variational 

Inference and simulation-based inference where the intractabilities are somewhat sidestepped.
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Bayesian techniques for modelling

There is a vast array of literature about Bayesian model building we can take advantage of. Already a lot 

of examples in HEP ( e.g. GANs, VAEs, Shower Deconstruction, LDA, Topic models in general …)

Always need to keep in mind the same requirements as for event generators:

- Physically meaningful: harder to achieve than with event generators. Requires physical bias to be 

baked into the model.

- Speed + size: training should not be too hard nor require so much data as to render simulations 

preferable
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Probabilistic Graphical Models

Clear, interpretable, testable way to state our modelling assumptions and incorporate physical bias.

Vast literature on implementations and inference available.

Has already found many applications in collider physics (see Topic models which has been applied to 

quark/gluon tagging at high p
T 

arxiv: 2205.04459, 4-top searches arxiv:1911.09699 and quark/jet 

modifications Heavy Ions collisions arxiv:2008.08596).
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Probabilistic Graphical Models

Association between a Graph (we’ll deal with Directed Acyclical Graphs or DAGs) and a joint distribution 

or model. We call a DAG with an associated distribution a Bayesian Network.

z

x y
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Probabilistic Graphical Models

Powerful visualization technique to express assumptions. Useful for designing and motivating models.

Economical representation of the joint distribution that also provides insights into properties of the 

model, like conditional independence from graphical criteria like d-separation.

Inference can be expressed efficiently in terms of graphical manipulations.
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What I’m interested in…

We can think of Bayesian Networks for unsupervised learning.

We do not learn with labels. Instead, we want to model the generative process of the data and infer the 

appropriate underlying classes and hopefully match them with physical processes (non-guaranteed!).

We can then run statistical tests using the learned probability densities (frequentists tests with the 

Likelihood, but specially Bayesian tests to qualify the learned data distributions).
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A more involved problem: Four top quarks

Based on arxiv:2107.00668 by  E. Alvarez, B. M. Dillon, D. A. Faroughy, J. F. Kamenik, F. Lamagna and MS.

Selecting key observables and with an appropriate modelling assumption (Conditional Independence), we 

are able to disentangle 4-top quark production from its main background process.

It’s not there yet, but it is an step towards surrogate models for learnable, interpretable models with 

verifiable assumptions.
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Four tops at the LHC

An increasingly sensitive SM benchmark  to be explored at the LHC, with huge experimental effort and impressive 

results. Recent results in monolepton + 2LOS (ATLAS coll., ATLAS-CONF-2021-013, CMS coll., arxiv:1906.02805) 

and 2LSS + multilepton (ATLAS coll., arxiv:2007.14858. and CMS coll., arxiv:1908.06463).

Correspondingly, state of the art calculations and improvement of SM predictions (see R. Frederix, D. Pagani, M. 

Zaro, arxiv:1711.02116).

A theoretically well motivated (but perhaps more importantly,  still allowed) window to BSM effects (see e.g.  G. 

Banelli, E. Salvioni, J. Serra, T. Theil, A. Weiler, arxiv:2010.05915, E. Alvarez, A. Juste, M. S., T. Vazquez Schroeder, 

arxiv:2011.06514 and Luc Darmé, Benjamin Fuks, Fabio Maltoni, arxiv:2104.09512).
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Already a very populated partonic final state
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We only see top decays
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And ISR+FSR 
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Theoretical calculations are really challenging

From R. Frederix, D. Pagani, M. Zaro, arxiv:1711.02116:

NLO corrections are large + Mixed corrections are comparable to pure QCD. 

→ Theoretical calculations are expensive and necessary.

Large, accidental cancelations of (N)LO terms which involve QCD+EW couplings. Clear scale dependence 
of the accidental cancellations.

→ Hard to assert how BSM would change these cancellations. Need for very expensive simulations for 
each BSM model?
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Four tops in the 2LSS+multilepton channel

Signal and irreducible backgrounds (mainly tt̄Z, tt̄H and specially tt̄W± + heavy-flavour) are of the same 

order of magnitude.

Reduced complexity of the multijet final state compared to single lepton. Added complexity of other 

source of MET.

Still very challenging! 
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Four tops in the 2LSS+multilepton channel

CMS measures something along the lines of the SM cross-section:

While ATLAS measures      

It’s still compatible with SM predictions but the central value is roughly twice as expected
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Four tops in the 2LSS+multilepton channel

The main sources of uncertainty are:

High multiplicities final states are challenging to simulate.

Misaligned charge + Fake/non-prompt leptons need to be estimated with data-driven techniques.

Charge asymmetric + High b-jet multiplicity discrepancies are addressed by using a Normalization Factor 

for tt̄W±: NF
tt̄W=1.6±0.3 for ATLAS and 1.3±0.2 for CMS.

Also… not a whole lot of events (~ 300 events for 140fb-1).
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Four tops in the 2LSS+multilepton channel

What can we do? 

Improving on our knowledge of 4-top and its irreducible backgrounds would be ideal. However, obtaining 

the tt̄W± +HF and 4-top cross-sections, and kinematical distributions, to a higher precision is a daunting 

task.

Maybe reduce Monte Carlo dependency by learning from the Signal Region directly using semi- or 

unsupervised techniques.
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Learning four tops

We will focus on the 2LSS++ channel and consider only four tops and tt̄W±. tt̄Z and tt̄H could be included 

easily.

In this channel, we have roughly 1/1 events. 

Let’s focus on the technique more than in the simulation dataset.

29



Learning four tops

We can resume our goal as the following:

Consider our imperfect simulations of the (known) physical processes as prior knowledge and update 
our knowledge using the measured data → Bayesian framework
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Learning four tops

As seen in E. Alvarez, D. A. Faroughy, J. F. Kamenik, R. Morales, A. Szynkman in arxiv:1611.05032, N
b 

and 
N

j
 are the low level observables that drive the discriminatory power.

Let’s focus on those! Keep things simple. 

We consider a probabilistic mixture model → each event is generated by one of underlying the physical 

processes.

Because we cannot observe this assignment, it is a latent parameter z.
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Modelling four tops

For event n, we measure N
j
 = j

n
 and N

b
 = b

n
. 

We want to model p(j
n
,b

n
) as a mixture of two processes: background (tt̄W±) and signal (four tops). This is 

achieved by writing the likelihood as:
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Modelling four tops

p(z
n
=four tops) is the probability of an event originating from a four tops hard process

→ S/(S+B) = p(z
n
=1) = π

1

p(j
n
, b

n
|z

n
=t) are the probability mass functions we would ideally obtain from simulation

→ (j, b) ~ Multinomial(γ
t,(j,b)

) where γ
t,(j,b)

 is a matrix of dimension 2x(d
j
xd

b
-1)
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Modelling four tops

However, we do not really know any of these parameters. 

(Roughly) Frequentist approach: obtain the best parameters using a Max Likelihood fit.

(Roughly) Bayesian approach: treat these parameters as random variables with prior probability 

distributions that need to be updated with the data as encoded in the likelihood (Bayes theorem).
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Modelling four tops

Posterior = Likelihood x Prior / Evidence

35



Modelling four tops
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Modelling four tops

But there is a problem: We have 2x(d
j
xd

b
-1)+1 parameters to infer. But we have one measurement per 

event →  We do not have enough information to disentangle! 

We can solve this by assuming conditional independence between N
j
,N

b
. That is:
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Modelling four tops

We are assuming that the correlations between N
j
 and N

b
 come from the fact that there is a mixture of 

processes. We need to learn this mixture to learn the correlations. If supervised, it would be Naive Bayes.

This is very different from:
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Modelling four tops

The likelihood is now:

Which implies an specific covariance matrix between j and b:
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Modelling four tops

We go from 2x(d
j
xd

b
-1)+1 → 2x(d

j
+d

b
-2)+1 parameters. 

So now Bayes theorem looks like...
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Modelling four tops

We need to specify the priors. We consider the conjugate prior of the Multinomial: the Dirichlet.

We map our prior knowledge to the Dirichlet hyperparameters.

The MC simulations yield estimations on the parameters 𝜃 = π, 𝛼, and 𝛽  → Expected values under the 

prior distribution 

41



Modelling four tops

We can fix the expected values given by our MC by parameterizing 𝜂
k
= Σ p

k
 where p

k
 is the parameter 

value estimated through MC simulations and Σ a total scaling factor which encodes our confidence in the 

prior estimations. 

Looking at the mean and variance of a given possible outcome 𝜃
k
:
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Putting it all together: Generative process

We can understand it using a plate diagram which 
encodes the generative process of the data:

Sample fractions π
0

, π
1

 ~ Dir(ηπ)

For t=1,2:

- Sample light jet multinomials 𝛼
t
~ Dir(η𝛼t)

- Sample b-jet 𝛽
t
 ~ Dir(η𝛽t)

For event n=1,..,N:

- Sample event assignment z
n
 ~ Multi(π

0
, π

1
)

- Sample j
n
 ~ Multi(𝛼

zn
)

- Sample b
n
 ~ Multi(𝛽

zn
)
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Learning four tops

The thing is: we cannot do the inference procedure exactly. The evidence is intractable: a lot of possible 

assignments and thus updates of the prior.

Luckily, there is a vast literature on the subject and a lot of techniques. EM+priors for finding the MAP, 

Variational Inference for approximate, fast and analytical inference and Markov Chain Monte Carlos for 

“exact” numerical inference.

Our model is so simple (everything is either multinomial or dirichlet!) that we are able to write the latter 

in python without the need to resort to dedicated software (such as pymc, emcee or pyro).
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A simple benchmark

We consider the case with N=500, f
1

=0.30 (roughly a Luminosity of 800 fb-1).

To study our algorithm we use MC samples as “true data” and a smeared version as our “MC” which plays 

the role of prior.

We make an exception for the signal fractions, for which we assume no prior knowledge.
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A simple benchmark

These are the two dimensional distributions
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A simple benchmark

And here are the 1d projections we use.
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Inference: Gibbs sampler

We obtain T “independent” samples of parameters drawn from the posterior. 

Any expected value E
z,π,𝛼,𝛽[f(z,π,𝛼,𝛽)] can be approximated by the mean over the samples Σ

i
 f(z

i
,π

i
,𝛼

i
,𝛽

i
)/T

We can plot the marginalized distributions simply by drawing histograms on the relevant parameters.

We need the conditional distributions of each parameter conditioned on the others p(𝜃
v
|𝜃

\v
) → Really 

simple because we have only Multinomials and Dirichlets.
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Corner plots

For each parameter, we show its 1d histogram and its 2d correlations with every other parameter

This is a 
particularly 

good example 
where we 

capture 
correlations
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Grouping parameters together

Now we can compare prior vs posterior
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General observations

From this and other benchmarks:

Good convergence + uncertainty reduction!

N
j
 is easier to fix. N

b
 is harder and π is the hardest. 

N
j 
has a lot of very populated bins. This is not the case for N

b
.

The limitations in  π probably reflect the limitations of our modelling (and the use of a non-informative 

prior). However, once we have N
j
 and N

b
 simulations we can trust, we can obtain π in the usual manner.

As the main problem is obtaining N
j
, this algorithm seems relevant.

51



Evaluating our results

To analyse the results of the inference, we consider the log-likelihood ratio of the correct parameters 

given the prior and the posterior probabilities.

In a real application, we do not know the true values. However, this is where the Bayesian framework is 

useful. There is a vast literature on model selection techniques!

Because we have a generative model, sanity checks and interpretability are straightforward.
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Validating our model through Mutual Information
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Validating our model through Mutual Information

We see how we cannot rule out I(N
j
,N

b
) = 0 or 

I(N
j
,N

b
|Z) = 0, but the latter is way more 

pronounced.

Perfect b-tagging yields better results but does not 

really change the picture. For limited statistics, the 

model works.
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Validating our model through Mutual Information

If we increase the Luminosity to HL-LHC:

For perfect b-tagging I(N
j
,N

b
) = 0 is mostly ruled 

out but I(N
j
,N

b
|Z) = 0 is not. 

For realistic b-tagging, I(N
j
,N

b
|Z) = 0 can become 

false because of induced dependence between N
j
 

and N
b
 that is especially noticeable for 4-top.

For increased statistics, we should incorporate 

b-tagging into our model. And we can!
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From this work

We are able to model the data with a generative process. Conditional independence (which is already 
slightly broken by imperfect b-tagging!) is a key modelling assumption that is explicitly verifiable.

This allows us to improve on our Monte Carlo estimations by treating them as prior knowledge which is 
to be updated through event measurements.

We are able to correct the N
j
 distributions properly.
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What could we do next?

Increase the expressivity of our model by including further physical effects such as b-tagging.

Once we that we can try to:

- Tune our Monte Carlo generators on signal regions

- Measure the signal cross-section with reduced systematics

- Test for NP effects

- Adapt to other channels
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What did we learn?

Two states of the art collide! It’s very interesting to see what can happen.

ML can enhance statistical analyses either by taking full advantage of Monte Carlo distributions or reducing 
dependence on them.

I tend to value simpler models where we can incorporate domain knowledge and where unknowns are easier to 
catch.

However, it’s hard to generalise to not so nice distributions… Deep Exponential Families and Black Box Variational 
Inference could provide a trade-off between power and interpretability.
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Conclusions

Collider experiments are providing us with incredible amounts of measurements.

To take advantage of it, simulations and analyses techniques need to step-up.

Bayesian graphical models provide clear modelling and fast inference.

A possible tool among many, whenever it is convenient to apply them.
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Thank you!
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Backup slides
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Complexity of collider experiments

Many different physical phenomena, with different scales and different tools:

- Partons originating from colliding hadrons  sampled through PDFs
- Hard scattering amplitudes calculation and phase space integration
- ISR/FSR
- Hadronization
- Final state interactions
- Underlying event effects
- Detector effects

Making use of factorization theorems, different dedicated softwares have achieved incredible sophistication but 
still face difficulties
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Main issues:

High-dimensional parameter space that models empirically different effects plus assume exact 
factorization theorems:

- Expensive tunes
- Expensive and difficult treatment of uncertainties
- Additional systematics due to modelling
- Computational bottlenecks
- Numerical instabilities
- Cross-cutting from factorization theorems’ breakdowns
- Self-consistency of parameter tunes
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Surrogate models

This is usually where Machine Learning can be really helpful as it can learn very precise surrogate models 

for different modules.

See for example (there are many, many others):

- VAEs for Jet surrogate models 

- MLHAD / HADML for Pythia8 / Herwig surrogate models

- CaloGAN, CaloFlow for Geant4 calorimeter surrogate models

- OTUS, DijetGAN for End-to-end surrogate models
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Surrogate models for inference

Surrogate models can make for a much easier parameter inference and unfolding. 

See for example:

-  MLPF for particle reconstruction from calorimeter and trackers

- OmniFold and cINN for unfolding

- MadMiner and the Matrix Element Method for parameter inference

- A. Wulzer and G. Grosso’s talks
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From ATLAS 1L+2LOS search

Uncertainties related to the 

background simulations at 

large N
j
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From ATLAS 1L+2LOS search

Corrected through various 

clever techniques that need 

to trust that the MC 

extrapolates between 

different regions

They introduce additional 

systematics 
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Four tops in the 2LSS+multilepton channel

Let’s look under the hood!

From E. Alvarez, A. Juste, M.S. 

and T. Vazquez Schroeder 

arxiv:2011.06514

Very similar strategies… but 

not exactly the same.
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Inference: Gibbs sampler

To start a given iteration t, we only need the sufficient statistics N(t)
kjb

.

N(t)
k,j,b

 is the number of measurements of j and b assigned to class k. It can be obtained merely by having 
the event class assignments. 

From there we can obtain N = Σ
k
 N

k
 = Σ

k,j
 N(t)

k,j
 = Σ

k,b
 N(t)

k,b
 = Σ

k,j,b
 N(t)

k,j,b

So we start the Gibbs sampler with an initial random event class assignment Z (0) which we’ll then forget 
about later
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Gibbs sampler

So, for iteration t:

In practice you need to burn-in and thin the samples to get more or less independent samples.

Afterwards, you can get a lot of information: corrected distributions p(π,𝛼,𝛽|X), an event-by-event 

probabilistic tagger p(z
n
|x

n
) where we marginalize over π,𝛼,𝛽, etc.
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Inference: Variational Inference

Variational Inference is an approximated inference technique which assumes certain factorizations

71

It is inherently 
limited to find 

what we need it 
to find!

Distributions 
are too narrow



There are a lot of them...
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Another example: A Quark/Gluon classifier

Unsupervised quark/gluon jet tagging with Poissonian Mixture Models

Based on E. Alvarez, M. Spannowsky and MS, arxiv:2112.11352

● Not exactly BSM search, but highly important task for a lot of analyses

● Usually quark/gluon classifiers rely on supervised datasets with approximately well-known 

observables

● But Monte Carlo bring uncertainties (and also the definition of quark and gluon jets can be 

problematic!)
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Quark vs Gluon jets

Let’s focus on a well-known observable, the iterative SoftDrop multiplicity  with hyperparameters ,  and  

(C. Frye, A. J. Larkoski, J. Thaler, and K. Zhou, arxiv:1704.06266)

At LL order, it’s Poissonean

Let’s consider a mixture model that can be trained on unlabeled data! Ideally, we would match the classes 

to quark and gluon jets.

As a benchmark, we consider the Quark/Gluon dataset provided by P. T. Komiske, E. M. Metodiev and J. 

Thaler, arxiv:1810.05165
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The mixture model
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The mixture model

Here we don’t include any priors but we consider 

uniform priors on a limited range

Mode degeneracy is avoided by identifying gluon jets 

with the largest  rate found

Mode collapse is (mostly) avoided because there are 

only two classes and the problem is rich enough
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Good and bad examples

We show learned distributions for the 

underlying processes and for the data

Supervised metrics are for validation, but 

unsupervised metrics are the ones we care 

about.
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Supervised and Unsupervised Metrics

We can define a quark/gluon tagger from the learned model

We can also obtain the learned data probability density
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Supervised and Unsupervised Metrics

With a tagger we can compute the usual supervised metrics (accuracy, AUC, etc)

But more interestingly, we can compare the learned data density with the measured density to obtain 

unsupervised metrics
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Supervised vs Unsupervised metrics

There is a good correlation between supervised 

and unsupervised metrics

They allow us to select hyperparameters where the 

model is good at explaining the data AND at 

distinguishing quarks from gluons
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Full Bayesian analysis

We can go from MLE to full Bayesian analysis (with 

uniform priors)

We observe the correlations between random 

variables

But very narrow distributions!
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We can also marginalize to get a better tagger

This is a tagger that considers the full posterior 

distribution
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The classifier performance

We observe how the performance focuses on the 

probabilistic threshold

Remember, this is unsupervised learning.
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Detector Effects
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Full Bayesian Analysis
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So… what did we learn?

We can obtain a quark/gluon classifier directly from data assuming a Poisson mixture model.

This classifier can be optimized with data-driven metrics, resulting in accuracy in the 0.65-0.70 range.

This classifier is robust against detector effects.

We could incorporate these unsupervised methods to traditional analyses (either at the Likelihood level 

or by computing Bayesian tests)
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Main issues

The dataset provides a narrow  bin. For a more realistic implementation,  should be included either as a 

latent variable or by binning the dataset into different subsets.

The Poisson hypothesis is only approximately true… How do we deal with deviations? It is not that 

important for tagging but it is for Monte Carlo tuning.
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All in all

A good, solid, unsupervised classifier which is really easy and cheap to implement

It can be extended with other observables provided we have some good understanding on how to model 
them

Can be part of a functional definition of quarks and gluons

We have not implemented the learned distributions in statistical tests as we are dealing with a 
classification problem, but dealing with BSM searches would be a different matter 
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