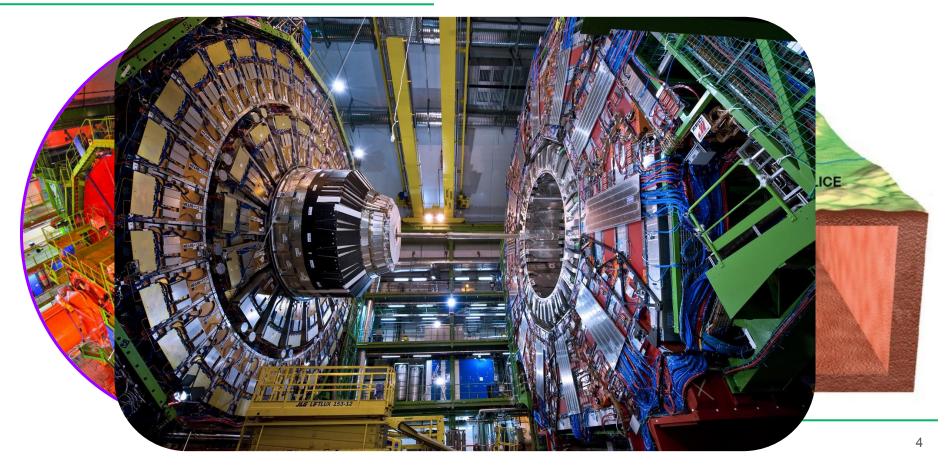
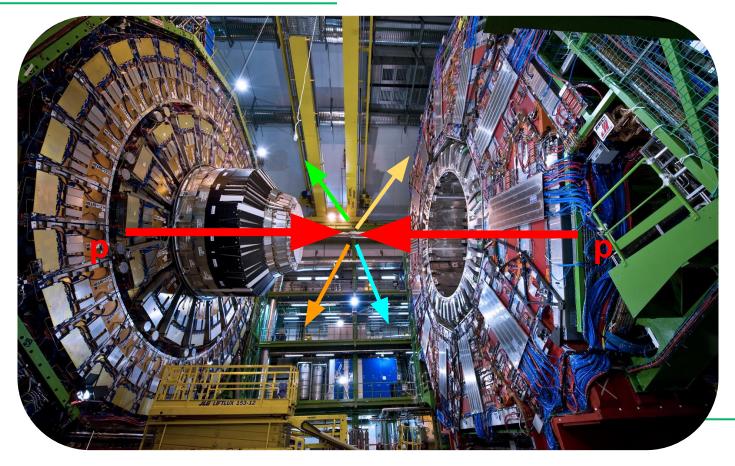

EXPLORING EFT WITH ML AT THE LHC

Alessandra Cappati


Machine Learning at GGI workshop Florence, 31st August 2022 Goal: uncover what the universe is made of and how it works


THE CMS EXPERIMENT

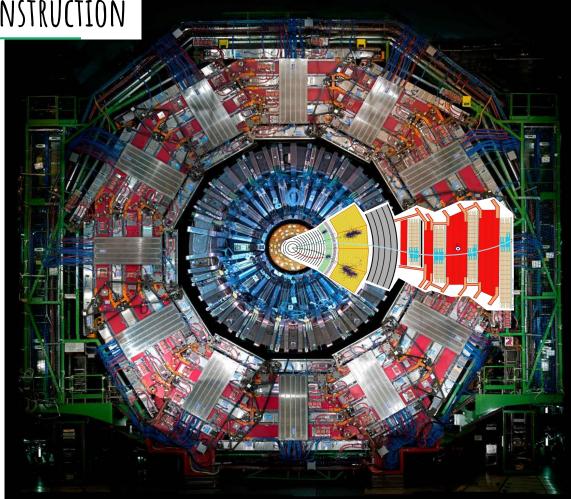
THE CMS EXPERIMENT DETECTOR

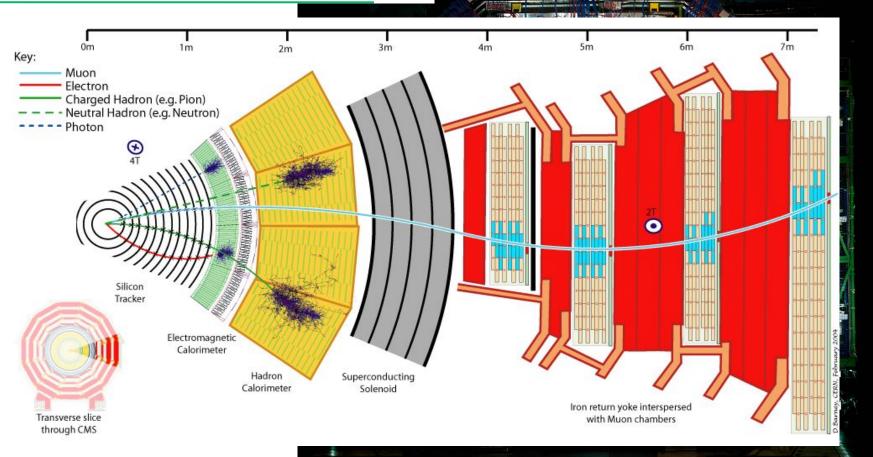
P-P COLLISIONS IN CMS

P-P COLLISIONS IN CMS: EVENTS

CMS Experiment at the LHC, CERN

Data recorded: 2016-Aug-17 08:01:23.065024 GMT Run / Event / LS: 278969 / 229126383 / 184

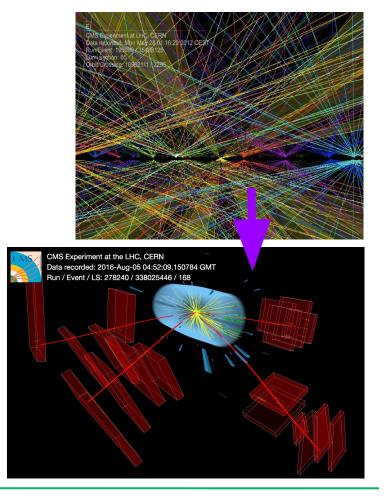

CMS Experiment at the LHC, CERN Data recorded: 2016-Aug-05 04:52:09.150784 GMT Run / Event / LS: 278240 / 338025446 / 168



CMS Experiment at the LHC, CERN Data recorded: 2016-Oct-09 22:33:24.645376 GMT Run / Event / LS: 282735 / 1316770314 / 669

PARTICLES DETECTION AND RECONSTRUCTION

PARTICLES DETECTION AND RECONSTRUCTION

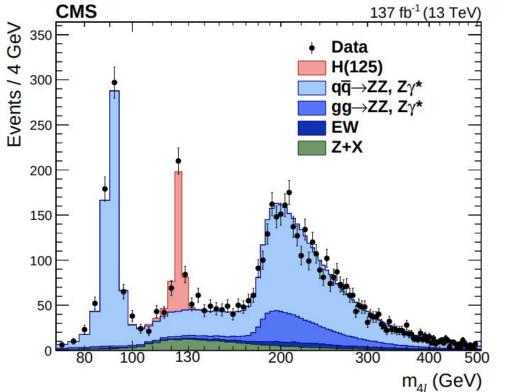

EVENTS SELECTION

• Trigger:

- collision rate at LHC 40 MHz
- need to record only potentially interesting events

• Offline selection:

- according to the signature of processes of interest, select events with certain characteristics (e.g. H→4I)
- from particles reconstructed in detectors (final decay products), reconstruct information about particles generated in the collisions (e.g. Higgs or vector bosons)

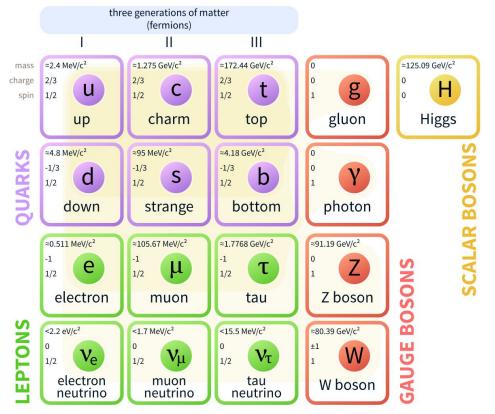


DATA FORMAT

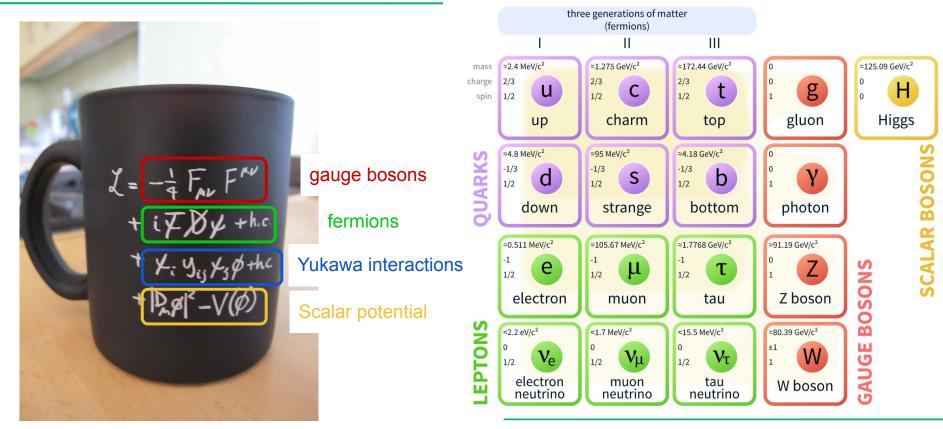
- Analysis is performed with **kinematic information** of selected particles
- Information in each event:
 - type of the particle
 - o momenta
 - angles
 - invariant mass
 - o ...
- (MC only) per-event weights (normalization to process cross-section, corrections...)
- Format: usually .root files (tree structure), recently also pandas data frames
- Both **data** and Monte Carlo **simulation** (MC) have the same structure!

Jura z CMS x LHC LHCb										
$p_{T} = projection of the momentum in the xy plane$										
108033	-13	13	35.66	41.013	108.98					
108029	-11	11	54.52	38.88	123.64					
108017	-11	11	22.42	69.22	122.48					
event #	lep ₁ ID	lep ₂ ID	lep ₁ p _⊺ [GeV]	lep ₁ p ₁ [GeV]	m _{zz} [GeV]					

DATA-MC PLOT



MC simulation obtained from the knowledge we have of the Standard Model of Particle Physics!


Eur. Phys. J. C 81 (2021) 488

THE STANDARD MODEL OF PARTICLE PHYSICS

- Best understanding of how building blocks of the universe (fundamental particles and forces) are related to each others
- Matter particles:
 - 2 types: leptons and quarks organized in 3 generations
 - stable matter in the universe, made from 1st generation
- 3 of **fundamental forces**: electromagnetic, weak, strong. Result from the exchange of force-carrier particles
- The **Higgs boson**, responsible for the masses of elementary particles via the Brout-Englert-Higgs mechanism

THE STANDARD MODEL OF PARTICLE PHYSICS

Likelihood function:

s = signal

Probability Density Function characterizing the set of experimental observables considered in the analysis, given the parameters of the model

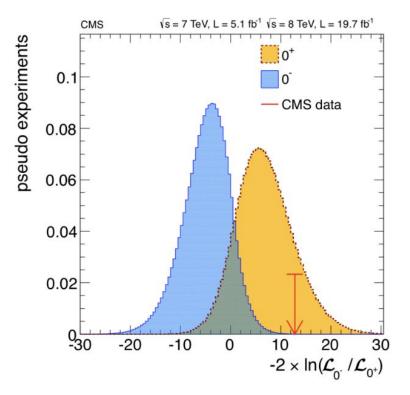
Signal strength modifier:

$$\sigma = \mu \cdot \sigma_{SM}$$

 $p_i(\tilde{\theta}_i|\theta_i)$ **Systematics uncertainties** incorporated as nuisance parameters: $\theta = \{\theta_1, ..., \theta_n\} \rightarrow \theta$

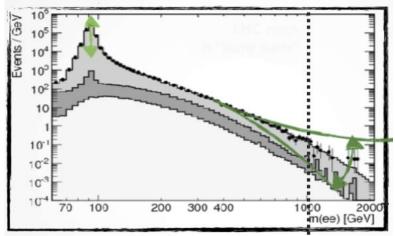
$$\mathcal{L}(data|\mu,\theta) = \prod_{c} \mathcal{L}_{c}(data|\mu \cdot s(\theta) + b(\theta)) \cdot \prod_{i} p_{i}(\tilde{\theta}_{i}|\theta_{i})$$

$$\overset{\text{c = channels (e.g. analysis categories)}}{\underset{\text{s = signal}}{\underset{\text{b = background}}}}$$
measured or pseudodatasets


HYPOTHESIS TESTING

- test Hp on the basis of the observed data
- test statistics t: likelihood ratio
 - \circ evaluate t according to the null (H $_{0})$ and alternative hypothesis (H $_{1})$
 - **expected distributions of t** under the two Hp, generated as pseudodatasets from PDFs in the Likelihood

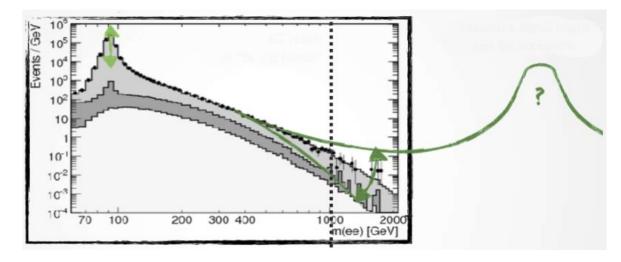
$$t=-2lnrac{\mathcal{L}(data|\mu,\hat{ heta}_{\mu})}{\mathcal{L}(data|\hat{\mu},\hat{ heta})}$$


Used for:

- quantifying an excess
- setting upper limits
- parameters measurement

STANDARD MODEL, BUT NOT (YET) THEORY OF EVERYTHING

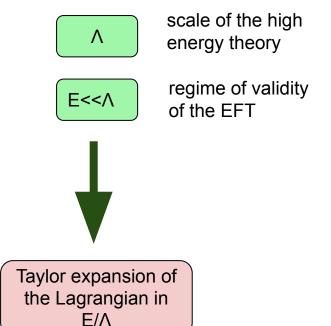
- SM leaves many open questions!
 - Gravity not included
 - o dark matter
 - matter-antimatter asymmetry, ...
- search for **new physics**:
 - \rightarrow can indicate the direction for a more complete theory
 - it can manifest as resonance (peak on the invariant mass distribution)
 - o or deviations in kinematic distributions

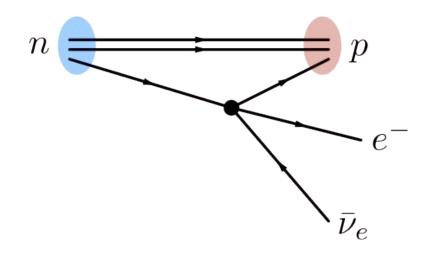


Thanks Robert for this image

can be investigated with an Effective Field Theory approach

WHAT IS AN EFFECTIVE FIELD THEORY ?

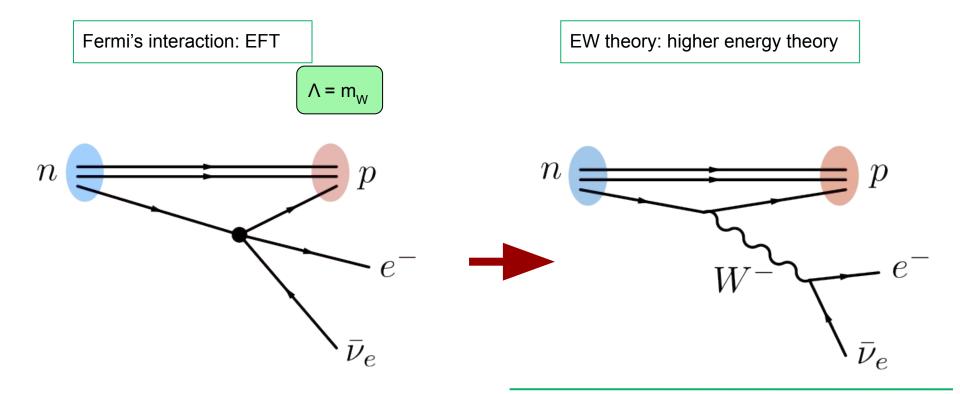

- an **approximation**
 - includes the appropriate degrees of freedom that describe the physical phenomena
 - ignores the substructures and the degrees of freedom of shorter distances (higher energies)
- only **valid** up to a certain regime
- useful to study **deviations** from the SM

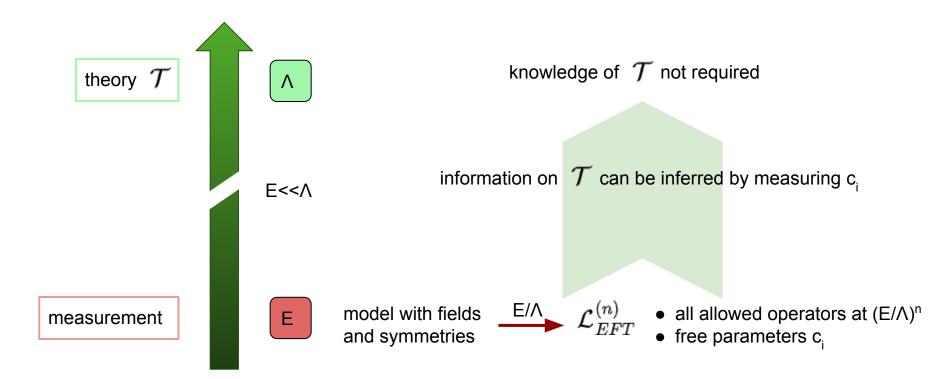

HOW IS EFT USEFUL ?

- Parametrizes effect of physics at an energy scale Λ on observables at smaller energies E<<Λ, as a set of local operators
- Form of operators
 - fixed by light particles and symmetry structure of the theory
 - entirely independent of the high-energy model

Operators enter the expansion weighted by **Wilson coefficients**, that describe new physics effects up to some order in E/Λ

AN EXAMPLE: FERMI'S INTERACTION




- Introduced to explain β decays
 - point-like interaction
 - describes weak interactions well!
- scale Λ = m_w~ 80 GeV

But:

- $\sigma \sim E^2$
 - cross section grows without bound!
 - $\circ \quad \rightarrow \text{ theory not valid at energies} \\ \text{higher than } \Lambda$
- → effective explanation of higher energy theory

AN EXAMPLE: FERMI'S INTERACTION

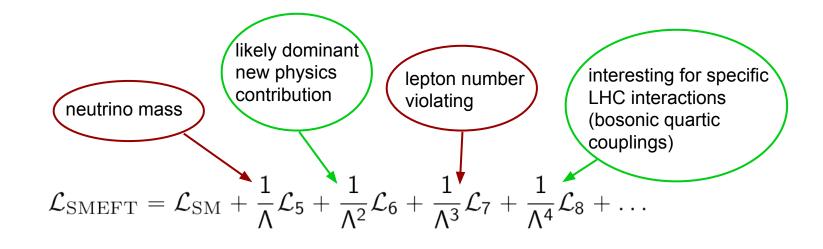
EFT TO GO BEYOND THE SM: SMEFT

Assumptions:

- new physics is nearly decoupled: Λ >> E
- at the accessible scale, SM fields and symmetries are respected

Taylor expansion in E/Λ :

 $\mathcal{L}_n = \sum_i C_i \mathcal{O}_i^{d=n}$


$$\mathcal{L}_{\rm SMEFT} = \mathcal{L}_{\rm SM} + \frac{1}{\Lambda}\mathcal{L}_5 + \frac{1}{\Lambda^2}\mathcal{L}_6 + \frac{1}{\Lambda^3}\mathcal{L}_7 + \frac{1}{\Lambda^4}\mathcal{L}_8 + \dots$$

Free parameters: Wilson coefficients

Gauge invariant operators, forming a complete, non-redundant basis

EFT TO GO BEYOND THE SM: SMEFT

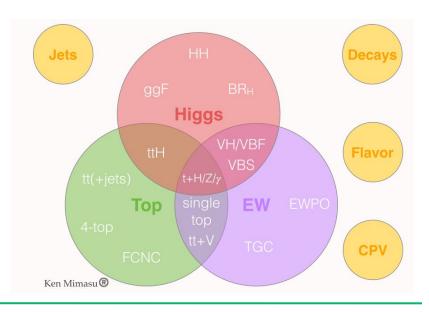
 $\mathcal{L}_n = \sum_i C_i \mathcal{O}_i^{d=n}$

Free parameters: Wilson coefficients

Gauge invariant operators, forming a complete, non-redundant basis

SMEFT OPERATORS

Warsaw basis: dim 6 operators


X ³		φ^6 and $\varphi^4 D^2$		$\psi^2 arphi^3$		$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}R)$		
Q_G	$f^{ABC}G^{A u}_{\mu}G^{B ho}_{ u}G^{C\mu}_{ ho}$	Q_{φ}	$(\varphi^{\dagger}\varphi)^{3}$	$Q_{e\varphi}$	$(arphi^{\dagger}arphi)(ar{l}_{p}e_{r}arphi)$	Q_{ll}	$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t)$	Q_{le}	$(\bar{l}_p \gamma_\mu l_r)(\bar{e}_s \gamma^\mu e_t)$	
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A u}_{\mu} G^{B ho}_{ u} G^{C\mu}_{\rho}$	$Q_{\varphi\Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\widetilde{\varphi})$	$Q_{qq}^{(1)}$	$(ar{q}_p \gamma_\mu q_r) (ar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r) (\bar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(\bar{l}_p \gamma_\mu l_r) (\bar{u}_s \gamma^\mu u_t)$	
Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger}D^{\mu}\varphi\right)^{\star}\left(\varphi^{\dagger}D_{\mu}\varphi\right)$	$Q_{d\varphi}$	$(arphi^{\dagger}arphi)(ar{q}_{p}d_{r}arphi)$	$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$(ar{d}_p\gamma_\mu d_r)(ar{d}_s\gamma^\mu d_t)$	Qid	$(\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t)$	
$Q_{\widetilde{W}}$	$arepsilon^{IJK}\widetilde{W}^{I u}_{\mu}W^{J ho}_{ u}W^{K\mu}_{ ho}$	UVD		Vap		$Q_{lq}^{(1)}$	$(ar{l}_p \gamma_\mu l_r) (ar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t)$	
	$\frac{\mu}{X^2 \varphi^2}$		$\psi^2 X \varphi$	$\psi^2 \varphi^2 D$		$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	$(\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(ar{q}_p \gamma_\mu q_r) (ar{u}_s \gamma^\mu u_t)$	
$Q_{\varphi G}$	$\varphi^{\dagger}\varphi G^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$\frac{\varphi^{II}\varphi}{(\bar{l}_{p}\sigma^{\mu\nu}e_{r})\tau^{I}\varphi W^{I}_{\mu\nu}}$	$Q_{\varphi l}^{(1)}$	$\frac{\varphi \varphi D}{(\varphi^{\dagger} i \overleftrightarrow{D}_{\mu} \varphi)(\overline{l}_{p} \gamma^{\mu} l_{r})}$			$Q_{ud}^{(1)}$	$(ar{u}_p \gamma_\mu u_r) (ar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$\left (\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t) \right $	
	$arphi^{\dagger}arphi \widetilde{G}^{A}_{\mu u}G^{A\mu u}$	Q_{eW}	$\frac{(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi W_{\mu\nu}}{(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}}$	$Q_{\varphi l}^{(3)}$ $Q_{\varphi l}^{(3)}$	$ \begin{array}{c} (\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(l_{p}\gamma^{I}l_{r}) \\ (\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r}) \end{array} $			$Q_{ud}^{(8)}$	$\left(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)\right)$	$Q_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{d}_s \gamma^\mu d_t)$	
$Q_{\varphi \widetilde{G}}$	$arphi^{\dagger} arphi G_{\mu u} G^{\dagger} arphi^{I} W^{I\mu u} onumber \ arphi^{\dagger} arphi W^{I}_{\mu u} W^{I\mu u}$									$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$	
$Q_{\varphi W}$,	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{\varphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\overline{e}_{p}\gamma^{\mu}e_{r})$	$(\bar{L}R)$	$(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$		B-violating			
$Q_{\varphi \widetilde{W}}$	$\varphi^{\dagger}\varphi \widetilde{W}^{I}_{\mu u}W^{I\mu u}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \tilde{\varphi} W^I_{\mu\nu}$	$Q_{\varphi q}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\overline{q}_{p}\gamma^{\mu}q_{r})$	Q_{ledq}						
$Q_{\varphi B}$	$arphi^{\dagger} arphi B_{\mu u} B^{\mu u}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu u} u_r) \widetilde{\varphi} B_{\mu u}$	$Q^{(3)}_{\varphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$	$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$	Q_{qqu}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(q_p^{\alpha j})^T C q_r^{\beta k}\right]\left[(u_s^{\gamma})^T C e_t\right]$			
$Q_{\varphi \widetilde{B}}$	$arphi^\dagger arphi \widetilde{B}_{\mu u} B^{\mu u}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i \overset{\frown}{D}_{\mu} \varphi)(\bar{u}_{p} \gamma^{\mu} u_{r})$	$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	Q_{qqq}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\varepsilon_{mn}\left[(q_p^{\alpha j})^T C q_r^{\beta k}\right]\left[(q_s^{\gamma m})^T C l_t^n\right]$			
$Q_{\varphi WB}$	$arphi^{\dagger} au^{I} arphi W^{I}_{\mu u} B^{\mu u}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$	$Q_{lequ}^{(1)}$	$(\bar{l}_{p}^{j}e_{r})arepsilon_{jk}(\bar{q}_{s}^{k}u_{t})$	Q_{duu}	$arepsilon^{lphaeta\gamma}\left[(d_p^lpha)^T C u_r^eta ight]\left[(u_s^\gamma)^T C e_t ight]$			
$Q_{\varphi \widetilde{W}B}$	$\varphi^{\dagger} \tau^{I} \varphi \widetilde{W}^{I}_{\mu \nu} B^{\mu \nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{\varphi ud}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$	$Q_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu\nu} e_r) \varepsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$					

(SM)EFT TO INVESTIGATE NEW PHYSICS!

- describes BSM effects at the LHC in scenarios where BSM is out of colliders reach
- is a proper QFT, with regularization/normalization schemes
- minimal commitment to a specific BSM theory
- systematically includes all BSM effects
- universal language for data interpretation

(can be used in different experimental setup)

Ultimate goal: **measure as many EFT parameters as possible** to infer higher energy theory information → important: **combination** of different processes

