

Machine Learning techniques for Genomics

Lorenzo Buffoni Machine Learning at GGI 2022

Mapping algorithm ➤ Gabriele Scalia

Brain image latent space

➤ Lorenzo Buffoni

Semantic segmentation

- ≻ Ziqing Lu
- ≻ Aman Sanger

Data analysis

≻ Raghav Avasthi≻ Neriman Tokcan

Acknowledgements

Data generation

- ≻ Asa Segerstolpe
- ≻ Naeem Nadaf
- ≻ Inbal Avraham-Davidi
- ➤ Chuck Vanderburg
- ≻ Meng Zhang
- ≻ Xiaowei Zhuang

Various help

- ≻ Mor Nitzan
- ➤ Nik Brown
- ➤ Duccio Fanelli
- ➤ Sanja Vicovic

Graphics and Artwork

- ➤ Leslie Gaffney
- ≻ Anna Hupalowska

Mouse Melanoma

- ≻ Eran Hodis
- ≻ Elena Torlai Triglia
- ≻ Saurabh Parkar

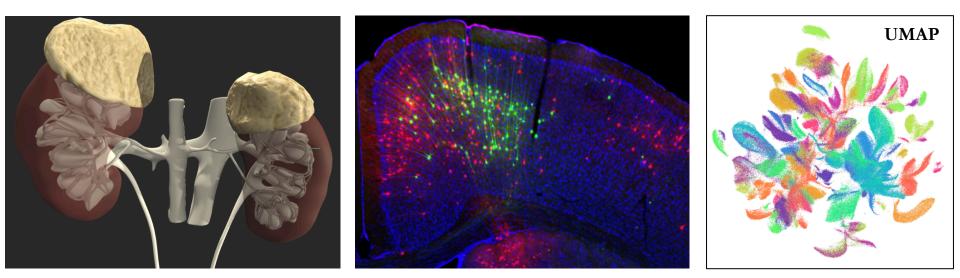
Lab Leaders

- > Aviv Regev
- ≻ Evan Macosko

Project Leader

≻ Tommaso Biancalani

We are building a Human Cell Atlas

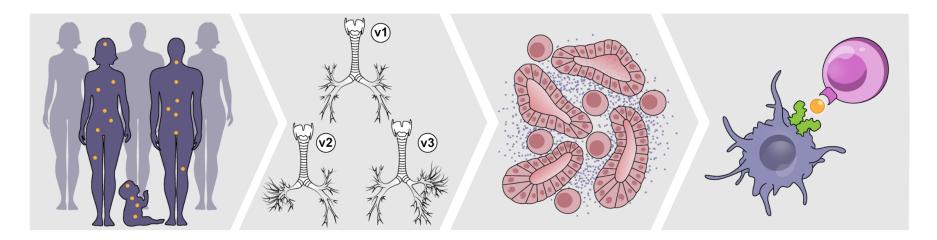


Source: HubMAP

Source: BICCN

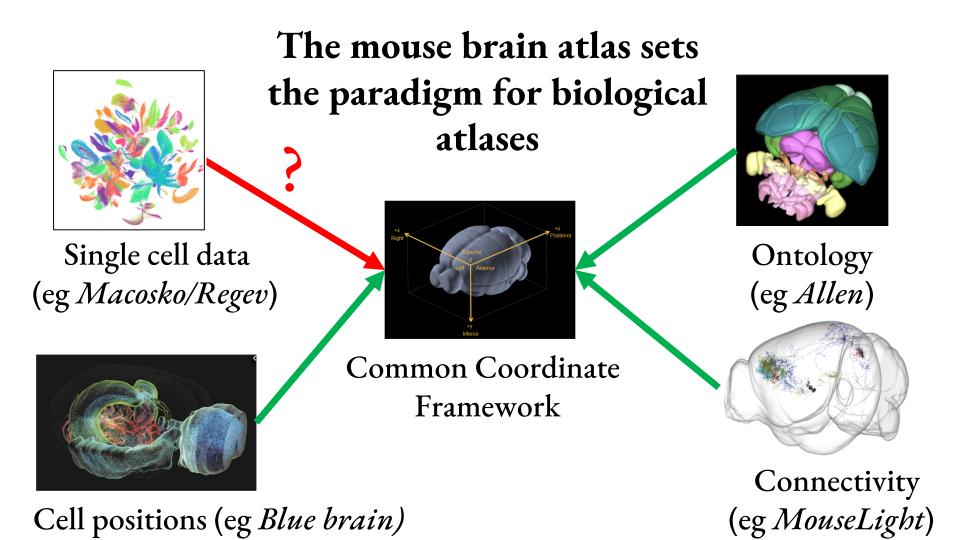
Source: CZI

Biological atlases require integration of diverse datasets at different scales

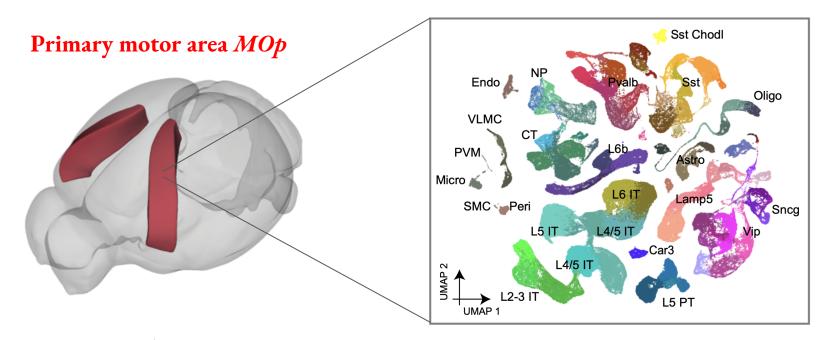


Macro Meso Histology

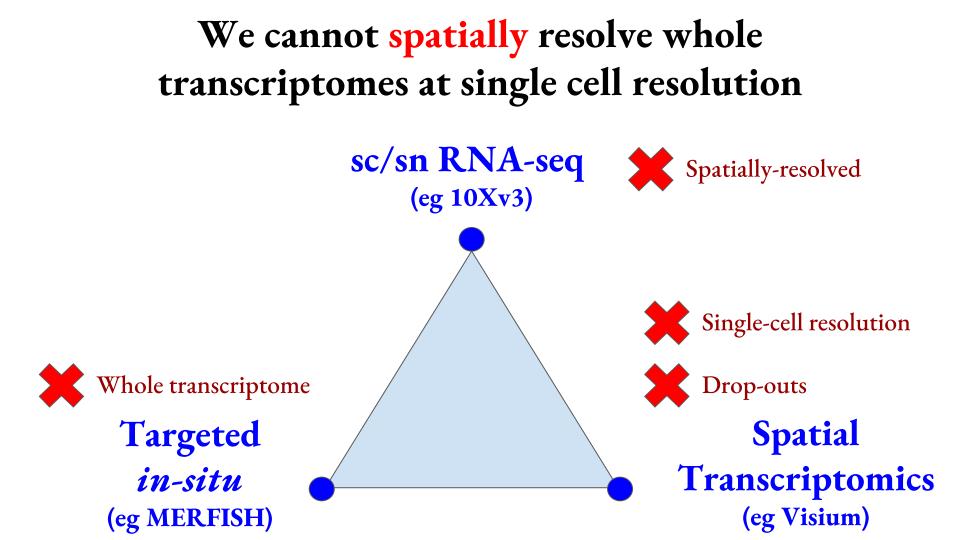
Cellular



We understand the cell type ontology of the primary motor area



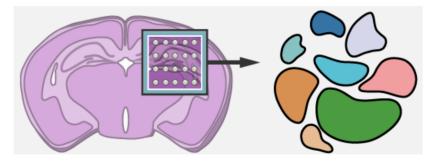
Hao et al. - An integrated transcriptomic and epigenomic atlas of mouse primary motor cortex cell types (Nature)

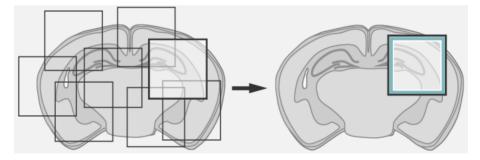


Our contribution: Integrated spatially resolved whole transcriptomes of single cells

Integration of scRNA-seq data with spatial data

Integration of spatial data with histology



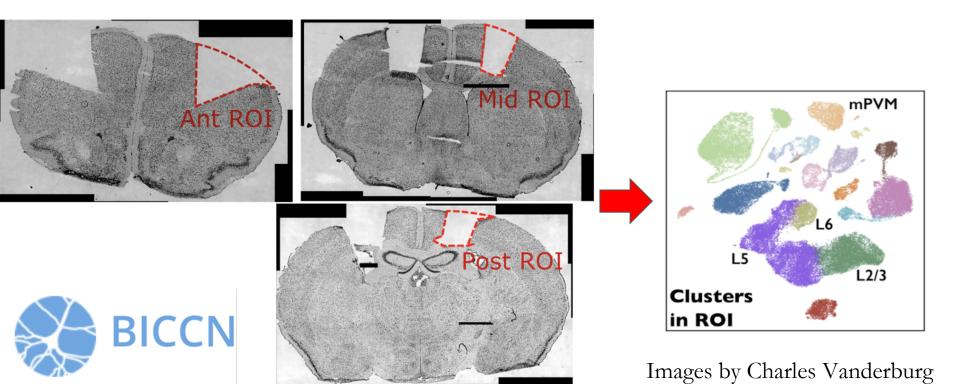


T. Biancalani*, G. Scalia*, L. Buffoni et al. Deep learning and alignment of spatially-resolved whole transcriptomes of single cells in the mouse brain with Tangram (Nature Methods 2021)

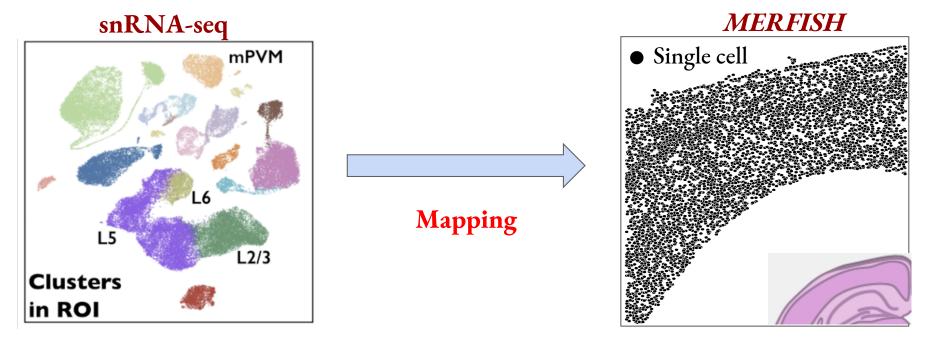
Part I: Mapping

We collect snRNA-seq data from healthy adult mouse brains

- Data collected from three ROIs from the primary motor area, MOp.
- 160k cells annotated into 22 cell types (from Macosko lab).



We map single-nuclei data onto a *MERFISH* dataset using **Tangram**



- 160k cells
- ~ 30k genes / cell

• 254 genes / cell

~4k cells

How Tangram works (in a nutshell)

Notation:

Index i is for cells (snRNA-seq data) and has dimension n_{cells}

Index j is for spatial voxels and has dimension n_{voxels}

Index k is for genes and has dimension n_{genes}

We voxelize at the finest possible resolution for the technology used (MERFISH, Visium, ...)

We have two matrices:

- One from snRNA-seq that has dimensions $n_{cells} \times n_{genes}$ and we'll call it S.
- One from the spatial technology that has dimensions $n_{voxels} \times n_{genes}$ and we'll call it G. Plus a n_{voxels} vector of cell densities \vec{d}

We aim at finding a mapping matrix M that tells us the probablity of the cell i being in voxel j.

How Tangram works (in a nutshell)

We minimize the following cost function using PyTorch

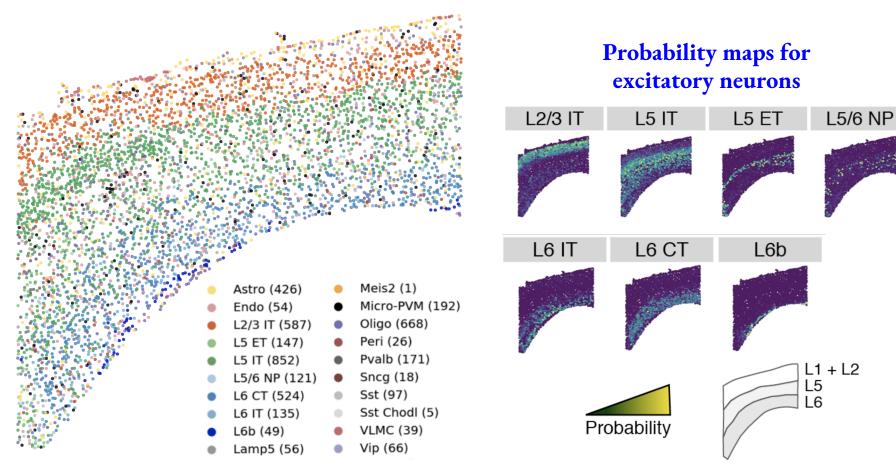
$$\Phi(\widetilde{M}) = KL(\overline{m}, d) - \sum_{k=1}^{n_{genes}} \cos_{sim}\left((M^T S)_{*,k}, G_{*,k}\right) - \sum_{j=1}^{n_{voxels}} \cos_{sim}\left((M^T S)_{j,*}, G_{j,*}\right)$$

Using $M = softmax(\widetilde{M})$ ensures that $0 \le M_{i,j} \le 1$ and $\sum_j M_{i,j} = 1$

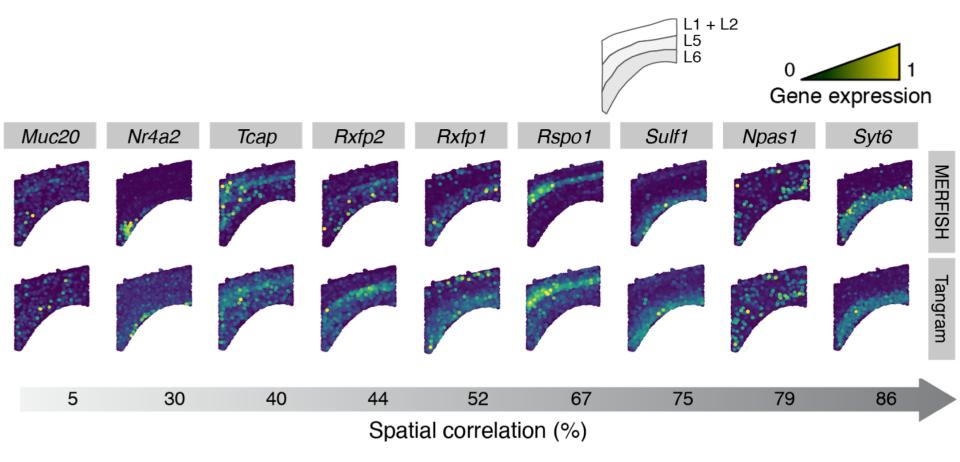
 $\cos_{sim}(A, B) = \frac{A \cdot B}{\|A\| \|B\|}$ is the cosine similarity function

 \vec{m} is the cell density vector for the mapping $m_j = \sum_i \frac{M_{ij}}{n_{cells}}$

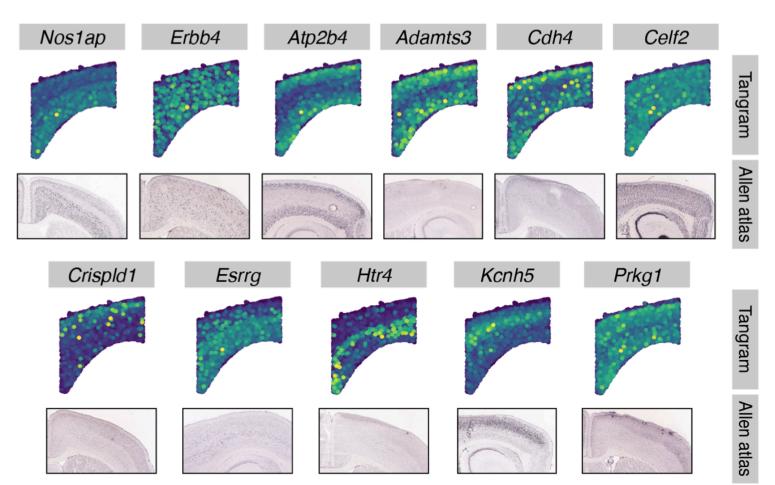
Mapping allows for spatial localization of cell types



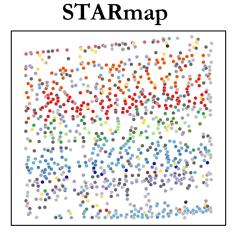
Mapping allows us to predict spatial gene expression



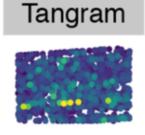
Mapping increases gene throughput to ~30k genes

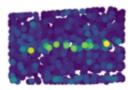


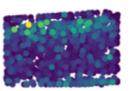
Mapping corrects low-quality genes

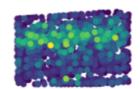


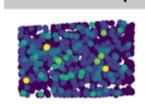
- ~1k cells
- ~1k genes/cell







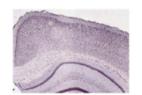




STARmap

Allen atlas

Cplx3

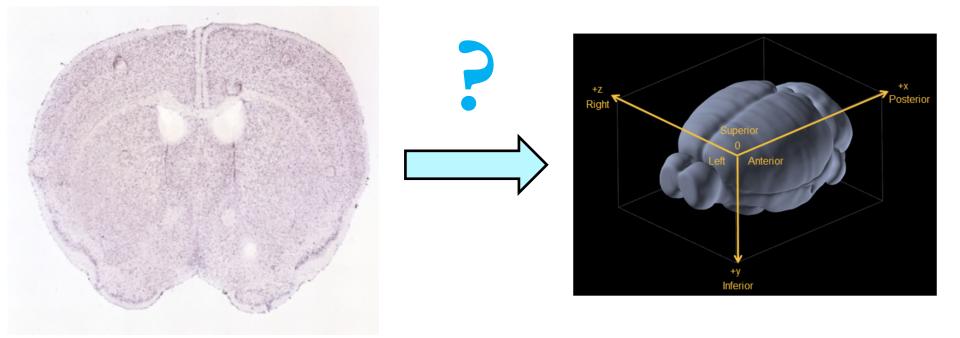


Fam84b

Slc17a6

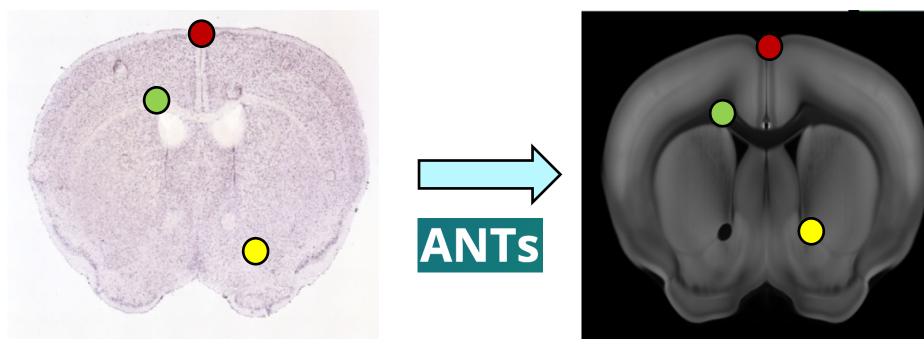
Part II: Integration with histology

Image registration requires human supervision



Experimental image

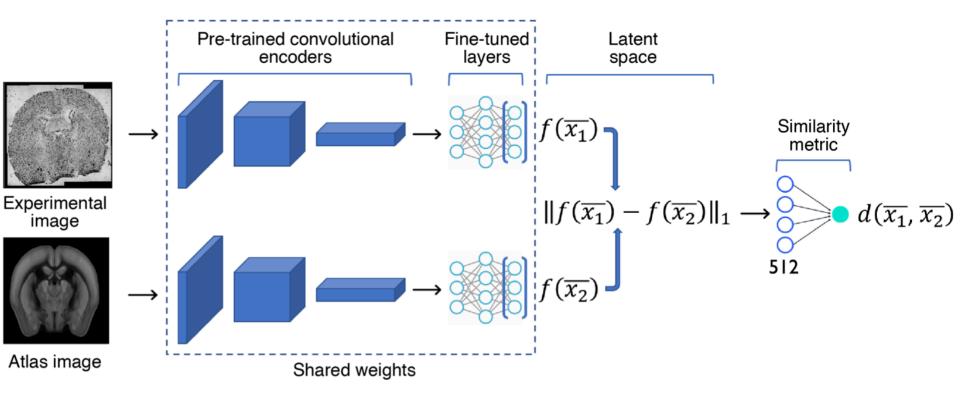
Image registration requires human supervision



Experimental image

From reference atlas

We trained a "face recognition" model on histological images of mouse brains



We trained a "face recognition" model on histological images of mouse brains

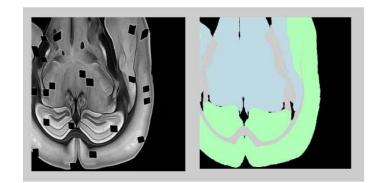
Model details:

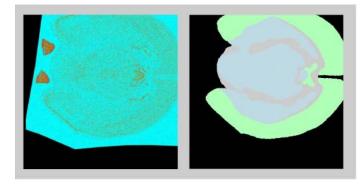
- Pretrained encoder DenseNet169
- Pretrained on ImageNet
- Fine-tuned the last convolutional layer + 2 fully connected layers.

Trained for 50 epochs using 18000 image pairs per epoch in batches of 16.

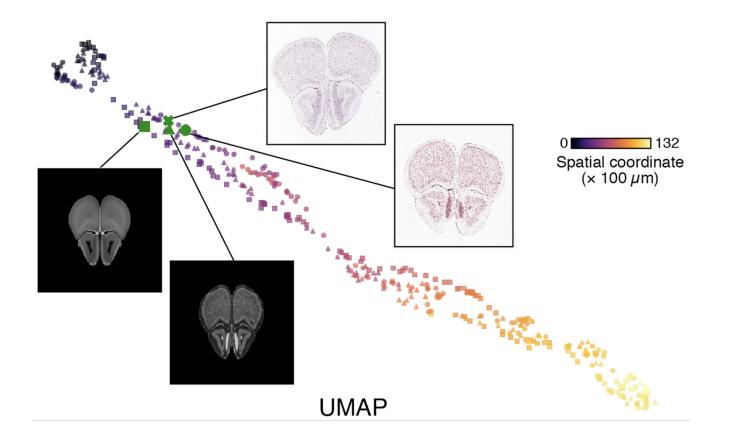
$$MSE(\hat{d}, d) = \frac{1}{N} \sum_{i=1}^{N} (d_i - \hat{d}_i)^2$$

Needed heavy augmentation to for training.





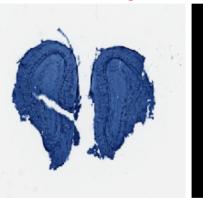
In the latent space, the geometrical distance represents the anatomical distance

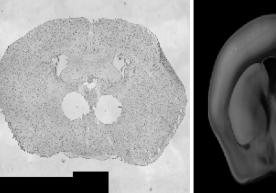


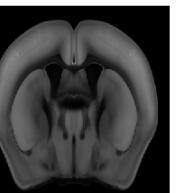
Model predictions are used for "depth calling"

Our image

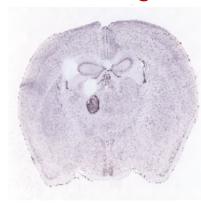
Reference atlas



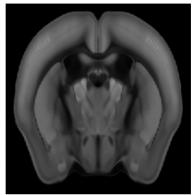


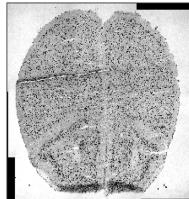


Our image



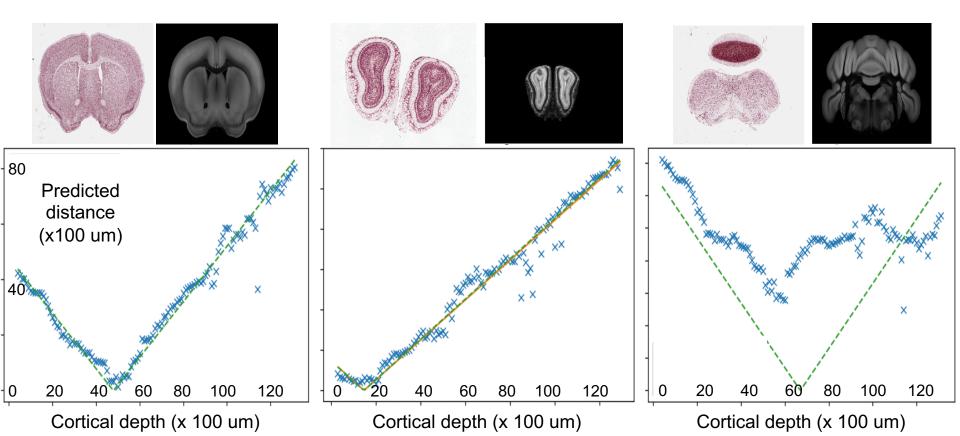
Reference atlas



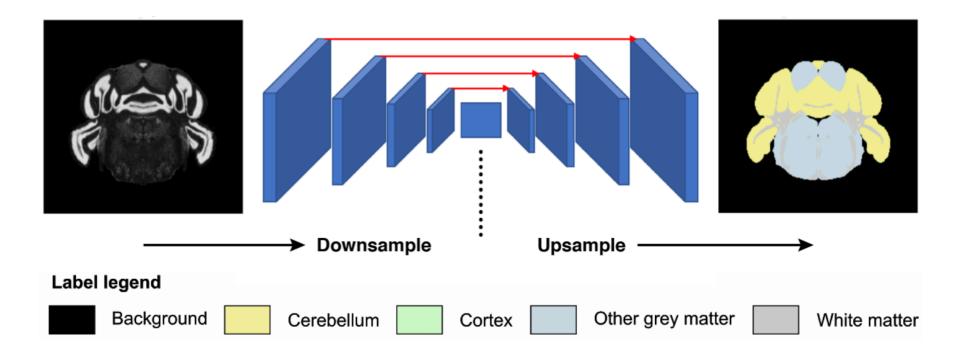




Predictions are accompanied by uncertainty estimation

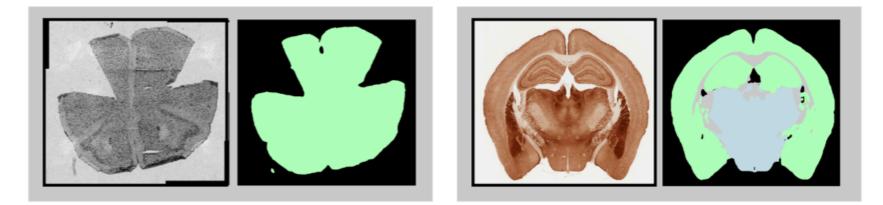


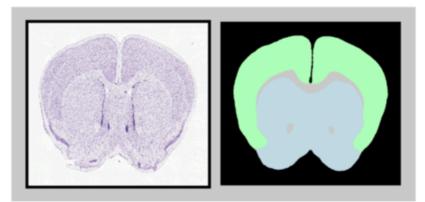
We perform anatomical region calling via semantic segmentation

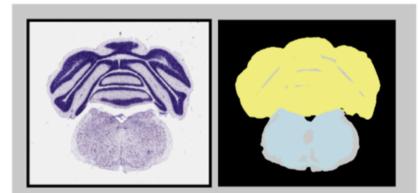


Contribution of Ziqing Lu and Aman Sanger

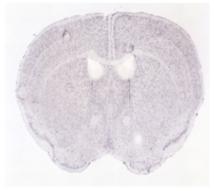
We produce consistent masks for each image

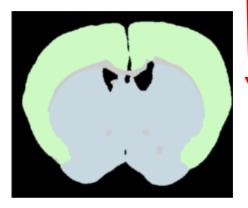


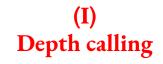




The two models combined provide a fully automated registration pipeline



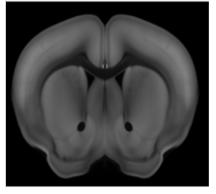


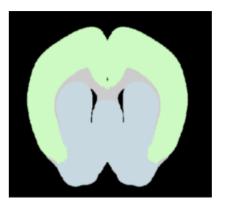


(III) Produce mask

(II) Extract mask

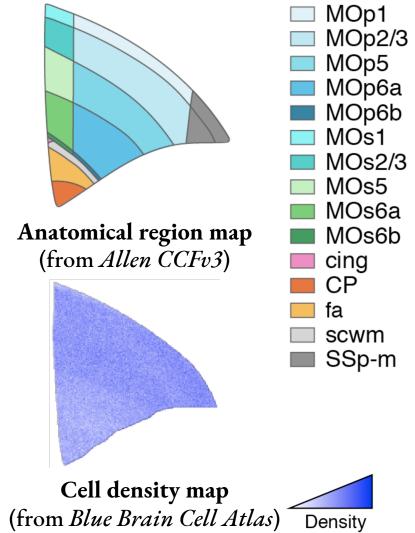
(IV) Registration





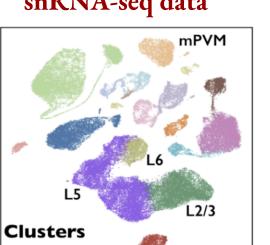
Contribution of Neriman Tokcan

Using the pipeline, we identify the anatomical/cell maps for each ROI



Part III: Mapping on Spatial Transcriptomics

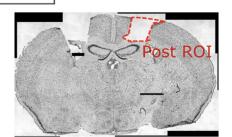
We map snRNA-seq data data onto a Visium dataset



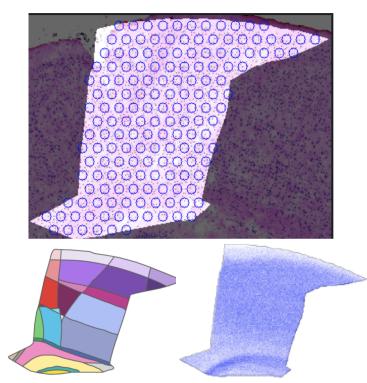
in ROI

snRNA-seq data

Fitting gene expression on ~1k marker genes

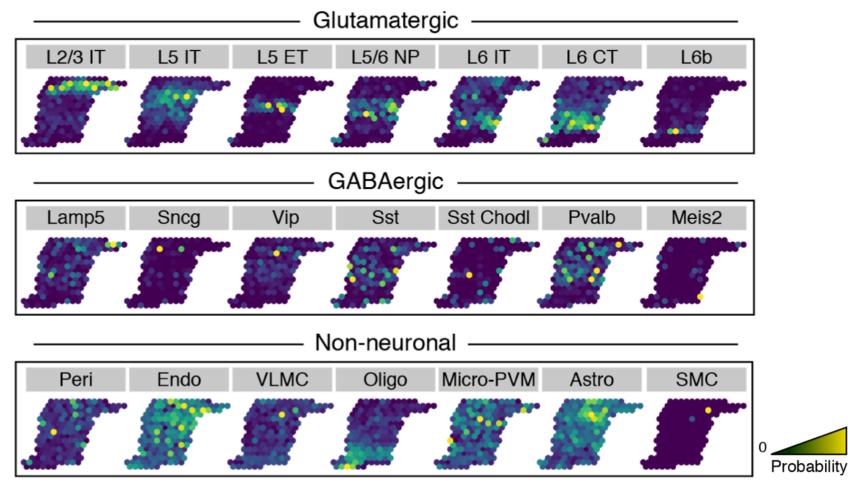


Visium

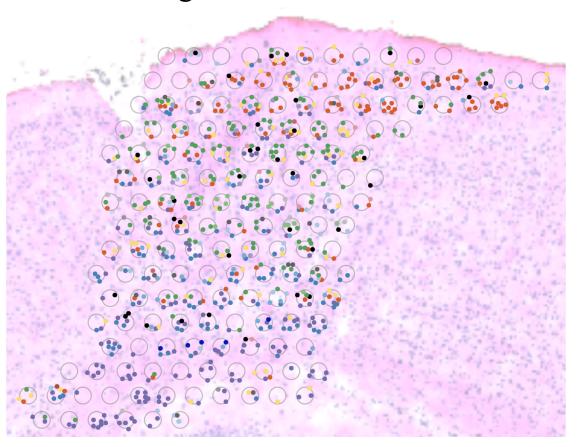


Contribution of Raghav Avasthi

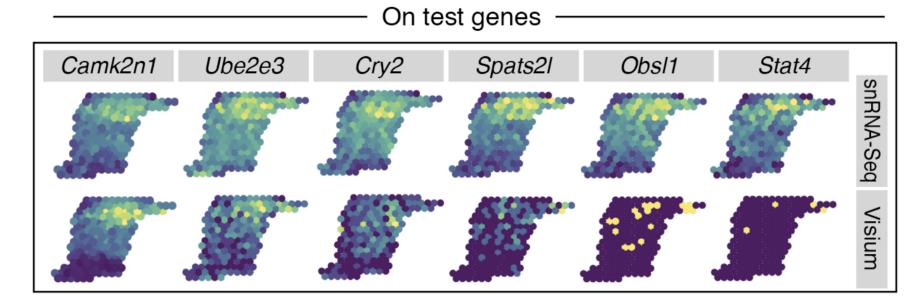
We predict cell type localization on the Visium ROI



Mapping allows cell type localization at single-cell resolution



Agreement on test genes decreases as data becomes sparser

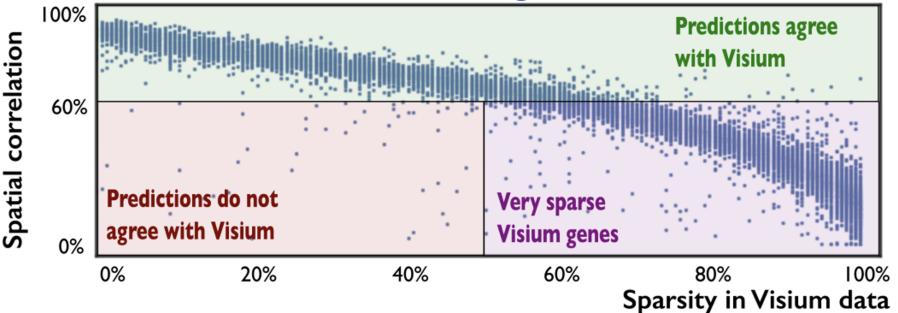


Agreement against predictions

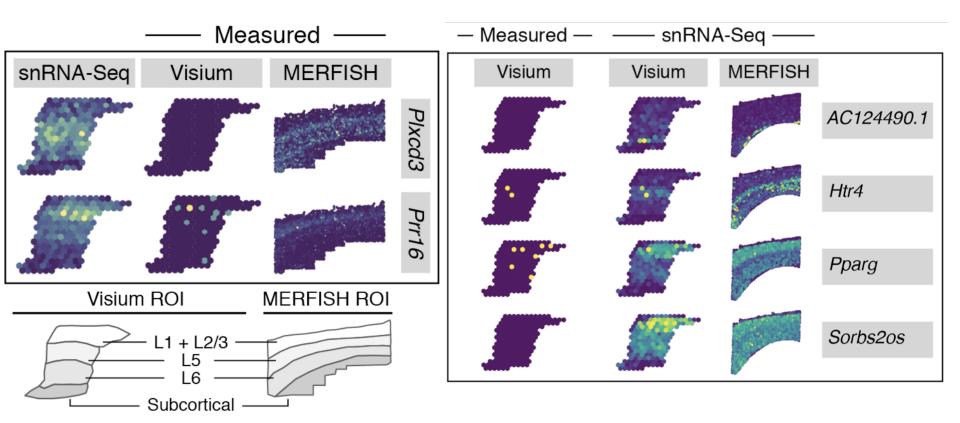
Sparsity of Visium data

We partition the transcriptome according to method performance

On test genes

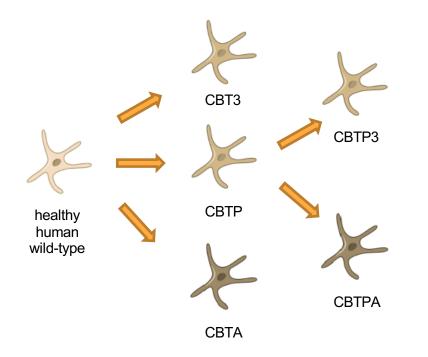


Predictions are validated against MERFISH data

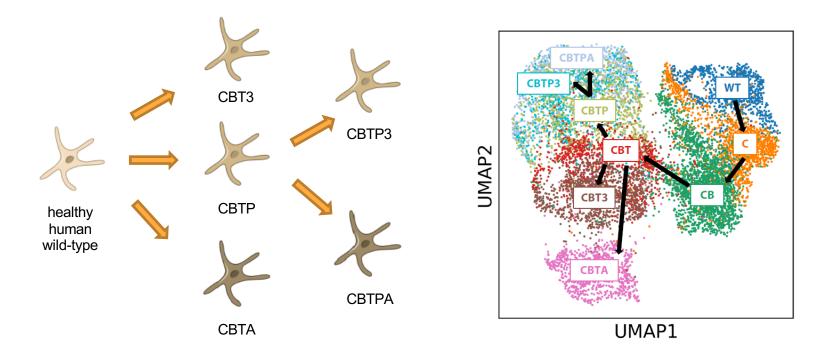


Part IV: The inverse problem

Starting from a «blank» cell we can engineer single mutations in the genome that will lead to a melanoma

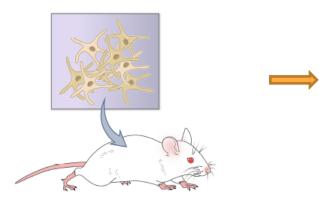


Starting from a «blank» cell we can engineer single mutations in the genome that will lead to a melanoma

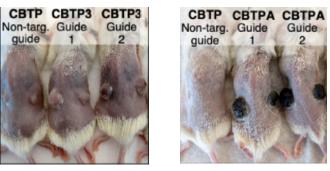


Melanoma is grown on mice and histology is collected

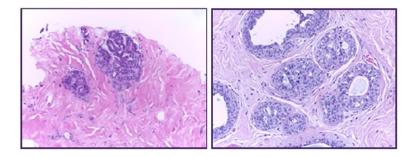
Injection of cells into **immunodeficient** (NSG) mice



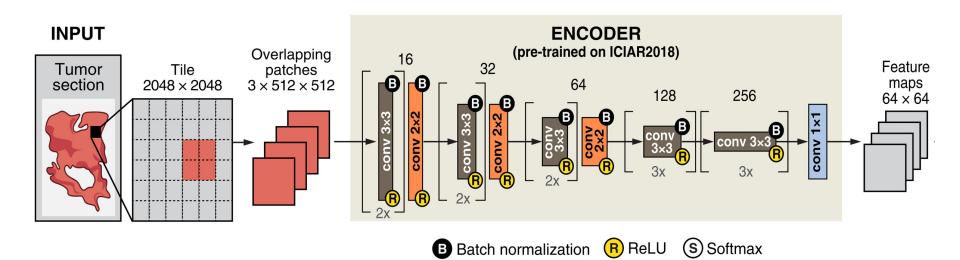
Observe phenotypical differences



Can we train a classifier to recognize the genotype of a tumor from the histology?

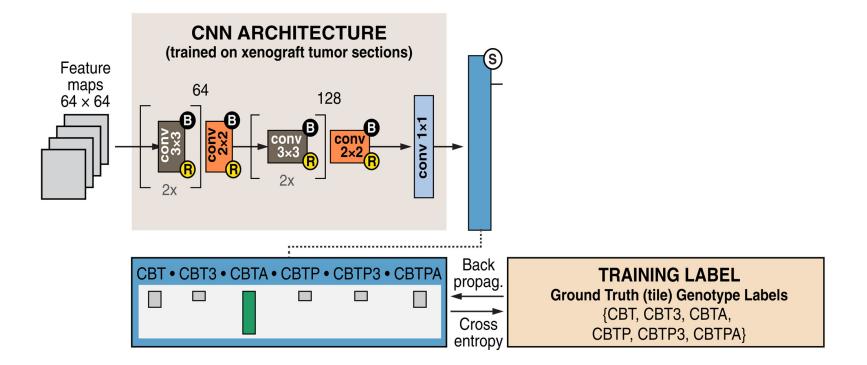


We train a model to predict genotype from histology

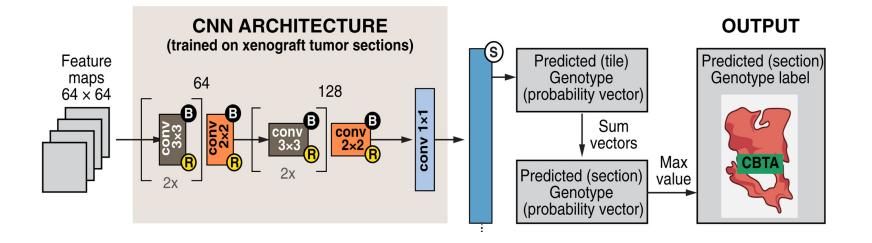


Hodis et al. - *Stepwise-edited*, *human melanoma models reveal mutations' effect on tumor and microenvironment* (Science)

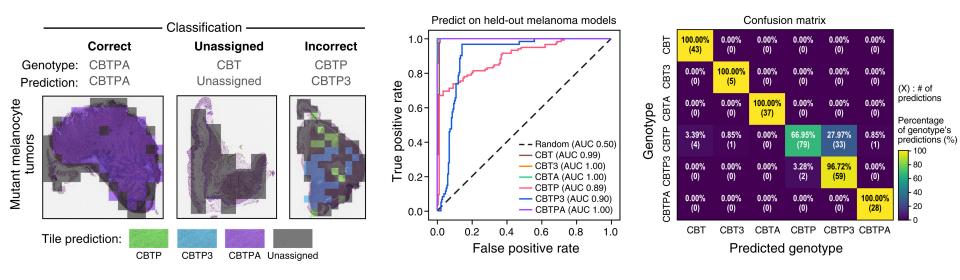
We train a model to predict genotype from histology



The model is then used to make inference on an entire histology image



The model consistently predicts genotypes in mice-grown tumors



Transfer of the model (mouse data) on real patient's data (TCGA) shows some correlation



Conclusions. Using ML we can:

- Relate genes to anatomy.
- Extend gene throughput.
- Increase spatial resolution.
- Identify mutations.

