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We are building a Human Cell Atlas

Source: HubMAP Source: CZISource: BICCN

UMAP



Biological atlases require integration of diverse 
datasets at different scales

Macro Meso Histology Cellular



Ontology 
(eg Allen)

Connectivity 
(eg MouseLight)Cell positions (eg Blue brain)

Single cell data 
(eg Macosko/Regev)

Common Coordinate 
Framework

The mouse brain atlas sets 
the paradigm for biological 

atlases?



We understand the cell type ontology of the 
primary motor area

Hao et al. - An integrated transcriptomic and epigenomic atlas of 
mouse primary motor cortex cell types (Nature)

Primary motor area MOp



sc/sn RNA-seq
(eg 10Xv3)

We cannot spatially resolve whole 
transcriptomes at single cell resolution

Spatially-resolved

Spatial 
Transcriptomics

(eg Visium)

Targeted 
in-situ

(eg MERFISH)

Single-cell resolution

Whole transcriptome Drop-outs



Our contribution: Integrated spatially resolved 
whole transcriptomes of single cells

T. Biancalani*, G. Scalia*, L. Buffoni et al. 
Deep learning and alignment of spatially-resolved whole transcriptomes of single 
cells in the mouse brain with Tangram (Nature Methods 2021)

Integration of scRNA-seq 
data with spatial data

Integration of spatial data 
with histology



Part I: Mapping



We collect snRNA-seq data from healthy adult mouse brains

Images by Charles Vanderburg

• Data collected from three ROIs from the primary motor area, MOp.
• 160k cells annotated into 22 cell types (from Macosko lab).



We map single-nuclei data onto a 
MERFISH dataset using Tangram

Mapping

snRNA-seq MERFISH
Single cell

• ~4k cells
• 254 genes / cell

• 160k cells 
• ~ 30k genes / cell



How Tangram works (in a nutshell)

Index 𝑖 is for cells (snRNA-seq data) and has dimension 𝑛!"##$
Index 𝑗 is for spatial voxels and has dimension 𝑛%&'"#$
Index 𝑘 is for genes and has dimension 𝑛(")"$

Notation:

We voxelize at the finest possible resolution for the technology 
used (MERFISH, Visium, …)

We have two matrices:
- One from snRNA-seq that has dimensions 𝑛!"##$×𝑛(")"$ and we’ll call it 𝑆.
- One from the spatial technology that has dimensions 𝑛%&'"#$×𝑛(")"$ and we’ll call it 𝐺.
Plus a 𝑛%&'"#$ vector of cell densities 𝑑

We aim at finding a mapping matrix𝑀 that tells us the probablity of the cell 𝑖 being in voxel 𝑗.



How Tangram works (in a nutshell)
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is the cosine similarity function

We minimize the following cost function using PyTorch
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Mapping allows for spatial localization of cell types

Probability maps for 
excitatory neurons



Mapping allows us to predict spatial gene expression



Mapping increases gene throughput to ~30k genes



Mapping corrects low-quality genes

• ~1k cells
• ~1k genes/cell

STARmap



Part II: Integration with histology



Image registration requires human supervision

Experimental image

?



Image registration requires human supervision

Experimental image From reference atlas



We trained a “face recognition” model on 
histological images of mouse brains



We trained a “face recognition” model on 
histological images of mouse brains

Model details:
- Pretrained encoder DenseNet169 
- Pretrained on ImageNet
- Fine-tuned the last convolutional layer + 

2 fully connected layers.

Trained for 50 epochs using 18000 image pairs per epoch 
in batches of 16.

𝑀𝑆𝐸 $𝑑, 𝑑 =
1
𝑁
*
!"#

$

𝑑! − $𝑑!
%

Needed heavy augmentation to for training. 



In the latent space, the geometrical distance 
represents the anatomical distance



Model predictions are used for “depth calling”
Our image Reference atlas Our image Reference atlas



Predictions are accompanied by uncertainty estimation

Cortical depth (x 100 um) Cortical depth (x 100 um) Cortical depth (x 100 um)
0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120

Predicted 
distance

(x100 um)

80

40



Contribution of Ziqing Lu and Aman Sanger

We perform anatomical region calling via  
semantic segmentation 



We produce consistent masks for each image



The two models combined provide a fully 
automated registration pipeline

(III) 
Produce mask

(II) 
Extract mask

(IV) Registration

(I) 
Depth calling

Contribution of Neriman Tokcan



Using the pipeline, we identify the 
anatomical/cell maps for each ROI

Anatomical region map
(from Allen CCFv3)

Cell density map
(from Blue Brain Cell Atlas)



Part III: Mapping on Spatial Transcriptomics



We map snRNA-seq data data onto a 
Visium dataset

Mapping

Fitting gene 
expression on ~1k 

marker genes

Contribution of Raghav Avasthi

snRNA-seq data Visium



We predict cell type localization on the Visium ROI 



Mapping allows cell type localization at 
single-cell resolution



Agreement on test genes decreases as data becomes sparser

Sparsity of Visium data

Agreement against predictions



We partition the transcriptome according to 
method performance



Predictions are validated against MERFISH data



Part IV: The inverse problem



Starting from a «blank» cell we can engineer single 
mutations in the genome that will lead to a melanoma

healthy
human 

wild-type

CBT3

CBTP

CBTA

CBTP3

CBTPA



Starting from a «blank» cell we can engineer single 
mutations in the genome that will lead to a melanoma

healthy
human 

wild-type
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CBTPA



Melanoma is grown on mice and histology is collected

Observe phenotypical differences

Can we train a classifier to recognize 
the genotype of a tumor from the histology?



We train a model to predict
genotype from histology

Hodis et al. - Stepwise-edited, human melanoma models reveal 
mutations’ effect on tumor and microenvironment (Science)



We train a model to predict
genotype from histology



The model is then used to make
inference on an entire histology image



The model consistently predicts
genotypes in mice-grown tumors



Transfer of the model (mouse data) on real
patient’s data (TCGA) shows some correlation



Conclusions.
Using ML we can:

● Extend gene throughput.

● Increase spatial resolution.

● Relate genes to anatomy.

● Identify mutations.


