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Zanetti, Lorenzo Rosasco, To appear in EPJC, arXiv: 2204.02317 [hep-ph].

• Kernel methods through the roof: handling billions of points efficiently, Giacomo Meanti, Luigi Carratino, Lorenzo Rosasco, and Alessandro Rudi, 
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Motivations

• Attempt to understand NPLM model by exploring connections with 
more standard ML approaches.

• Find a way to reduce training time of NN implementations, 𝒪 ℎ𝑜𝑢𝑟𝑠
for each toy (𝑑=1-5, 𝑁 = 𝒪 10! ).

• Good playground to test Falkon.
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Goal

Establish the compatibility between a reference model and the data

Reference 𝑆! = 𝑥" "#$
𝒩! , 𝑥" ∼ 𝑝 𝑥 0

Data 𝑆$ = 𝑥" "#$
𝒩" , 𝑥" ∼ 𝑝 𝑥 1

𝑝 𝑥 1 ≈ 𝑝 𝑥 0 ?

Model-independence
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SM distributions
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Goal

Goodness of fit via two-sample test:
compare 𝑆" and 𝑆# (with large 𝒩") using machine learning. 
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Statistical foundations

Hypothesis testing based on likelihood ratio:
data sample 𝑆$, hypothesis 𝑦

Likelihood

ℒ 𝑆$, 𝑦 =
𝑒&' ( 𝑁 𝑦 𝒩"

𝒩$!
1
)#$

𝒩"

𝑝 𝑥 𝑦 =
𝑒&' (

𝒩$!
1
)#$

𝒩"

𝑛 𝑥 𝑦

𝑛 𝑥 𝑦 = 𝑁 𝑦 𝑝 𝑥 𝑦 , 𝑁 𝑦 = 3𝑛 𝑥 𝑦 𝑑𝑥
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Statistical foundations

Parametrized alternative hypothesis

𝑛(𝑥|1) → 𝑛$ 𝑥 1

Learn alternative hypothesis from data → machine learning
Ability of classifiers to (implicitly) model the data generating densities
→ logistic regression
Rich space of functions → kernel methods
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Statistical foundations

Likelihood ratio

𝑡$(𝑆#) = −2 log
ℒ 𝑆#, 0
ℒ$ 𝑆#, 1

= −2 𝑁$ 1 − 𝑁 0 −<
%&#

𝒩!

𝑓$ 𝑥 , 𝑓$ 𝑥 = log
𝑛$ 𝑥 1
𝑛 𝑥 0
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Statistical foundations

Designing a classifier for hypothesis testing
Logistic regression

Data 𝑥( , 𝑦( (&#
) , 𝑦 = {0,1}

Loss ℓ*+, 𝑦, 𝑓 𝑥 = 1 − 𝑦 log 1 + 𝑒- % + 𝑦 log 1 + 𝑒.- %

Proxy of classification error/maximum likelihood principle
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Statistical foundations

Given an instance 𝑥 and the function 𝑓(𝑥) that the model is representing

→ 𝑃 1 𝑥 = 𝜎 𝑓 𝑥 =
1

1 + 𝑒.-(%)

→ 𝑃 0 𝑥 = 1 − 𝑃 1 𝑥 = 𝜎 −𝑓 𝑥 =
1

1 + 𝑒- %

Optimize negative log-likelihood 

𝐿 = − logG
%,2

𝜎 𝑓 𝑥
2
𝜎 −𝑓 𝑥

#.2
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Statistical foundations

Each loss defines a goal via a target function

ℓ*+, 𝑦, 𝑓 𝑥 = 1 − 𝑦 log(1 + 𝑒-())) + 𝑦 log(1 + 𝑒&-()))

𝐿 𝑓 = 3ℓ*+, 𝑦, 𝑓 𝑥 𝑝 𝑥, 𝑦 𝑑𝑥𝑑𝑦 = 3𝑝 𝑥 𝑑𝑥3ℓ*+, 𝑦, 𝑓 𝑥 𝑝 𝑦|𝑥 𝑑𝑦

𝑓∗ = argmin
-
3ℓ*+, 𝑦, 𝑓 𝑥 𝑝 𝑦|𝑥 𝑑𝑦 → 𝑓∗ = log

𝑝 1 𝑥
𝑝 0 𝑥
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Statistical foundations

ℓ*+, 𝑦, 𝑓 𝑥 = 𝑎" 1 − 𝑦 log(1 + 𝑒-) + 𝑎#𝑦 log(1 + 𝑒.-)

→ 𝑓∗ = log
𝑝 1 𝑥
𝑝 0 𝑥

𝑎#
𝑎"

𝑎#
𝑎"
=
𝑝 0
𝑝 1

𝑁 1
𝑁 0

→ 𝑓∗ = log
𝑛 𝑥 1
𝑛 𝑥 0
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Statistical foundations

𝑎#
𝑎"
=
𝑝 0
𝑝 1

𝑁 1
𝑁 0

≈
𝒩"

𝒩#
𝑁 1
𝑁 0

≈
𝒩"

𝒩#
𝒩#
𝑁 0

=
𝒩"

𝑁 0

ℓ*+, 𝑦, 𝑓 𝑥 =
𝑁 0
𝒩"

1 − 𝑦 log(1 + 𝑒-) + 𝑦 log(1 + 𝑒.-)
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Statistical foundations

𝑓#$ ≈ 𝑓∗ = log
𝑛 𝑥 1
𝑛 𝑥 0

𝑁 1 = ,𝑛 𝑥 1 𝑑𝑥 = ,𝑛 𝑥 0 𝑒&∗ 𝑑𝑥 → 𝑁#$ 1 =
𝑁 0
𝒩'

1
(∈*"

𝑒&#$ (

𝑡#$(𝑆+) = −2
𝑁 0
𝒩'

1
(∈*"

𝑒&#$ ( − 1 − 1
(∈*%

𝑓#$ 𝑥

The model is trained as a classifier, but we are not interested in typical classification metrics.

We now need a rich class of functions.
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Kernel methods

ERM

empirical error

Select a space ℋ of possible functions, e.g., linear functions

𝑓$(𝑥) = 𝑤4𝑥

Most common models, not very expressive but nice properties.
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M𝐿 𝑓 =
1
𝑛
<
(&#

)

ℓ 𝑦, 𝑓 𝑥

N𝑓 = argmin
-∈ℋ

M𝐿 𝑓 + 𝜆 𝑅
regularization
term



Kernel methods

Nonlinear functions

- 𝑓$ 𝑥 = 𝑤7Φ 𝑥 , kernels
- 𝑓$(𝑥) = “𝜎(𝑤4𝑥)” , neural nets

+ weights constraints, e.g., 𝑤 < 𝜆.

Marco LetiziaMachine Learning at GGI17



Kernel methods

𝑓 𝑥 = 𝑤7Φ 𝑥 , feature map Φ:𝑋 → 𝐹, 

Input 𝑥#, 𝑥8 Feature map Φ 𝑥 = (𝑥#8, 𝑥88, 2 𝑥#𝑥8)

still linear
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Kernel methods

One can consider inf dimensional feature maps if  𝑘 𝑥, 𝑥9 = Φ4 𝑥 Φ x9

can be computed.

The solution to the ERM problem can be written as

h𝑤4 =<
(&#

)

𝑥(4𝑐( ⇒ 𝑓:$(𝑥) = 𝑤4𝑥 =<
(&#

)

𝑥(4𝑥 𝑐( =<
(&#

)

𝑐( 𝑘(𝑥, 𝑥()
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(representer theorem)



Kernel methods

𝑓(𝑥) =<
(&#

)

𝑐( 𝑘(𝑥, 𝑥()

Common kernels:
- Linear 𝑘 𝑥, 𝑥9 = 𝑥4𝑥′
- Polynomial 𝑘; 𝑥, 𝑥9 = 𝑥4𝑥9 + 1 ;

- Gaussian 𝑘< 𝑥, 𝑥9 = exp− %.%"
#

8<#
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Kernel methods
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Kernel methods are very flexible, they can approximate any continuous 
functions given enough data*.

They do not scale well: one must handle the kernel matrix
𝐾𝑛𝑛 ∈ ℝ𝑛×𝑛 with entries 𝑘(𝑥𝑖 , 𝑥𝑗). 
Hence, the computational complexity to determine the function is typically 
𝒪 𝑛A in time and 𝒪 𝑛8 in space and some approximation is needed.

*Andreas Christmann and Ingo Steinwart. Support vector machines. 2008

Charles A. Micchelli, Yuesheng Xu, and Haizhang Zhang. Universal kernels. 2006



Falkon

A modern algorithm to efficiently extend kernel methods to large scale 
problems (𝑛 = 𝒪 10B ).

- Nyström approximation (subsampling)
- Iterative solvers
- Approximate preconditioning (w/ Nyström)
- Efficient (multi-)GPU implementation

Kernel methods through the roof: handling billions of points efficiently, Giacomo Meanti, Luigi Carratino, Lorenzo Rosasco, and Alessandro Rudi, arXiv:2006.10350 [cs.LG]

https://github.com/FalkonML/falkon
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Falkon

It considers functions of the following kind (Nyström)

𝑓 𝑥 =$
!"#

$

𝑐! 𝑘 𝑥, 𝑥! ,

where {𝑥#, … , 𝑥$} ⊂ {𝑥#, … , 𝑥%} are inducing points sampled uniformly at random, 
called centers.

Optimal statistical bounds can be obtained with 𝑀 = 𝒪 𝑛 → 𝒪 𝑛 cost in space.
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Statistical (supervised) learning

Given 𝑥( , 𝑦( (&#
) ∼ 𝑝), find N𝑓 with small

𝐿 N𝑓 = 𝔼C[ℓ( N𝑓 𝑦 , 𝑥)]

expected error
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Statistical (supervised) learning

Error decomposition
excess risk

𝔼 𝐿 N𝑓D −min 𝐿 = 𝔼 𝐿 N𝑓D − 𝐿 𝑓D + 𝐿(𝑓D) − min 𝐿
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Statistical (supervised) learning

Error decomposition
excess risk

𝔼 𝐿 N𝑓D −min 𝐿 = 𝔼 𝐿 N𝑓D − 𝐿 𝑓D + 𝐿(𝑓D) − min 𝐿

“test” error
of ERM

best
“test” error

ideal
ERM error
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Statistical (supervised) learning

Error decomposition
excess risk

𝔼 𝐿 N𝑓D −min 𝐿 = 𝔼 𝐿 N𝑓D − 𝐿 𝑓D + 𝐿(𝑓D) − min 𝐿

“test” error
of ERM

best
“test” error

ideal
ERM error

estimation error/
variance

approximation error/
bias
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Bounds

≲
𝜆
𝑛
+
1
𝜆

≲ 𝑔 𝜆, 𝑛 + ℎ 𝜆



Statistical (supervised) learning

Optimization

min
$
𝐿(𝑓$)

Gradient descent

h𝑤EF# = h𝑤E + 𝛾E∇M𝐿 𝑓:$$
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Statistical (supervised) learning

Computational error

𝔼 𝐿 𝑓:$$ −min 𝐿 =

𝔼 𝐿 𝑓:$$ − 𝔼 𝐿 N𝑓D + 𝔼 𝐿 N𝑓D − 𝐿 𝑓D + 𝐿(𝑓D) − min 𝐿

variance biasComputational
“test” error
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Falkon

Squared loss + L2 (kernel ridge regression)

Loss and penalty are quadratic → linear system 𝐾%% + 𝜆𝑛𝐼 𝒄 = 𝒚.

→ 𝐾%$& 𝐾%$ + 𝜆𝑛𝐾$$ 𝒄 = 𝐾%$& 𝒚, 𝒄 ∈ ℝ$.

Solvable directly in 𝒪 𝑛𝑀' +𝑀( time and 𝒪 𝑀' space.
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Falkon

Squared loss + L2 (kernel ridge regression)

- Interative solvers, such as conjugate gradient.

- Approximate preconditioning
𝑃𝑃& = 𝐾%$& 𝐾%$ + 𝜆𝑛𝐾$$ )#

→ 9𝑃 9𝑃& =
𝑛
𝑀
𝐾$$' + 𝜆𝑛𝐾$$

)#

Optimal bounds in 𝒪 𝑛 𝑛 log 𝑛 in time and 𝒪 𝑛 in space.
Similar considerations are valid for LogFalkon.
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Falkon

Marco LetiziaMachine Learning at GGI32

Kernel methods through the roof: handling billions of points efficiently, Giacomo Meanti, Luigi Carratino, Lorenzo Rosasco, and Alessandro Rudi, arXiv:2006.10350 [cs.LG]



Falkon for NPLM
- Reference sample 𝑆* and data sample 𝑆#

- (weighted) logistic loss to learn f+, ≈ log % 𝑥 1% 𝑥 0 and compute 𝑡+,(𝑆#).

- Efficient algorithm based on kernel methods (Falkon).

Pipeline:

- Reconstruct the distribution under the null hypothesis

with data coming from the reference.

- Compute the test statistics for the actual data sample.
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Falkon for NPLM
Falkon has three main hyperparameters (𝑀, 𝜎, 𝜆)

Typically, they can be tuned using cross-validation.

In NPLM applications we do not do that to preserve model-independence.

→ mix of heuristics, statistical considerations and efficency
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Falkon for NPLM
Compatibility of the null distribution with a 𝜒'.

It breaks down if reference 

is too small.
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Applications

• Learning new physics

• Data quality monitoring

• Validation
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Learning new physics
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DIMUON : 

𝑝𝑝 → 𝜇!𝜇",
𝑥 = 𝑝#$, 𝑝#%, 𝜂$, 𝜂%, Δ𝜙 , 

𝑚&' = 200,300,600 GeV
EFT 𝑐( = 1.0,1.2,1.5 TeV−2



Learning new physics
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SUSY (8d):

HIGGS (21d): 

Baldi et al, arXiv:1402.4735[hep-ph] 



Learning new physics
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For details about the NN models (architectures, training,…), see the following papers

Raffaele Tito D’Agnolo and Andrea Wulzer. Learning New Physics from a Machine. Phys. Rev. D, 99(1):015014, 2019. arXiv:1806.02350 [hep-ph]
Raffaele Tito D’Agnolo, Gaia Grosso, Maurizio Pierini, Andrea Wulzer, and Marco Zanetti. Learning multivariate new physics. Eur. Phys. J. C, 81(1):89, 2021. 
arXiv:1912.12155 [hep-ph] 
M.L., Gianvito Losapio, Marco Rando, Gaia Grosso, Andrea Wulzer, Maurizio Pierini, Marco Zanetti, Lorenzo Rosasco, Learning new physics efficiently with 
nonparametric methods, To appear in EPJC, arXiv: 2204.02317 [hep-ph]
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(from Gaia’s presentation)
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(from Gaia’s presentation)
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DQM



Validation of generative models
With Riccardo Torre and Humberto Reyes (Unige/INFN).
Normalizing flows in high dimensions (up to 𝑑 = 200).
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Testing the boundaries: Normalizing Flows for higher dimensional data sets, Humberto Reyes-Gonzalez, Riccardo Torre,  ACAT 2021, arXiv:2202.09188 [stat.ML] 



What is coming and to do list

• Comparison among AD models
• In-depth analysis of ML driven GoF tests

• Systematic uncertainties
• Hyperparameter tuning
• Selection of centers
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