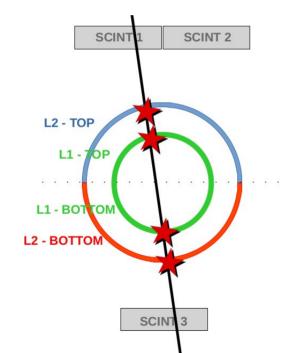
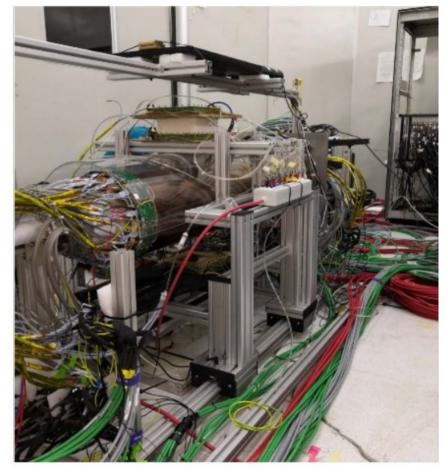


MACHINE LEARNING APPROACH TO ANALYZE COSMICS DATA

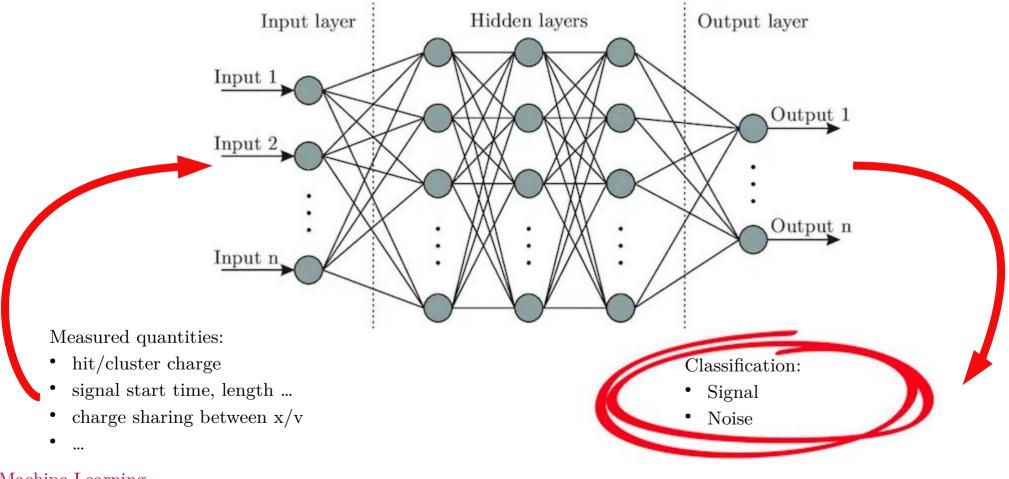
Lia Lavezzi


Università degli Studi di Torino / INFN-TO

BESIII Italy Collaboration Meeting – Torino, 28/29 September 2022


GOOD OLD COSMIC RAY DATA

- Machine Learning to separate signal from noise at hit/cluster level
- Ongoing thesis @ Ferrara



Machine Learning

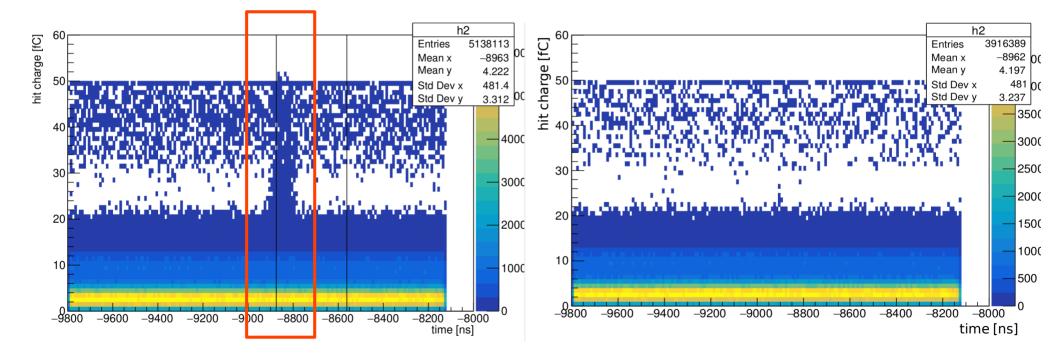
SETUP - LAYER1 + LAYER2

MACHINE LEARNING

SIGNAL AND NOISE

The network must be **trained** to **learn** from **true** and **known** events

- **Signal:** golden run, no. 17 Event selection with:
 - cgemboss.6.6.5.g
 - alignment: fixed
 - 4 plane fit \rightarrow all 4 planes firing
 - no more than 100 cluster–2D
 - no chi2 cut
 - 129357 events
- Noise: run 44–49
 - hit in trigger time window
 - 98363 events


RUN ID				
AQUIRED	SHARED	GAIN	THRSH	# EVENTS
351	17	std	std	234154
421	44	off $(HV=0)$	std	18853
422	45	off $(HV=0)$	std	3021
423	46	off $(HV=0)$	std	21168
424	47	off $(HV=0)$	std	24288
426	48	off $(HV=0)$	std	14469
428	49	off $(HV=0)$	std	16564

NOISE CLEANING

Run 44 - 49: hit charge vs hit time shows a structure close to the event window

Without run ${\bf 45-46}$ the structure disappears

 \rightarrow exclude them

NOISE CLEANING

The network must be **trained** to **learn** from **true** and **known** events

- **Signal:** golden run, no. 17 Event selection with:
 - cgemboss.6.6.5.g
 - alignment: fixed
 - 4 plane fit \rightarrow all 4 planes firing
 - no more than 100 cluster–2D
 - no chi2 cut
 - 129357 events
- Noise: run 44, 47, 48, 49
 - hit in trigger time window
 - 74174 events

RUN ID				
AQUIRED	SHARED	GAIN THRSH		# EVENTS
351	17	std	std	234154
421	44	off $(HV=0)$	std	18853
422	45	off (HV=0)	std	3021
423	40	off (HV=0)	std	21168
424	47	off (HV=0)	std	24288
426	48	off (HV=0)	std	14469
428	49	off $(HV=0)$	std	16564

TMVA package

- Toolkit for Multi Variate Analysis
- C++ Object Oriented / ROOT
- Many algorithms available:

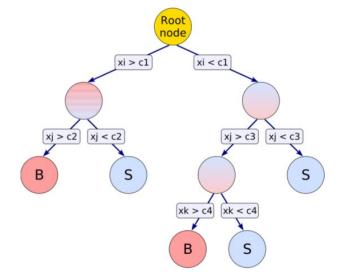
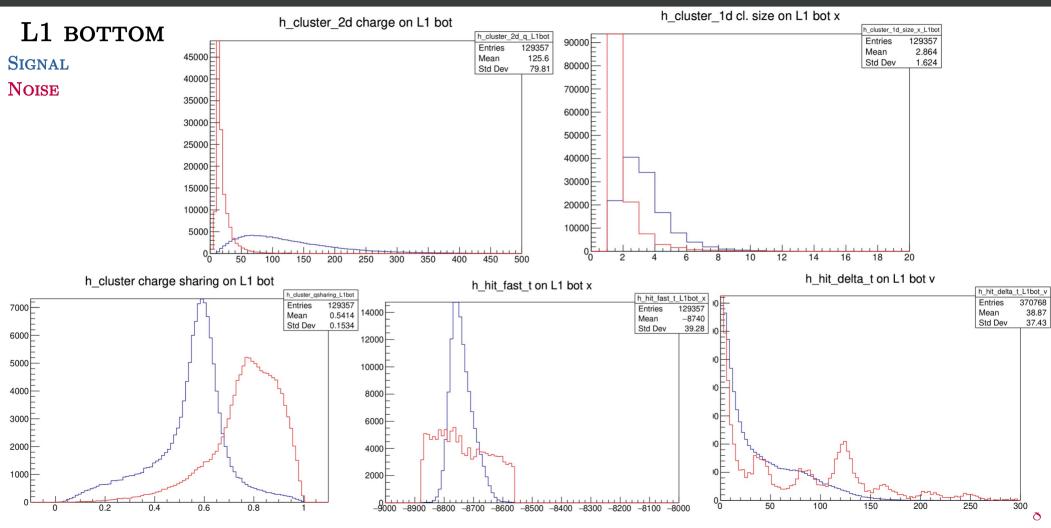

	MVA METHOD										
(CRITERIA	Cuts	Likeli- hood	PDE- RS / k-NN	PDE- Foam	H- Matrix	Fisher / LD	MLP	BDT	Rule- Fit	SVM
Perfor-	No or linear correlations	*	**	*	*	*	**	**	*	**	*
mance Nonl	Nonlinear correlations	0	0	**	**	0	0	**	**	**	**
Control	Training	0	**	**	**	**	**	*	*	*	0
Speed	Response	**	**	0	*	**	**	**	*	**	*
Robust-	Overtraining	**	*	*	*	**	**	*	*	*	**
ness	Weak variables	**	*	0	0	**	**	*	**	*	*
Curse of	dimensionality	0	**	0	0	**	**	*	*	*	
Transpar	ency	**	**	*	*	**	**	0	0	0	0

Table 6: Assessment of MVA method properties. The symbols stand for the attributes "good" $(\star\star)$, "fair" (\star) and "bad" (\circ). "Curse of dimensionality" refers to the "burden" of required increase in training statistics and processing time when adding more input variables. See also comments in the text. The FDA method is not listed here since its properties depend on the chosen function.

Most straightforward one for starters

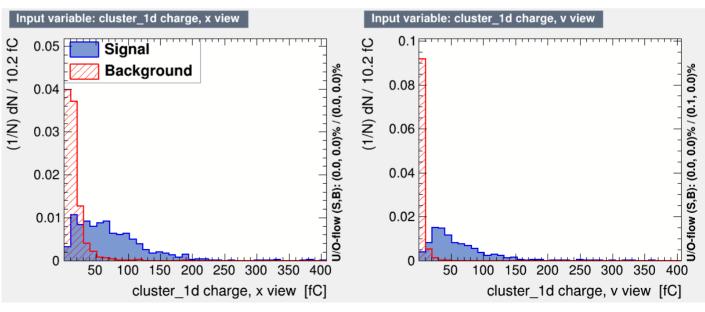
Machine Learning


BOOSTED DECISION TREE

- Series on nodes: @ each node a cut decides left/right
- End nodes (*leafs*) are signal/background
- Several trees with different weights to form a forest
- BDT outcome is the response of the forest

 $\hat{y}(x) = \sum_{t} w_t h_t(x)$

VARIABLE SELECTION

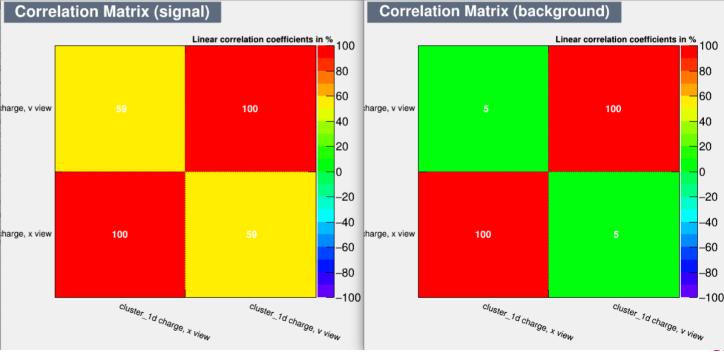


TMVA VARIABLES

Very first attempt:

dataloader->AddVariable("mva_cluster_1d_qx", "cluster_1d charge, x view", "fC", 'F'); dataloader->AddVariable("mva_cluster_1d_qv", "cluster_1d charge, v view", "fC", 'F');

- #signal events for training = 1000
- #background events for training = 1000
- split mode = random
- method: BDT
- NTrees=850
- MinNodeSize=2.5%
- MaxDepth=3
- BoostType=AdaBoost
- AdaBoostBeta=0.5
- UseBaggedBoost
- BaggedSampleFraction=0.5
- SeparationType=GiniIndex
- nCuts=20"


VARIABLE VALUES

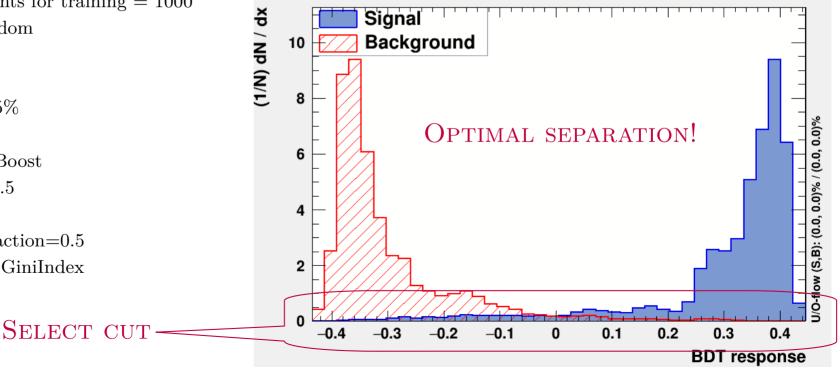
$\mathrm{TMVA}\ \mathrm{VARIABLES}$

Very first attempt:

dataloader->AddVariable("mva_cluster_1d_qx", "cluster_1d charge, x view", "fC", 'F'); dataloader->AddVariable("mva_cluster_1d_qv", "cluster_1d charge, v view", "fC", 'F');

- #signal events for training = 1000
- #background events for training = 1000
- split mode = random
- method: BDT
- NTrees=850
- MinNodeSize=2.5%
- MaxDepth=3
- BoostType=AdaBoost
- AdaBoostBeta=0.5
- UseBaggedBoost
- BaggedSampleFraction=0.5
- SeparationType=GiniIndex
- nCuts=20"

CORRELATIONS


$\mathrm{TMVA}\ \mathrm{RESPONSE}$

Very first attempt:

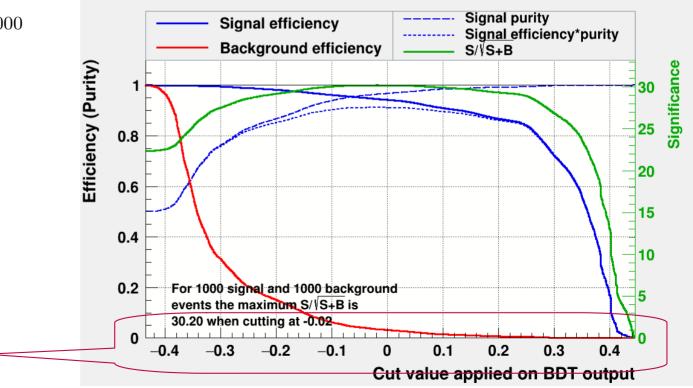
dataloader->AddVariable("mva_cluster_1d_qx", "cluster_1d charge, x view", "fC", 'F'); dataloader->AddVariable("mva_cluster_1d_qv", "cluster_1d charge, v view", "fC", 'F');

- #signal events for training = 1000
- #background events for training = 1000
- split mode = random
- method: BDT
- NTrees=850
- MinNodeSize=2.5%
- MaxDepth=3
- BoostType=AdaBoost
- AdaBoostBeta=0.5
- UseBaggedBoost
- BaggedSampleFraction=0.5
- SeparationType=GiniIndex
- nCuts=20"

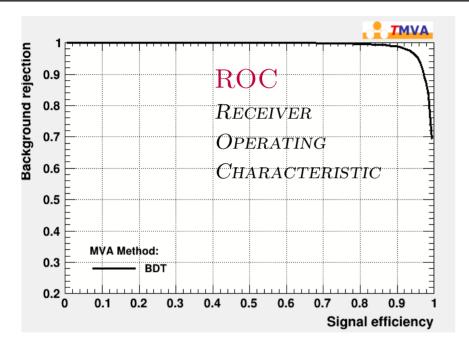
Machine Learning

11

TMVA: EFFICIENCY


Very first attempt:

dataloader->AddVariable("mva_cluster_1d_qx", "cluster_1d charge, x view", "fC", 'F'); dataloader->AddVariable("mva_cluster_1d_qv", "cluster_1d charge, v view", "fC", 'F');


- #signal events for training = 1000٠
- #background events for training = 1000

SELECT CUT

- split mode = random •
- method: BDT ٠
- NTrees=850
- MinNodeSize=2.5%•
- MaxDepth=3٠
- BoostType=AdaBoost
- AdaBoostBeta=0.5 •
- UseBaggedBoost •
- BaggedSampleFraction=0.5
- SeparationType=GiniIndex
- nCuts=20"

TMVA: ROC & TEST

We want good noise rejection and good signal efficiency \rightarrow give-and-take

- efficiency = 1 rejection
- given @ three background eff. Levels

example: $@B=0.10 \rightarrow background rejection = 0.90 \rightarrow signal efficiency = 0.972$

Testing efficiency compared to training efficiency (overtraining check)							
DataSet Name:	MVA Method:	Signal efficiency: @B=0.01	from test sample @B=0.10	(from training sample) @B=0.30			
dataset	BDT	: 0.888 (0.902)	0.972 (0.974)	0.994 (0.994)			

SUMMARY

- The whole procedure works
- Different functions have been understood
- Signal and noise training/testing samples have been updated

To do list

- Optimize the BDT parameters
- Test other variables
- Test other ML methods

SUMMARY

- The whole procedure works
- Different functions have been understood
- Signal and noise training/testing samples have been updated

To do list

- Optimize the BDT parameters
- Test other variables
- Test other ML methods

