# Study of the relative phase of psi(2S) using $e^+e^- \rightarrow \pi\pi J/psi$ final state



好久不见 Long time no see

Giulio (朱利奥) Mezzadri

BESIII Italia – September 2022 - Torino

#### Relative phase between strong and EM decay amplitudes.



#### Relative phase between strong and EM decay amplitudes



But also <u>http://arxiv.org/abs/1505.03930v2</u> by Mo, Ping, Yuan

Additionally, phase in psi(2S)  $\rightarrow$  VP different from J/psi  $\rightarrow$  VP. If confirmed, possible origin of  $\rho$ - $\pi$  puzzle

## **Datasets and Luminosity**

#### Data Collected in 2018: psi(2S) scan

| Requested Energy (MeV) | Requested Luminosity $(nb^{-1})$ | Run number    | Energy $(MeV)$       | Spread (MeV)      | Luminosity $(nb^{-1})$ |
|------------------------|----------------------------------|---------------|----------------------|-------------------|------------------------|
| 3580                   | 85                               | 55375 - 55461 | $3581.543 \pm 0.060$ | $1.493\pm0.060$   | 85665.6                |
| 3670                   | 85                               | 55462 - 55541 | $3670.158 \pm 0.063$ | $1.410\pm0.053$   | 84719.7                |
| 3681                   | 85                               | 55542 - 55635 | $3680.144 \pm 0.061$ | $1.517\pm0.060$   | 84814.5                |
| 3683                   | 55                               | 55636 - 55662 | $3682.752 \pm 0.115$ | $1.710\pm0.104$   | 28668.3                |
| -                      | -                                | 55663-55690   | $3684.224 \pm 0.119$ | $1.547\pm0.122$   | 28651.6                |
| 3685.5                 | 25                               | 55691 - 55716 | $3685.264 \pm 0.105$ | $1.478\pm0.111$   | 25982.8                |
| 3686.6                 | 25                               | 55717 - 55737 | $3686.496 \pm 0.120$ | $1.594\pm0.117$   | 25055.1                |
| 3690                   | 70                               | 55738 - 55795 | $3691.363 \pm 0.075$ | $1.541\pm0.074$   | 69374.6                |
| 3710                   | 70                               | 55796 - 55859 | $3709.755 \pm 0.074$ | $1.460 \pm 0.075$ | 70326.7                |

Added the "old" continuum point at 3.65 GeV

Boss version 7.0.4 – Using KKMC for each energy 20k  $e^+e^- \rightarrow pi^+ pi^- J/psi \rightarrow pi^+ pi^- e^+ e^-$  20k  $e^+e^- \rightarrow pi^+ pi^- J/psi \rightarrow pi^+ pi^- mu^+ mu^-$ 

# **Datasets and Luminosity**

#### Data Collected in 2018: psi(2S) scan

| $84.604 \pm 0.082$ |                   |                      |             |                                  |                        |
|--------------------|-------------------|----------------------|-------------|----------------------------------|------------------------|
| 83.582±0.084       | Spread (MeV)      | Energy (MeV)         | Run number  | Requested Luminosity $(nb^{-1})$ | Requested Energy (MeV) |
|                    | $1.493 \pm 0.060$ | $3581.543 \pm 0.060$ | 55375-55461 | 85                               | 3580                   |
| 83.060±0.083       | $1.410 \pm 0.053$ | $3670.158 \pm 0.063$ | 55462-55541 | 85                               | 3670                   |
|                    | $1.517 \pm 0.060$ | $3680.144 \pm 0.061$ | 55542-55635 | 85                               | 3681                   |
| 28.1/5±0.049       | $1.710 \pm 0.104$ | $3682.752 \pm 0.115$ | 55636-55662 | 55                               | 3683                   |
| 27.840±0.048       | $1.547 \pm 0.122$ | $3684.224 \pm 0.119$ | 55663-55690 | -                                | -                      |
|                    | $1.478 \pm 0.111$ | $3685.264 \pm 0.105$ | 55691-55716 | 25                               | 3685.5                 |
| $25.342 \pm 0.046$ | $1.594 \pm 0.117$ | $3686.496 \pm 0.120$ | 55717-55737 | 25                               | 3686.6                 |
| 24.481±0.045       | $1.541 \pm 0.074$ | $3691.363 \pm 0.075$ | 55738-55795 | 70                               | 3690                   |
|                    | $1.460 \pm 0.075$ | $3709.755 \pm 0.074$ | 55796-55859 | 70                               | 3710                   |
| 68.647 + 0.076     |                   |                      |             |                                  |                        |

Added the "old" continuum point at 3.65 GeV

Boss version 7.0.4 – Using KKMC for each energy 20k  $e^+e^- \rightarrow pi^+ pi^- J/psi \rightarrow pi^+ pi^- e^+ e^-$  20k  $e^+e^- \rightarrow pi^+ pi^- J/psi \rightarrow pi^+ pi^- mu^+ mu^-$ 

Luminosity with Bhabha and two photons

 $69.326 \pm 0.077$ 

https://indico.ihep.ac.cn/event/ 13433/contribution/5/material/ slides/0.pdf 4

**L** (pb<sup>-1</sup>)

# **Datasets and Luminosity**

#### Data Collected in 2018: psi(2S) scan

|   | $84.604 \pm 0.082$ |                   |                      |               |                                  |                        |
|---|--------------------|-------------------|----------------------|---------------|----------------------------------|------------------------|
| 1 | 83.582±0.084       | Spread (MeV)      | Energy (MeV)         | Run number    | Requested Luminosity $(nb^{-1})$ | Requested Energy (MeV) |
| _ |                    | $1.493 \pm 0.060$ | $3581.543 \pm 0.060$ | 55375 - 55461 | 85                               | 3580                   |
|   | 83.060±0.083       | $1.410 \pm 0.053$ | $3670.158 \pm 0.063$ | 55462-55541   | 85                               | 3670                   |
| - | 28.175±0.049       | $1.517 \pm 0.060$ | $3680.144 \pm 0.061$ | 55542 - 55635 | 85                               | 3681                   |
|   |                    | $1.710 \pm 0.104$ | $3682.752 \pm 0.115$ | 55636-55662   | 55                               | 3683                   |
| 1 | 27.840±0.048       | $1.547 \pm 0.122$ | $3684.224 \pm 0.119$ | 55663-55690   | _                                | -                      |
| 4 |                    | $1.478 \pm 0.111$ | $3685.264 \pm 0.105$ | 55691-55716   | 25                               | 3685.5                 |
|   | $25.342 \pm 0.046$ | $1.594 \pm 0.117$ | $3686.496 \pm 0.120$ | 55717-55737   | 25                               | 3686.6                 |
| - | 24.481±0.045       | $1.541 \pm 0.074$ | $3691.363 \pm 0.075$ | 55738-55795   | 70                               | 3690                   |
|   |                    | $1.460 \pm 0.075$ | $3709.755 \pm 0.074$ | 55796-55859   | 70                               | 3710                   |
|   | $68.647 \pm 0.076$ | · · ·             |                      |               | •                                | ~                      |

Added the "old" continuum point at 3.65 GeV

Boss version 7.0.4 – Using KKMC for each energy 20k  $e^+e^- \rightarrow pi^+ pi^- J/psi \rightarrow pi^+ pi^- e^+ e^-$  20k  $e^+e^- \rightarrow pi^+ pi^- J/psi \rightarrow pi^+ pi^- mu^+ mu^-$ 

Luminosity with Bhabha and two photons

 $69.326 \pm 0.077$ 

https://indico.ihep.ac.cn/event/ 13433/contribution/5/material/ slides/0.pdf 4

**L** (pb<sup>-1</sup>)

### **Event Selection**

- Event selection follows similar criteria of other  $\pi\pi J/psi$  final state analyses
- Event Selections:
  - 4 charged tracks with 0 net charge
  - | cos θ| < 0.93</p>
  - $|V_{z,poca}| < 10 \text{ cm}$
  - $|V_{xy,poca}| < 1 \text{ cm}$
  - p > 1.06 track is a lepton
  - **p** < 0.45 track is a pion
  - 4C kinematic fit is applied

• Radiative Bhabha and radiative dimuons background are suppressed by a cut on the opening angle between the two pions (cos  $| \theta_{pipi} | < 0.98$ ) and non-radiative Bhabha events are further suppressed with a cut on the opening angle between the two lepton (cos  $| \theta_{ee} | < 0.98$ ).

### Leptification



Difference of the response in the EMC allows to separate electrons and muons

# "Typical plots" @ 3.686 GeV



Angle between pions



 $\pi\pi$  invariant mass

### Electronic final state



New fitting function: Crystal Ball + O<sup>th</sup> Chebychev

### Electronic final state



New fitting function: Crystal Ball + O<sup>th</sup> Chebychev

### Electronic final state





New fitting function: Crystal Ball + O<sup>th</sup> Chebychev

## A "special" point



#### Fitting function:

fixed mass Breit-Wigner + 1<sup>th</sup> Chebychev

#### Hint of pipi J/psi also @ 3.65 GeV Helpful to constrain continuum

#### "Observed" cross section in e<sup>+</sup>e<sup>-</sup> final state



### Muonic final state



Fitting function: Crystal Ball + BW + O<sup>th</sup> Chebychev

# Muonic final state



# Muonic final state



Fitting function: Crystal Ball + BW + O<sup>th</sup> Chebychev

### A "special" point



#### Hint of pipi J/psi also @ 3.65 GeV Helpful to constrain continuum

#### "Observed" cross section in $\mu^+\mu^-$ final state



#### Towards the phase extraction

#### From the amplitudes...

The starting formula is the Born cross section of the process  $e^+e^- \rightarrow h$ 

$$\sigma(W) = \left|\mathscr{A}(W)\right|^2,$$

with the amplitude

$$\mathscr{A}(w) = D \frac{Se^{i\phi} + E}{M - W - iG} - C \left(\frac{3 \text{ GeV}}{W}\right)^3,$$

and the real and positive parameters

$$G = \Gamma/2$$
,  $D = \frac{\Gamma/2}{M} \sqrt{12\pi B_{\text{in}}}$ ,  $C = \sqrt{\sigma_{\text{cont}}}$ ,  $E = \sqrt{C^2 \frac{B_{\text{in}}}{\sigma_{\mu\mu}}} = \sqrt{\frac{\sigma_{\text{cont}}B_{\text{in}}}{\sigma_{\mu\mu}}}$ 

#### Continuum by power law

$$\sigma_0 = (3000)^{PWW} \sigma(3000)$$

#### Credits: Simone Pacetti

#### ...to the Born cross section

$$\begin{split} \sigma(W; B_{\text{out}}, \phi, \sigma_{\text{cont}}) &= \operatorname{Re}^{2} \left[ \mathscr{A}(W) \right] + \operatorname{Im}^{2} \left[ \mathscr{A}(W) \right] \\ &= \left\{ D \frac{\left[ \left( \sqrt{B_{\text{out}} - E^{2} \sin^{2}(\phi)} - E \cos(\phi) \right) \cos(\phi) + E \right] (M - W) \right]}{(M - W)^{2} + G^{2}} \\ &- D \frac{\left( \sqrt{B_{\text{out}} - E^{2} \sin^{2}(\phi)} - E \cos(\phi) \right) \sin(\phi) G}{(M - W)^{2} + G^{2}} - \sqrt{\sigma_{\text{cont}}} \left( \frac{3 \operatorname{GeV}}{W} \right)^{3} \right\}^{2} \\ &+ \left\{ D \frac{\left( \sqrt{B_{\text{out}} - E^{2} \sin^{2}(\phi)} - E \cos(\phi) \right) \sin(\phi) (M - W)}{(M - W)^{2} + G^{2}} \\ &+ D \frac{\left[ \left( \sqrt{B_{\text{out}} - E^{2} \sin^{2}(\phi)} - E \cos(\phi) \right) \cos(\phi) + E \right] G}{(M - W)^{2} + G^{2}} \right\}^{2}. \end{split}$$

$$\delta \mathcal{B} = 2 \sqrt{\frac{\sigma_0}{\sigma_{\psi}}} A_s \sin \varphi.$$

Interference effect on BR (with respect to no interference effect)

PHYSICAL REVIEW D 92, 072008 (2015)

#### And to the observed cross section

To Fit the Line-Shape: To incorporating the the effect of radiative function F(x, W) and Energy Spread  $S_E$  in the fit, the dressed Born cross section is modified as;

1. Incorporating the radiative correction F(x, W):

$$\sigma'(W) = \int_0^{1 - \left(\frac{W_{\min}}{W}\right)^2} dx F(x, W) \sigma(W\sqrt{1 - x})$$

2. Energy spread  $S_E$  is included by convolving with Gaussian function by set the width of  $S_E$ . The Born cross section becomes:

$$\sigma''(W) = \int_{W-nS_E}^{W+nS_E} \frac{1}{\sqrt{2\pi}S_E} \exp\left(\frac{-(W-W')^2}{2S_E^2}\right) \sigma'(W') \, dW \qquad \text{Observed xs!}$$

Minimization Function: The fitting parameters are obtained by means of  $\chi^2$ -minimization as:

$$\chi_{\min}^{2} = \sum_{i=1}^{15} \frac{\left(\sigma_{i}^{\text{obs}} - \sigma^{\prime\prime}\left(W_{i}\right)\right)^{2}}{\left(\Delta\sigma_{i}^{\text{obs}}\right)^{2} + \left[\left(\sigma^{\prime\prime}\left(W_{i} + \frac{\Delta W_{i}}{2}\right) - \sigma^{\prime\prime}\left(W_{i} - \frac{\Delta W_{i}}{2}\right)\right)\right]^{2}}$$

where error along X-axis, is projected along the Y-axis.

Credits: Muzaffar

### First fit

#### Using only the J/psi $\rightarrow \mu\mu$ final state. Efficiency without ISR.



BR = 0.392 + -0.004phi\_s = (112 + - 133.2)° cont(3.5GeV) = (0.02 + - 8.9) pb Spread = (1.35 + - 0.02) MeV

#### Second fit

Using only the J/psi  $\rightarrow \mu\mu$  final state, adding a "tentative" upper limit on 3.581 GeV. Efficiency without ISR.



Free parameters are BR,  $\sigma(3.5 \text{ Gev})$ , phase, Spread, but results do not improve

# A "personal" MINUIT

- Preliminary study to understand large error on the phase
  - Several tests by hand

• Result: effect is due to the large uncertainty on the continuum

• Proposed test: "Brute force" parameters scan

### Results of the scan



#### Found a minimum for:

- Continuum ~ 0.003 pb
- Phase ~ 150°

But, still large plateau around, so large uncertainties.

It is possible to set upper limit for continuum with this fit around 0.3 pb

Still not satisfactory since BR deviates from well known result.  $\rightarrow$  Check ISR with ConExc

#### Further steps

- Test additional points using  $\tau$  threshold and  $\chi_{c1}$  data to try to constrain better the continuum
  - Also update few points with more recent data

Test ConExc in simulation to have better description of ISR in simulation

• Continue testing the fit

### Further steps - II

During the discussion, I have received few comments from LI Haibo:

- To improve statistics, test reconstruction of only the pipi and search for J/psi in the recoil mass
- Evaluate the effect of the psi(3770) tail at high center-ofmass energies, also using the psi(3770) fast scan
- He stressed the importance to understand whether there is a continuum process, that may be related to BESIII (slightly) higher R measurement wrt to pQCD predictions

#### Thanks!!!