# SPIF: Studio di Precisione delle Interazioni Fondamentali 

Alessandro Vicini<br>University of Milano, INFN Milano

Consiglio di Sezione INFN Milano, I4 luglio 2022

## Struttura nazionale

| 4 sezioni: | Genova (II FTE, S. Marzani) | responsabile nazionale: A.Vicini |
| :--- | :--- | :--- |
|  | Milano (I FTE, A.Vicini) |  |
|  | Roma 3 (IO FTE, G. Degrassi) |  |
|  | Torino (I7 FTE, P.Torrielli) |  |

## Componenti della Sezione di Milano

| UniMi: | Stefano Carrazza (70\%), Giancarlo Ferrera, Stefano Forte, <br>  <br> Raoul Röntsch, Alessandro Vicini, Marco Zaro |
| :--- | :--- |
| INFN: | Claudia Frugiuele (80\%) |

postdocs: Juan Cruz Martinez, Simone Devoto, Felix Hekhorn, Kirill Kudashkin
dottorandi: Alessandro Candido, Niccolò Laurenti, Andrea Pasquale, Marco Rossi, Roy Stegeman, Davide Maria Tagliabue
esterni: Vito Antonelli (30\%)
per un totale di I7.8 FTE

## Test di Precisione del Modello Standard delle Interazioni Elettrodebole e Forte

## struttura del protone

N3PDF determinazione delle densità partoniche del protone tramite reti neurali e IA
(Stefano Forte, Stefano Carrazza, Juan Cruz-Martinez, Felix Hekhorn, Alessandro Candido, Niccolò Laurenti, Andrea Pasquale, Marco Rossi, Roy Stegeman)
tecniche di risommazione a tutti gli ordini di correzioni quantistiche risommazione di correzioni quantistiche con diversi tipi di incremento logaritmico struttura generale dell'ampiezza, sfruttando i vincoli analitici offerti dai risultati della risommazione (Stefano Forte, Giancarlo Ferrera)
calcolo di correzioni quantistiche di ordine superiore EW e QCD
calcolo di correzioni a ordine fisso (NLO, NNLO e N3LO) in QCD, EW o miste QCDxEW per LHC sviluppo di strumenti di simulazione Monte Carlo
(Alessandro Vicini, Raoul Röntsch, Marco Zaro, Simone Devoto, Davide Maria Tagliabue)
estensioni del Modello Standard
modelli di materia oscura "leggera", fisica dei neutrini
(Claudia Frugiuele, Vito Antonelli)

## Motivazioni



$3.7 \sigma$
$3.3 \sigma$


| mass window [GeV] | stat. unc $140 \mathrm{fb}^{-1}$ | stat. unc. $3 a b^{-1}$ |
| :---: | :---: | :---: |
| 600<m m $<900$ | 1.4\% | 0.2\% |
| 900< $\mathrm{m}_{\mu \mu}<1300$ | 3.2\% | 0.6\% |

## A deviation from the SM prediction can point towards New Physics

Is the SM prediction under control at the $\mathrm{O}(0.5 \%)$ level in the TeV region of the $m_{\ell \ell}$ distribution?

## Lepton-pair production at hadron colliders (theory breakdown)

$$
\sigma\left(P_{1}, P_{2} ; m_{V}\right)=\sum_{a, b} \int_{0}^{1} d x_{1} d x_{2} f_{h_{1}, a}\left(x_{1}, M_{F}\right) f_{h_{2}, b}\left(x_{2}, M_{F}\right) \hat{\sigma}_{a b}\left(x_{1} P_{1}, x_{2} P_{2}, \alpha_{s}(\mu), M_{F}\right)
$$



- accurate and consistent description of the QCD environment including PDFs, intrinsic partonic $k_{\perp}$, QED DGLAP PDF evolution
$\triangleright$ QCD modelling both perturbative and non-perturbative QCD contributions
transverse d.o.f. $\rightarrow$ gauge bosons $p_{\perp}^{V}$ spectra; dependent on non-perturbative contributions at low $p_{\perp}^{Z}$ longitudinal d.o.f. $\rightarrow$ rapidity distributions ; affected by PDF uncertainties
$\triangleright E W$ and mixed QCDxEW effects
important QED/EW corrections (mostly FSR) modulated by the underlying QCD dynamics
are our current tools adequate for the precision determination of EW parameters ?

Struttura del protone: verso predizioni all' I\% a LHC NNPDF collaboration, axxix21090.2653

alla limitata accuratezza teorica delle formule usate nel fit
Queste incertezze si propagano alla predizione delle distribuzioni cinematiche
In ultima istanza, l'estrazione di parametri come MW risente di queste incertezze (incertezza del modello di fit)

L'utilizzo di tecniche avanzate di IA ha permesso una velocizzazione delle procedure di fit
$\rightarrow$ l'esplorazione sistematica di intere classi di sorgenti di incertezza $\rightarrow$ miglior controllo sul fit e sulle incertezze residue


La distribuzione in impulso trasverso di un bosone di gauge è un'osservabile fondamentale in QCD:
$\rightarrow$ descrive la radiazione multipla di stato iniziale (test di QCD perturbativa)
$\rightarrow$ sensibile alla fisica dei piccoli impulsi trasversi (QCD non perturbativa e struttura del protone)

La conoscenza di questa osservabile è centrale nello studio delle distribuzioni dei leptoni da cui si estrae p.es. la massa del W

## Correzioni NNLO QCDxEW al processo di Drell-Yan



## double-real contributions

amplitudes are easily generated with Madgraph
IR subtraction
care about the numerical convergence when aiming at $0.1 \%$ precision

## real-virtual contributions

amplitudes are easily generated with OpenLoops or Recola
I-loop UV renormalisation and IR subtraction
care about the numerical convergence when aiming at $0.1 \%$ precision

## double-virtual contributions <br> generation of the amplitudes <br> $\gamma_{5}$ treatment <br> 2-loop UV renormalization subtraction of the IR divergences <br> solution and evaluation of the Master Integrals <br> numerical evaluation of the squared matrix element

The double virtual amplitude: reduction to Master Integrals

$$
2 \operatorname{Re}\left(\mathscr{M}^{(1,1)}\left(\mathscr{M}^{(0,0)}\right)^{\dagger}\right)=\sum_{i=1}^{N_{M I}} c_{i}(s, t, m ; \varepsilon) \mathscr{T}_{i}(s, t, m ; \varepsilon)
$$

The coefficients $c_{i}$ are rational functions of the invariants, masses and of $\varepsilon$ The size of the total expression can rapidly "explode" (hundreds of MB)
$\rightarrow$ careful work to identify the patterns of recurring subexpressions keeping the total size in the $\mathrm{O}(\mathrm{I}-10 \mathrm{MB})$ range

The solution of the 2-loop integrals $\mathscr{T}_{i}$ is increasingly difficult with the number of internal energy scales and masses Moreover, the W and Z masses are complex-valued (unstable particles)


## Evaluation of the Master Integrals by series expansions <br> T.Armadillo, R.Bonciani, S.Devoto, N.Rana, AV, 2205.03345

The Master Integrals satisfy a system of differential equations.
The Mls are replaced by formal series with unknown coefficients $\rightarrow$ eqs for the unknown coefficients of the series.
The package DiffExp by M.Hidding, arXiv:2006.055I0 implements this idea, for real valued masses, with real kinematical vars. But we need complex-valued masses of W and Z bosons (unstable particles) $\rightarrow$ we wrote a new package (SeaSyde)

We implemented the same approach, for arbitrary complex-valued masses, working in the complex plane of each kinematical variable, one variable at a time

Complete knowledge about the singular structure of the MI can be read directly from the differential equation matrix

The solution can be computed with an arbitrary number of significant digits, but not in closed form $\rightarrow$ semi-analytical



## Phenomenology of Neutral Current Drell-Yan including exact NNLO QCD-EW corrections

R.Bonciani, L.Buonocore, S.Devoto, M.Grazzini, S.Kallweit, N.Rana, F.Tramontano,AV, arXiv:2I06.II953 and work in preparation

SETUP (LHC @ $\sqrt{s}=13.6 \mathrm{TeV}$ )

- NNPDF31_nnlo_as_0118_luxqed
- $p_{T, \mu}>25 \mathrm{GeV}, \quad\left|y_{\mu}\right|<2.5,66 \mathrm{GeV}<m_{\mu^{+} \mu^{-}}<116 \mathrm{GeV}$
- massive muons (no photon lepton recombination)
- $G_{\mu}$ scheme, complex mass scheme
- fixed scale $\mu_{F}=\mu_{R}=m_{Z}$

| $G_{\mu}$-scheme | $\sigma[\mathrm{pb}]$ | $\sigma^{(i, j)}[\mathrm{pb}]$ | $\sigma^{(i, j)} / \sigma_{\mathrm{LO}}$ |
| :---: | :---: | :---: | :---: |
| LO | $763.40(2)_{-13.6 \%}^{+12.7 \%}$ | - | - |
| NLO QCD | $802.26(6)_{-4.2 \%}^{+2.7}$ | $38.86(6)$ | $5.1 \%$ |
| NNLO QCD | $802.5(7)_{-0.8}^{+0.4}$ | $0.2(7)$ | $0.0 \%$ |
| NLO EW | $730.76(2)_{-1.3 \%}^{+12.7}$ | $-32.65(3)$ | $-4.3 \%$ |
| NNLO QCD+EW | $769.8(7)_{-0.6 \%}^{+0.5}$ | - | - |
| NNLO QCD+EW+MIX | $768.2(7)_{-0.7 \%}^{+0.3}$ | $-2.0(1)$ | $-0.2 \%$ |
| NNLO QCD+EW+MIX | $772.4(8)_{-0.7 \%}^{+0.3}$ | $2.6(2)$ | $0.3 \%$ |

Sub-percent correction on total xsec (cfr. setup)
 Non-trivial distortion of the rapidity distribution (absent in the naive fäctorised approximation)
Large effects below the $\mathbf{Z}$ resonance (the factorised approximation fails) $\rightarrow$ impact on the $\sin ^{2} \theta_{\text {eff }}$ determination

## Phenomenology of Neutral Current Drell-Yan including exact NNLO QCD-EW corrections

R.Bonciani, L.Buonocore, S.Devoto, M.Grazzini, S.Kallweit, N.Rana, F.Tramontano, AV, arXiv:2I06.II953 and work in preparation

SETUP (LHC @ $\sqrt{s}=13 \mathrm{TeV}$ )

- NNPDF31_nnlo_as_0118_luxqed
- $p_{T, \mu}>53 \mathrm{GeV},\left|y_{\mu}\right|<2.4, \quad m_{\mu^{+} \mu^{-}}>150 \mathrm{GeV}$
- massive muons (no photon lepton recombination)
- $G_{\mu}$ scheme, complex mass scheme
- dynamic scale $\mu_{F}=\mu_{R}=m_{\mu^{+} \mu^{-}}$

Negative mixed NNLO QCD-EW effects (-3\% or more) at large invariant masses, absent in any additive combination $\rightarrow$ impact on the searches for new physics

## Good accuracy

of the factorised of QCD $\times$ EW Ansatz


Scale uncertainty at most the $\mathrm{O}(\mathrm{I} \%$ ) between I and 2 TeV


In un collisore leptonico,
i leptoni si comportano come dei sistemi compositi formati da parton

La struttura del leptone è descritta da densità partoniche collineari come nel caso del protone, grazie alla validità di opportuni teoremi di fattorizzazione.

Il formalismo delle PDF a LHC è stato rivisitato per colliders e+ee inserito nel programma di simulazione Madgraph_aMCNLO



Il trattamento completo a NLO è solo il punto di partenza per un programma di fisica che richiederà per molte osservabili accuratezza NNLO-EW

## Risorse di calcolo

Le risorse di calcolo utilizzate da SPIF a Milano includono un cluster ad alte prestazioni con 2240 jobs possibili eseguiti su I I20 cores installati su 40 server.
Il cluster è inserito nel sistema condor del Dipartimento/INFN.

Nel corso degli ultimi anni lo spazio disco è diventato uno dei fattori limitanti nello sviluppo di simulazioni ad alta precisione e quindi ad alta statistica.

L'esecuzione di calcoli simbolici richiede l'utilizzo di software come Mathematica con licenze proprietarie.
La soluzione del server nazionale di licenze, posto a Napoli, ottimizza l'uso di queste risorse, ma le 23 licenze disponibili spesso risultano occupate.

