

Romualdo Santoro Università dell'Insubria and INFN-MI

- In questa sigla confluiscono una serie di R&D mirati alle esigenze dei futuri collisionatori leptonici circolari (FCC / CepC). Coordinata a livello nazionale da Franco Bedeschi (INFN-PISA)
- Gli studi di R&D che soddisfano i requisiti per intercettare fondi esterni e call di GR5, vengono inseriti in quei canali ma, nonostante questo, chiediamo un supporto a questa commissione per garantire continuità e per portare avanti quella parte di sviluppo che è specifica degli esperimenti a collider
- □ La sezione di Milano, contribuisce ai seguenti R&D:
 - Beam Studies:
 - Ottimizzazione di una sorgente di positroni per FCC
 - Controllo dell'intensità dei fasci mediante scattering compton (https://indico.cern.ch/event/1178403/)
 - Attività sul nascere condotta da Illya Drebot
 - Rivelatori monolitici a pixel di silicio
 - Sensori sviluppati in ARCADIA
 - Sensori sviluppati in HVR_CCPD (ATLASPIX3)
 - Calorimetro Dual Readout
 - □ Call Gr5: al suo primo anno

Flow chart of the positron source optimization

(The activity born on knowledges acquired in the frame of the positron source of LEMMA, now fitting on the FCC)

- Electron acceleration to drive the positron source by using code like Astra and Elegant
- Simulation of the electron+target interaction (i.e. positron generation) by using codes like Geant4 and/or Fluka
- Entrapment chain study and optimization by using the GIOTTO code. Main goals: to maximize positrons flux and beam quality.
- □ A collaboration with the PSI group (already on the subject) is under discussion.

Tools: existing or under development in synergy with other activities. GIOTTO can drive external codes that typically cope with strong non-linear correlations.

Computation power: simulations and optimizations can be performed using existing machines.

Travel budget: 1-2 abroad days meeting (1.5 K€)

Alberto Bacci e Francesco Broggi _{R. Santorc}

Example of the positron trapping chain

GIOTTO - a Genetic Interface for OpTimising Tracking with Optics

GIOTTO is able to control a huge number of NON-Linear correlated "knobs", e.g. : the AMD magnetic field, the Bridge coil-I, the Bridge coil-II, the long cavities solenoid, the cavity positions, gradient and injection phases the target position inside the AMD, the AMD filed slope, the beam space-charge during target extraction

- Una tecnologia è quella sviluppata nel progetto ARCADIA (Call Gr5: 2019-2021) che ha avuto un anno di estensione (2022).
 - PI: Manuel Da Rocha Rolo (INFN TO)
- 🗆 Tra i successi di questo R&D
 - Primo dimostratore (MD1): funzionante, non completamente qualificato
 - MD3 sottomesso: il silicio dovrebbe essere disponibile per i test agli inizi del prossimo anno
- Contributo della sezione di Milano
 - Design review
 - Test e caratterizzazione in laboratorio e con fasci di particelle (2022-2023)
- Partecipanti della sezione di Milano
 - Massimo Caccia
 - Attilio Andreazza
 - Romualdo Santoro
 - Agnese Giaz

MD1: DAQ and first results

On-line QA-plots

Few cosmic tracks (Tilted sensor)

MD1 under test:

Samtec Firefly cables

Pixel size = $25x25 \ \mu m^2$ Matrix = 512×512 Thickness = $200 \ \mu m$

Cluster size

Cluster size analysis in different condition:

- ⁹⁰Sr non-collimated source
- 90Sr collimated source

Cosmic tracks

Regione	$\%$ in un quadrato 3×3	$\%$ in un quadrato 5×5
Sorgente non collimata	26.8	65.0
Sorgente collimata	66.5	92.3
Cosmici	37.2	70.4

- Le attività previste per il 2023 saranno incentrate sulla qualifica dei nuovi dimostratori (MD3) e confronto con (MD1)
 - Test elettrici
 - 🗆 Laser
 - Sorgenti radioattive
 - Test con raggi cosmici
 - Test beam
- Richieste su RD_FCC
 - Partecipazione ai test beam necessari alla qualifica dei dimostratori (10k)
 - A seconda della disponibilità e dello stato d'avanzamento delle qualifiche potremmo essere considerare diverse facilities (CERN, DESY, e TIFPA)
 - Supporti meccanici a supporto dei diversi test (5k)

ATLASPIX3 Module Assembly

- ATLASPIX3: monolithic CMOS sensor, full size system on chip
- Developed multi-chip-modules to integrate service distribution and data readout
- Below is the assembly procedure developed in Milano (shown with glass squares for clarity)
- Gap between chip of $100 \text{ um} \pm 50 \text{ um}$ has been achieved

7-Support for flex

0 0

Attilio Andreazza

Testing setup

Attilio Andreazza

Module characterization

- |I leak| < 400 nA for HV > -60 V. Breakdown voltage = -65 V
- Current consumption power-up / configured = 1.65 A / 1.33 A for VDD = 1.9 V
- Successful fitting of pixel thresholds
- Occasional loss of configuration during long scans
- Chip 3 can be configured but readout is not working (no wafer probing)

- Completato l'assemblaggio dei quad modules con ATLASPIX3
 - yield di assemblaggio compatibile con quello osservato a livello di singoli chip
 - Lezione per i future test di ATLASPIX3.1: verificare sotto punte HV e LV dei FE prima di montarli
- Due moduli inseriti nel test beam 4-10 aprile a DESY
 - Raccolti dati anche con i telescopi ATLASPIX3 di KIT e Lancaster
- Causa danneggiamento nel trasporto non tutti i chip operativi (riparati poi al ritorno a Milano)
- Dimostrata comunque l'operatività del modulo:

Attilio Andreazza

ATLASPIX3 Modules: planning

- 9 multi-chip modules with ATLASPix3 has been assembled
- 2 have been operated in testbeam at DESY
- Set of ATLASPIX3.1 wafers procured:
 - fixes on the main VDDA/VDDD regulators
 - on-chip command-clock-recovery
 - received 3×48 chips after dicing and thinning at OPTIM (F)
- Designing of a **2nd generation flex hybrid** exploiting ATLASPIX3.1 fixes:
 - Only **one LV supply** (currently 3 are needed), exploiting the internal regulator fixes
 - Input lines for command and clock (dropping trigger and reset signals)
 - Drop of SPI and configuration lines used for debugging module behaviour
 - A/C coupling on LVDS lines for compatibility with serial powering
 - Use some free space for temperature sensors
- Target is building few **mini-staves** of an outer tracker for FCCee/CepC/ILC

Calorimetria Dual Readout

- Obiettivi di questo R&D:
 - Qualifica su fascio delle performance EM del prototipo ad alta granularità (parzialmente equipaggiato con SiPM)
 - Studio delle problematiche di sistema: costruzione e read-out (design meccanico, assemblaggio, read-out, calibrazione etc.)
 - Qualifica su fascio delle prestazioni adroniche del calorimetro con una piccola parte ad alta granularità
- □ Attività svolte (2021 2022):
 - Costruzione di un prototipo con contenimento EM
 - Qualifica su fascio del prototipo con contenimento EM (DESY e CERN)
- Attività finanziata dalla call di GR5 (Hydra2)
 - Design e costruzione di un prototipo scalabile di dimensioni tali da contenere sciami adronici
 - Qualifica su fascio delle prestazioni adroniche del calorimetro

The EM-size prototype

- **EM-size prototype (10x10x100 cm³**)
 - 9 modules made of 16 x 20 capillaries (160 C and 160 Sc)
 - Capillaries (brass): 2 mm outer diameter and 1.1 mm inner diameter
- EM-size prototype readout
 - Each capillary of the central module is equipped with its own SiPM: highly granular readout
 - 8 surrounding modules equipped with PMTs (each module will use 1 PMT for C and 1 PMT for Sc fibres)

Analisi dati e confronto con il Monte Carlo

- L'analisi dei dati quasi completa:
 - Buona linearità nel range energetico esplorato
 - Si sta utilizzando la simulazione per disaccoppiare l'impatto che alcuni problemi strumentali hanno avuto sulla misura della risoluzione energetica

FEE-board and cabling

- Each bar of SiPMs will be operated at the same voltage
- □ The signals from 8 SiPMs is summed up in the grouping board
- □ 1 FERS operates the full mini-module
- 20 FERS to operate the central part of the prototype

Calorimetria Dual Readout

- Le attività per il 2023 saranno incentrate sulla qualifica dei nuovi SiPM e sull'integrazione del readout
- Partecipanti della sezione di Milano
 - Massimo Caccia
 - Romualdo Santoro
 - Agnese Giaz
- 🗆 Hydra2 Gr5
 - PI: Roberto Ferrari (Pavia)
 - Massimo Caccia (Responsabile WP2 Light Sensors)
 - Romualdo Santoro (Responsabile WP2 FEE and DaQ development)
 - Responsabile Locale
- Richieste RD_FCC per la calorimetria
 - 4 keuro per Test-Beam

Sintesi richieste RD_FCC

Progetto	
Positron Source	1.5 keuro (missioni)
Pixel	10 keuro (missioni test beam) 5 keuro (consumo ARCADIA setup) 5 keuro (onsumo ATLASPIX3 modules)
Calorimetro	4 keuro (missioni test beam)
Totale Servizio Meccanica	2 MU (Supporto per i test beam)
Totale Servizio Elettronica	4 MU (attività sugli ibridi di ATLASPIX3) 2 MU (Supporto per i test beam)

Sintesi anagrafica RD_FCC

Dipendente / Associato	Percentuale totale	Commenti
Attilio Andreazza	30%	
Alberto Bacci	5%	
Francesco Broggi	5%	
Massimo Caccia	50%	Sinergica con Hydra2
Illya Drebot	5%	
Agnese Giaz	50%	Sinergica con Hydra2
Romualdo Santoro	50%	Sinergica con Hydra2

SiPM readout

Custom SiPM module from Hamamatsu

- Custom designed module with 8 SiPMs $(1x1mm^2)$
- Distance between SiPMs: 2mm
- Two options under study: 10 and 15 μm pitch
- We are waiting the delivery of a first batch of 20 modules for qualification

- Two Citiroc1A for reading out up to 64 SiPMs
- One (20 85V) HV power supply with temperature compensation
- Two 12-bit ADCs to measure the charge in all channels
- Timing measured with 64 TDCs implemented on FPGA (LSB = 500 ps)
- 2 High resolution TDCs (LSB = 50 ps)
- Optical link interface for readout (6.25 Gbit/s)

