NA62 update

Alberto Gianoli

L'esperimento NA62

Esperimento a bersaglio fisso

Decadimento in volo dei K

♦Misurare O(100) eventi → 10¹³ decadimenti di K!!!

1-jul-22 Riunione preventivi 2023

N/4.6

$K^+ \rightarrow \pi^+ \nu \bar{\nu} \nu \bar{\nu}$ combined

NA62 \Lambda

4

1-jul-22 Riunione preventivi 2023

GTK4 e altre novità 2021

- Achromat ottimizzato per ridurre background
- GTK4 (GTK0 vicino a GTK1)
- VETO counter prima/dopo collimatore
- secondo modulo HASC (non in figura)
- ANTIO per ridurre µ background in dump mode e uso nel trigger (Y=0)

Ferrara: produzione e installazione readout GTK4

NA62 GTK4 e altre novità 2021

2021: data quality

Filtered data, prima della selezione First step: come 2018, stesse regioni e strategia

	Previous UL @ 90% CL	NA62 UL @ 90%CL	
$K^+ \to \pi^- \mu^+ \mu^+$	8.6×10^{-11}	4.2×10^{-11}	2017 data → improved by factor 2 Phys. Lett. B 797 (2019) 134794
$K^+ \to \pi^- e^+ e^+$	6.4×10^{-10}	5.3×10^{-11}	Run1 data \rightarrow improved by factor 12
$K^+ \to \pi^- \pi^0 e^+ e^+$	no limit	8.5×10^{-10}	Run1 data
$K^+ ightarrow \pi^- \mu^+ e^+$	5.0×10^{-10}	4.2×10^{-11}	2017+2018 data \rightarrow improved by factor 12
$K^+ \to \pi^+ \mu^- e^+$	5.2×10^{-10}	6.6×10^{-11}	2017+2018 data \rightarrow improved by factor 8 PRL 127 131802 (2021)
$\pi^0 \to \mu^- e^+$	3.4×10^{-9}	3.2×10^{-10}	2017+2018 data \rightarrow improved by factor 13
$K^+ \to \pi^+ \mu^+ e^-$	1.3×10^{-11}	-	sensitivity similar to previous search
$\pi^0 \to \mu^+ e^-$	3.8×10^{-10}	-	sensitivity similar to previous search
$K^+ \rightarrow \mu^- \nu e^+ e^+$	2.1×10^{-8}	-	Ongoing analysis on 2017 data: SES $\sim 1 imes 10^{-10}$
$K^+ \rightarrow e^- \nu \mu^+ \mu^+$	no limit		Ongoing analysis on 2017 data: SES $\sim 5 \times 10^{-11}$

	Previous UL @ 90% CL	NA62 UL @ 90%CL				
$K^+ \rightarrow \pi^- \mu^+ \mu^+$	8.6×10^{-11}	4.2×10^{-11}	2017 data \rightarrow improved by factor 2 Phys. Lett. B 797 (2019) 134794			
$K^+ ightarrow \pi^- e^+ e^+$	6.4×10^{-10}	5.3×10^{-11}	Run1 data \rightarrow improved by factor 12			
$K^+ \to \pi^- \pi^0 e^+ e^+$	no limit	8.5×10^{-10}	Run1 data			
$K^+ ightarrow \pi^- \mu^+ e^+$	5.0×10^{-10}	4.2×10^{-11}	2017+2018 data \rightarrow improved by factor 12			
$K^+ \to \pi^+ \mu^- e^+$	5.2×10^{-10}	6.6×10^{-11}	2017+2018 data \rightarrow improved by factor 8 PRL 127 131802 (2021)			
$\pi^0 \to \mu^- e^+$	3.4×10^{-9}	3.2×10^{-10}	2017+2018 data \rightarrow improved by factor 13			
$K^+ \to \pi^+ \mu^+ e^-$	1.3×10^{-11}	-	sensitivity similar to previous search			
$\pi^0 \to \mu^+ e^-$	3.8×10^{-10}	-	sensitivity similar to previous search			
$K^+ \to \mu^- \nu e^+ e^+$	2.1×10^{-8}	-	Ongoing analysis on 2017 data: SES $\sim 1 imes 10^{-10}$			
$K^+ \to e^- \nu \mu^+ \mu^+$	no limit		Ongoing analysis on 2017 data: SES $\sim 5 \times 10^{-11}$			

1-jul-22

	Previous UL @ 90% CL	NA62 UL @ 90%CL	
$K^+ \to \pi^- \mu^+ \mu^+$	8.6×10^{-11}	4.2×10^{-11}	2017 data \rightarrow improved by factor 2 Phys. Lett. B 797 (2019) 134794
$K^+ \to \pi^- e^+ e^+$	6.4×10^{-10}	5.3×10^{-11}	Run1 data \rightarrow improved by factor 12
$K^+ \to \pi^- \pi^0 e^+ e^+$	no limit	8.5×10^{-10}	Run1 data
$K^+ ightarrow \pi^- \mu^+ e^+$	5.0×10^{-10}	4.2×10^{-11}	2017+2018 data \rightarrow improved by factor 12
$K^+ \to \pi^+ \mu^- e^+$	5.2×10^{-10}	6.6×10^{-11}	2017+2018 data \rightarrow improved by factor 8 PRL 127 131802 (2021)
$\pi^0 \to \mu^- e^+$	3.4×10^{-9}	3.2×10^{-10}	2017+2018 data \rightarrow improved by factor 13
$K^+ \to \pi^+ \mu^+ e^-$	1.3×10^{-11}	-	sensitivity similar to previous search
$\pi^0 \to \mu^+ e^-$	3.8×10^{-10}	-	sensitivity similar to previous search
$K^+ \rightarrow \mu^- \nu e^+ e^+$	2.1×10^{-8}	-	Ongoing analysis on 2017 data: SES $\sim 1 imes 10^{-10}$
$K^+ \rightarrow e^- \nu \mu^+ \mu^+$	no limit		Ongoing analysis on 2017 data: SES $\sim 5 imes 10^{-11}$

HNL in $K^+ \rightarrow l^+ \nu$ $K^+ \rightarrow \mu^+ \nu \nu \nu$

Very rare decay in SM $BR=1.6 \times 10^{-16}$ Current limit: $BR < 2.4 \times 10^{-6}$ NA62 result: $BR < 1.0 \times 10^{-6}$ @90% CL

	Previous UL @ 90% CL	NA62 UL @ 90%CL	
$K^+ \to \pi^- \mu^+ \mu^+$	8.6×10^{-11}	4.2×10^{-11}	2017 data \rightarrow improved by factor 2 Phys. Lett. B 797 (2019) 134794
$K^+ \to \pi^- e^+ e^+$	6.4×10^{-10}	5.3×10^{-11}	Run1 data \rightarrow improved by factor 12
$K^+ \to \pi^- \pi^0 e^+ e^+$	no limit	8.5×10^{-10}	Run1 data
$K^+ ightarrow \pi^- \mu^+ e^+$	$5.0 imes 10^{-10}$	4.2×10^{-11}	2017+2018 data \rightarrow improved by factor 12
$K^+ \to \pi^+ \mu^- e^+$	5.2×10^{-10}	6.6×10^{-11}	2017+2018 data \rightarrow improved by factor 8 - PRL 127 131802 (2021)
$\pi^0 \to \mu^- e^+$	3.4×10^{-9}	3.2×10^{-10}	2017+2018 data \rightarrow improved by factor 13
$K^+ \to \pi^+ \mu^+ e^-$	1.3×10^{-11}	-	sensitivity similar to previous search
$\pi^0 \to \mu^+ e^-$	3.8×10^{-10}	-	sensitivity similar to previous search
$K^+ \rightarrow \mu^- \nu e^+ e^+$	2.1×10^{-8}	-	Ongoing analysis on 2017 data: SES $\sim 1 imes 10^{-10}$
$K^+ \rightarrow e^- \nu \mu^+ \mu^+$	no limit		Ongoing analysis on 2017 data: SES $\sim 5 imes 10^{-11}$

HNL in $K^+ \rightarrow l^+ \nu$

 $K^+ \rightarrow \mu^+ \nu \nu \nu$ X scalar of vector $K^+ \rightarrow \mu^+ \nu X$ Mass range: 10 - 370 MeV/c²Work in progress

1-jul-22 Riunione preventivi 2023

Attività attuali e future

- ▶ 2022 ... 2024
 - presa dati
- Dopo LS3: High-Intentity Kaon Experiments (HIKE) at SPS
 - varie fasi
 - fasci K⁺ e K_L e "dump mode"
 - rare K decays, precision measurements, exotic particles in K/dump, ... 5% precision $K^+ \rightarrow \pi^+ v v$
 - "Klever" sarebbe la parte KL

altra fisica K+ dump mode

 $K_{I} \rightarrow \pi^{0} V V$

K_L decadimenti rari

dump mode

- ▶Timeline
 - prima fase (dopo LS3): K⁺ ~ 7 x 10¹⁸ pot/year
 - seconda fase: K_L ~ 1 x 10¹⁹ pot/year <

Richieste 2023

capitolo	item	k€	sj	tot
MI	Metabolismo missioni Italia (1.9 FTE)		2,0	
ME	Metabolismo missioni Estere (1.9 FTE)		8,0	
ME	Missioni per Dry Run (2 sett/uomo)	2,0		
ME	Turni presa dati/esperti 2023	16,0		
ME	Turni presa dati test Klever (4x 1sett/ uomo)	4,0		
CONS	costruzione holder	4,5		
CONS	Metabolismo componentistica	3,0		
ТОТ		29,5	10,0	39,5

Personale FE 2023

	Cognome e nome	Qualifica	Affer.	%
1	DALPIAZ Pietro	P.O.	1	
2	BANDIERA Laura	Ric.	5	10
3	SOLDANI Mattia	Dott.		30
	TOT FTE			0,40

Laura ha "sinergia" con Aidainnova

>TOT FTE 1.9

	Cognome e nome	Qualifica	Affer.	%
1	COTTA RAMUSINO A.	Tecn.		10
2	GIANOLI Alberto	Tecn.		90
3	TOT FTE			1,00

	Cognome e nome	Qualifica	Affer.	%
1	CHIOZZI Stefano	CTer		10
2	GAMBETTI Michele	TecUniv		10
3	MAGNANI Andrea	TecUniv		10
4	Neri Ilaria	TecUniv		20
	TOT FTE			0,50