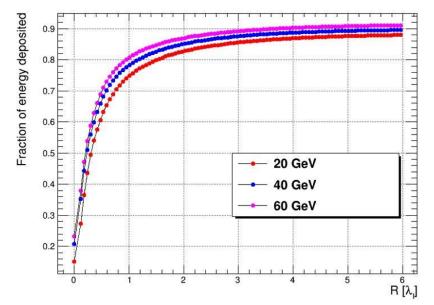

Meeting Muon Collider GEANT4 Calorimeter simulation


Status and plans - 4/7/2022

Latest results

- Containment studies with pions up to 60 GeV
- Layers made of
 - 2 cm of Fe (absorber)
 - 5 mm of Ar (active gap)
- Granularity given by cell of 1x1 cm²
- Geometry optimized for shower containment
 - 3 λ_1 for 90% lateral containment
 - 14 λ₁ for 90% longitudinal containment

Lateral containment

Latest results

Energy resolution

- E_{pion} from 1 to 40 GeV ٠
- Detector Geometry: ٠
 - 50 layers, 1x1 m² ٠ total transverse size, 1x1 cm² cell
- **Digital RO** (single threshold) ٠
 - 1 hit = 1 cell with deposited • energy higher than 30 eV
- Response function $N_{hit} = f(E_{pion})$ ٠
- Reconstruct the energy from ٠ $E_{rec} = f^{-1}(N_{hit})$

Calorimeter response function

م التح N N N

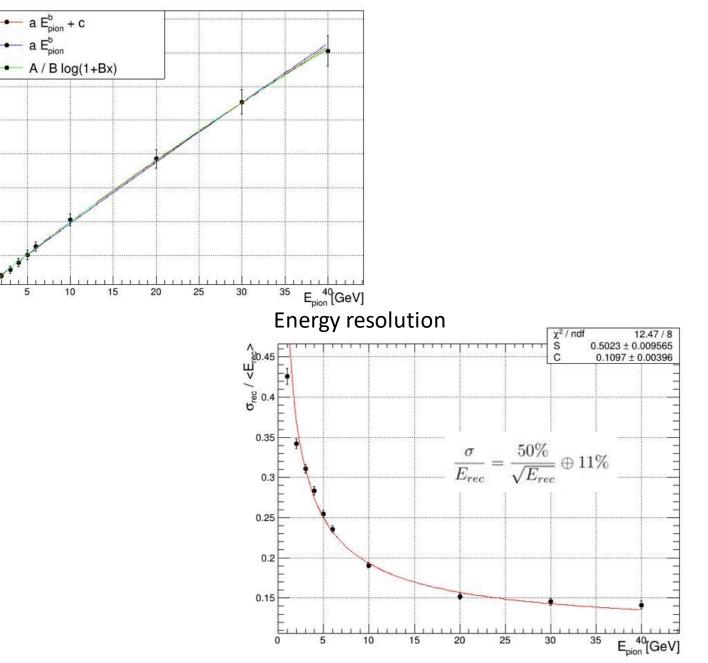
700

600

500

400

300


200

100

0

5

а

Future plans

• Implement the realistic prototype materials and geometry – the one described on PRIN?

Preliminary containment plots with

- 12 layers, 50x50 cm² transver size
 - 4 cm of Fe for the absorber
 - 3 mm of Ar for the gap
- At the energies of the SPS test beam

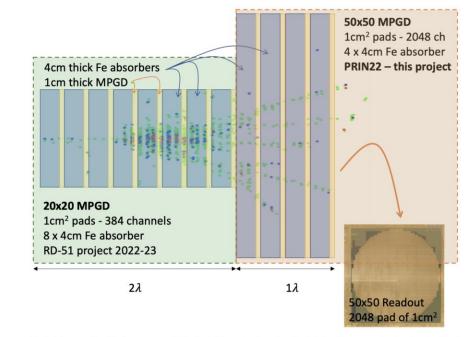
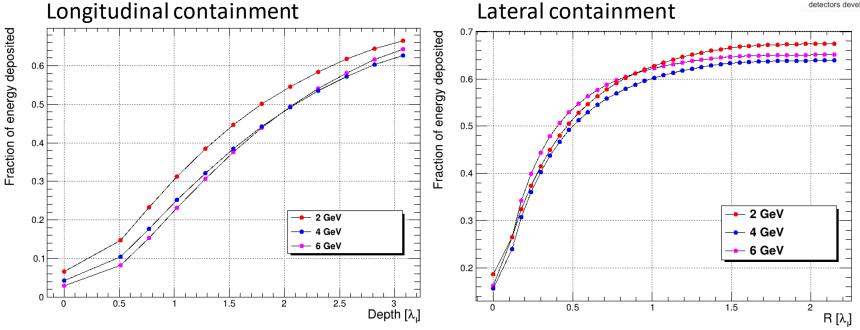



Fig. 2.4: Layout of the HCAL prototype with 3λ depth. The first 2λ is made of the $20x20cm^2$ prototype developed in the RD-51 project in 2022, while the last λ necessary to contain longitudinally (95%) protons and pions of 1-6 GeV is made of $50x50cm^2$ detectors developed in this project.

Future plans

• Implement semi-digital RO

$$N_{hit,i} = \sum_{j} h_{j} \text{ where } \begin{cases} i = 1 & th_{1} \leq E_{dep} < th_{2} \\ i = 2 & th_{2} \leq E_{dep} < th_{3} \\ i = 3 & th_{3} \leq E_{dep} \end{cases}$$

 Need to optimize threshold values th_i and weight c_i

• Using multiple threshold

$$E_{rec} = \sum_{i} c_i \cdot f^{-1}(N_{hit,i})$$

- Implement analogic RO
 - Need to find a different approach for the energy reconstruction
- Implement a dead time for the hit response
- Implement time resolution (detector + RO)
- Add background flux to simulate BIB
 - Flat distribution with rate and energies to be extracted from simulations with MuCol SW