

### FUsion Studles of prOton boron Neutronless reaction in laser-generated plasma

Responsabile Nazionale: G.A.P. Cirrone (LNS) and F. Consoli (ENEA)

Durata proposta: tre anni (2023-2025)

Area di ricerca: Acceleratori e multidisciplinare

INFN sections: Catania, Lecce, LNS, LNGS, Milano, Roma2, Torino, TIFPA, Bologna, Firenze

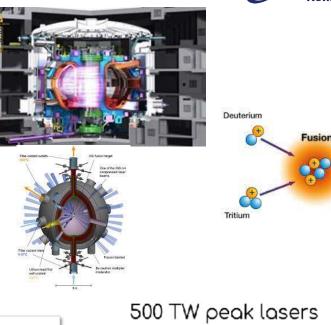
## The background: FUSION energy



Hélium

Energy

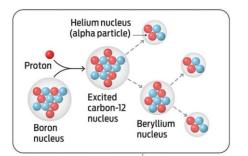
Neutron

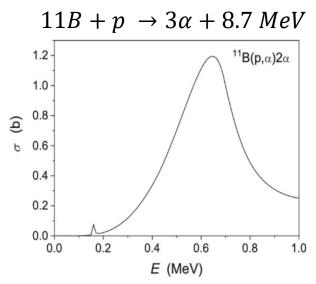

Fusion for energy production:

Magnetical Confinement Fusion

- Inertial Confinement Fusion
- One of the approach is using high-power lasers

National Ignition Facility (NIF) of the Lawrence Livermore National Laboratory (LLNL) in the USA

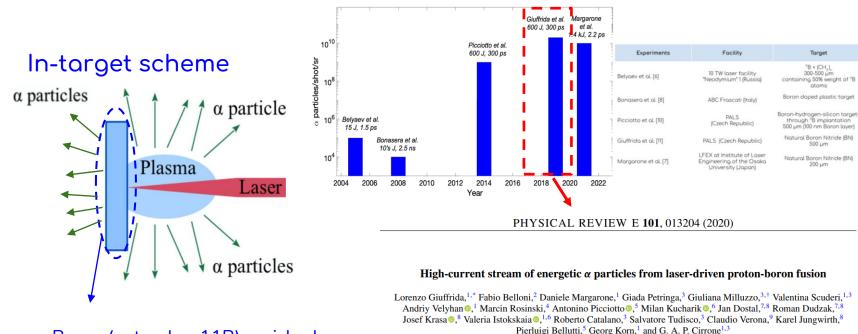



500 TW peak lasers 1.9 MJ total energy from 192 lasers D + T → α (3.5 MeV) + n (14 MeV) 1.3 MJ returned (70%)

# The background: Interest in the p-11B fusion reaction








- Two resonance at about 150 keV and 600 keV in the system center of mass
- It is not favourite in thermal equilibrium conditions
- It is considered as a potential candidate in <u>inertial</u> <u>fusion scheme</u>
- Neutronless fusion reactions
- Reagents more abundant in nature with respect to other fusion reactions of interest, and easier to handle (with respect to tritium, for example)
- Interest for astrophysical processes
- Interest for the realisation of intense *α* sources for applications

ALL THIS HAS BEEN STUDIED IN A CONVENTIONAL FRAMEWORK: AN ACCELERATOR BEAM ON A SOLID TARGET!

## The background: Laser-induced p-11B fusion reaction



- Boron (natural or 11B) enriched target on silicon substrate
- **NB** targets

Experimental progress in  $p^{11}B$  fusion, measured in terms of absolute  $\alpha$ -particle flux (particles/sr) in the "in-target" configuration. All experiments are characterized by using lasers with relatively long pulse duration (ps to ns order) and working in a single-shot modality (one shot every 30 minutes or more).

I N F N

Target

"B + (CH,),

300-500 µm

containing 50% weight of "B

atoms

Boron doped plastic target

through "B implantation

500 µm (100 nm Boron lover)

Natural Boron Nitride (BN

500 µm

Natural Boron Nitride (BN)

200 µm

Sezione di

Roma Tor Vergata

Diagnostics for alpha particle

and protons

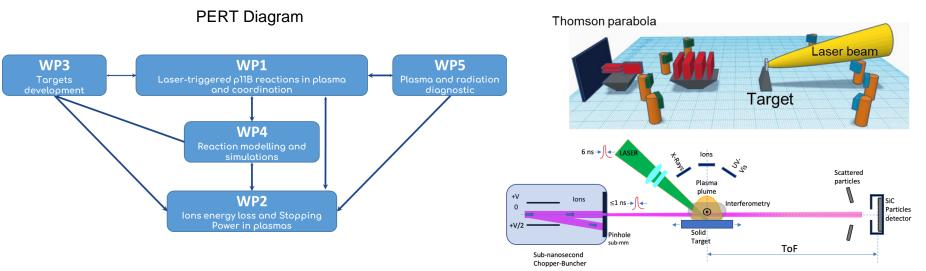
CR-39

CR-39

TOF detectors

Thomson Parabola, TOP

detectors, nuclear-track


Thomson Parabola, TOF

detectors, CR-39

Thomson Parabola, CR-39

detectors PM-355

Ion detectors in TOF configuration (CR39, diamonds, ICs)



Experiments in three laser facilities (using different lasers system: picosecond pulse duration down to never-investigated femtosecond durations and high-repetition rates) will be organized by WP1 using innovative borated targets (WP3) that will be designed, characterized and optimized on the basis of hydrodynamic and Particle in Cell laser-target interaction simulations (WP4). Diagnostic of both plasma parameters (i.e. temperature and density) and the reaction products, optimized to distinguish the alpha particle from the proton background will be developed in WP5. In parallel, the reaction will be also studied using conventional beams interacting with a Boron plasma with the aim of studying and quantifying the stopping power of proton and alpha particles in such a plasma environment (WP2)

The proposal





|                                        |                                                             | WP2 activity                                                               |                                                            |                                                               |
|----------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------|
| Laser system<br>characteristics        | N <b>°1</b><br>High energy, long pulse, low repetition rate | <b>N°2</b><br>Medium energy, long pulse,<br>high repetition rate           | N⁰3<br>Medium energy, short pulse, high<br>repetition rate | <b>N°4</b><br>Low energy, long pulse, high<br>repetition rate |
| Energy per pulse [J]                   | 400 - 700                                                   | 100                                                                        | 10-30                                                      | 2                                                             |
| Pulse duration [ps]                    | 300                                                         | 5000 - 10000                                                               | 0.03                                                       | 6000                                                          |
| Intensity at the<br>target<br>[W cm-2] | 1-3E16                                                      | 1E14-1E16                                                                  | 1E19-1E21                                                  | 1E12-1E13                                                     |
| Repetition rate [Hz]                   | 1 shot per 30 min<br>(8-12 shots per day)                   | 1-10 1-3                                                                   |                                                            | 10                                                            |
| Maximum proton<br>energy [MeV]         | 1-3                                                         | 0.1-0.3                                                                    | 10-30                                                      | 0.5-3                                                         |
| Target                                 | Thick BN; Si:H B doped; Multifiber<br>foam                  | Multifiber foam. Bundles<br>of randomly distributed<br>electrospun fibers. | Thin single and multi layer B-<br>functionalized polymers  | Thick BN, B(oxide) tablets,<br>foam, Al and Ni plates         |
| Torget thickness                       | Thick BN: bulk 2-3mm;- SIHB: 500<br>microns - foom          | 10-100 microns                                                             | Frazione micron - qualche micron                           | Thick-plates 1-3 mm<br>(bulk)                                 |
| Simulation<br>type/code                | MULTI hydrocode and Geant4                                  | MULTI hydrocode and<br>Geant4                                              | EPOCH, SMILEI and Geant4                                   | MULTI hydrocode and<br>Geant4                                 |
| INFN group                             | FBK; Roma2; INFN-MI-INFN Lecce                              | Roma2; INFN Lecce                                                          | INFN LNS; INFN CT; INFN-MI, Roma2                          | FBK; Roma2; INFN-BO; LNGS                                     |

Table 2: laser systems that will be used for the project experimental campaign coupled with the targets (orange lines) that will be used for each laser and simulations (green line). The lasers reported in the first three columns will be used in three different campaigns to study and optimize the p11B reaction in plasma (WP1). The laser reported in the fourth column will be used to generate a borated plasma to study the stopping power of protons and alphas in plasma (WP2). Protons and alphas, in the energy range of 0.5-3 MeV for the WP2 study will be available at the Singletron electrostatic accelerator installed at the Physics department of the Catania University.

## The proposal

| Detector type                                                       | Detector/diagnostic type                                                                                                                                                                                              | Description                                                                                                                                                                                                                                                                                                                                                                                                                           | Advantages                                                                                                                                                                                                                                                                                                                                        | Challenges                                                                                                                                                                            | Section                    |
|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Detector for alpha<br>products and<br>reagents of<br>p+11B reaction | Extremely-high sensitivity<br>spectrometer device for univocal<br>determination of alpha particles<br>and for characterization of<br>reagents (p and B) in the specific<br>energy ranges of p-11B fusion<br>reaction. | Complex device integrating 3 techniques:<br>Thomson Spectrometry + advanced adaptive<br>filtering + track discrimination in CR39. Compact<br>stucture with enhanced shielding to X and RF-<br>microwaves; optimized for remarkable proximity to<br>target (30 cm); enhanced resolution in the ion<br>energy ranges of p-11B fusion reaction. Further<br>implementation of scintillating fiber array detector<br>for real-time readout | Efficient discrimination of alpha particles;<br>detection of low particle fluxes with good<br>resolution; high repetition rate in: 1)<br>accumulation mode with CR39 detectors:<br>solution for low yield alpha discrimination in<br>low-medium energy high-rep-rate lasers; 2)<br>real-time operation with scintillating fiber<br>array detector | detection of high energy (>15<br>MeV) ions                                                                                                                                            | Roma2-MI                   |
| Thomson<br>Spectrometer                                             | mainly the proton spectra at the maximum energy for high energy                                                                                                                                                       | reading system based MCP + phospor reading                                                                                                                                                                                                                                                                                                                                                                                            | distinguishment also at high repetion rate                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                       | LNS                        |
| Ion Collector                                                       | Ion collector for charge<br>measurements                                                                                                                                                                              | System able to measure the total charge produced at high repetition rate condition                                                                                                                                                                                                                                                                                                                                                    | <b>o</b> ,                                                                                                                                                                                                                                                                                                                                        | proton and alpha particle<br>distinguishment                                                                                                                                          | LNS & INFN-MI              |
| Pixellated solid-<br>state detectors                                | Diamond                                                                                                                                                                                                               | Matrix of 2x2 diamond detectors nominally<br>identical in terms of size and thickness, overall<br>area of 1 cm x 1 cm, featuring different calibrated<br>foil filters of different thicknesses                                                                                                                                                                                                                                        | Real-time readout systems to 1) distiguish<br>alpha particles from the protons, 2) to<br>measure ions energy spectra and to 3) row<br>estimate the plasma temperature in high<br>repetition rate experiments                                                                                                                                      | EMP suppression and high repetion rate acquisition                                                                                                                                    | Roma2                      |
| Neutron detection                                                   | EJ-309 liquid scintillators                                                                                                                                                                                           | 100 mm diameter X 51 mm high + fast<br>Hamamatsu R7725 PMT read out                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                   | Calibration and high repetion rate acquisition                                                                                                                                        | LNS with ELI-<br>beamlines |
| Interpherometry                                                     | Time-resolved laser Nomarski<br>interpherometry for plasma<br>density measurements                                                                                                                                    | Part of the same laser generating the plasma will<br>be time-reduced by pockels cells and used to<br>illuminate the plasma tangentially at some specific<br>time instants. A pattern of parallel fringes will be<br>set by a Wollaston prism.                                                                                                                                                                                         | Plasma density spatial profile in specific time<br>instants will be retrieved by fringe deflection.<br>Time instant easily tuned by changing path<br>length                                                                                                                                                                                       | critical density for the used<br>wavelength; diffraction can<br>affect spatial resolution                                                                                             | LNS and <b>Roma2</b>       |
| X-ray<br>spectrometry                                               | X-ray spectrometer                                                                                                                                                                                                    | X-ray Bragg's diffraction spectroscopy by two<br>planar crystals: ADP e KAP. Ranges: 600-740 eV<br>and 1500-1850 eV. Detector: linear CCD; Be-<br>sheet to separate light from soft X-rays.<br>Customisation of a device developed in the<br>PLANETA experiment (CSN5).                                                                                                                                                               | Double X-ray crystal spectra, for description<br>of the X-ray plasma emission and thus<br>estimation of plasma temperature                                                                                                                                                                                                                        | Operation of CCD in high EMP<br>levels, close to the interaction<br>region; extension of energy<br>range, faced by tests with<br>further crystals to cover around<br>200 eV and 1 keV | BO & LNGS                  |

## The objectives



#### FUSION goals are:

- 1. The maximisation of the p<sup>11</sup>B reaction rate in plasma (WP1). This will be done by studying the interaction of laser systems of different characteristics (Table 2) with targets of different materials and configurations that will be developed (WP3) and optimized (WP4) with both Particle in Cell (PIC) and hydrodynamic simulations.
- 2. The development of innovative diagnostic (WP5) able to estimate the p<sup>11</sup>B reaction rate by looking at alphas products or protons, and investigating reaction channels where neutrons are produced. The diagnostic shall also operate in real-time and able to work at laser-shot repetition-rate of at least 1 Hz
- The understanding of the physics laying at the basis of the observed p<sup>11</sup>B reaction rate. This will be done by studying the interaction of protons and alphas by conventional accelerators in a Borated expanding plasma (WP2) and modeling them with PIC and Monte Carlo simulations (WP4)

## Methodology

|                                                                                                                               |             |           | irst year |        |          |          |        | nd year |        |                 |          | Third year |             |      |
|-------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|-----------|--------|----------|----------|--------|---------|--------|-----------------|----------|------------|-------------|------|
|                                                                                                                               | 1 2 3       | 456       | 67        | 8 10   | 11 12 13 | 14 15 16 | 17 18  | 19 20   | 21 22  | 23 24 <b>25</b> | 26 27 28 | 29 30 31   | 32 33 34 35 | 5 36 |
| /P1: Laser-triggered p11B reactions in plasma, project coordination ar                                                        | d discomin  | ation     |           |        |          |          |        |         |        |                 |          |            |             |      |
| D1.1: report on the measurement at the first laser facility                                                                   | ia aissemin | ation     |           |        | D1.1     |          |        |         |        |                 |          |            |             | -    |
| D1.2: report on the measurement at the second laser facility                                                                  |             |           |           |        | 01.1     |          |        |         |        | D1.2            |          |            |             |      |
|                                                                                                                               |             |           |           |        |          |          |        |         |        | D1.2            |          |            |             | DIO  |
| D1.3: report on the measurement at the third laser facility                                                                   | D1 1        |           |           |        |          |          |        |         |        |                 |          |            |             | D1.3 |
| D1.4: kick-off meeting and definition of the Managment Committee                                                              | D1.4        |           |           |        |          |          |        |         |        |                 |          |            |             |      |
| D1.5: web page preparation and definition of the collaborative instruments                                                    |             | D1.5      |           |        |          |          |        |         |        |                 |          |            |             |      |
| M1.1. trimestral meeting for the project status verification and assesment                                                    | M1          | .1.a M1.1 | l.b       | M1.1.c | M1.1.d   | M1.1.e   | M1.1.f |         | M1.1.g | M1.1.h          | M1.1.i   | M1.1.I     | M1.1.m      |      |
| WP2: Ions energy loss and Stopping Power in Plasmas                                                                           |             |           |           |        |          |          |        |         |        |                 |          |            |             |      |
| D2.1: technical report on ion bunching system                                                                                 |             |           |           |        | D2.1     |          |        |         |        |                 |          |            |             |      |
| D2.2: Procurement of the ion bunching system                                                                                  |             |           |           |        |          |          | D2.2   |         |        |                 |          |            |             |      |
| D2.3: activity report and bunching installation and first target irradiation                                                  |             |           |           |        |          |          |        |         |        | D2.3            |          |            |             |      |
| D2.4: activity report on the experimental campaigns and results                                                               |             |           |           |        |          |          |        |         |        |                 |          |            |             | D2.4 |
| WP3: Targets development                                                                                                      |             |           |           |        |          |          |        |         |        |                 |          |            |             |      |
| D3.1 Report on the optimization of nanostructured, thick and foam target for                                                  |             |           |           | D3.1   |          |          |        |         |        |                 |          |            |             |      |
| the experiment in the first laser facility                                                                                    |             |           |           | 03.1   |          |          |        |         |        |                 |          |            |             |      |
| D3.2 Report on the optimization of nanostructured and foam target for the<br>experiment in the second laser facility          |             |           |           |        |          |          | C      | 03.2    |        |                 |          |            |             |      |
| D3.3 Report on the optimization of flat thin film and C:H NPs/B target for the experiment in the third laser facility         |             |           |           |        |          |          |        |         |        |                 |          | D3.3       |             |      |
| D3.4 Report on the optimization of thick target for the experiment in the<br>fourth laser facility                            |             |           |           |        |          |          |        |         |        | D3.4            |          |            |             |      |
| WP4: Reaction modeling and simulations                                                                                        |             |           |           |        |          |          |        |         |        |                 |          |            |             |      |
| D4.1 Report on target parameters and their optimization throught                                                              |             |           |           |        |          |          |        |         |        |                 |          |            |             |      |
| hydrodynamic code for the experiment in the first laser facility                                                              |             |           | D4.1      |        |          |          |        |         |        |                 |          |            |             |      |
| D4.2 Report on target parameters and their optimization throught                                                              |             |           |           |        |          | D4.2     |        |         |        |                 |          |            |             |      |
| hydrodynamic code for the experiment in the second laser facility                                                             |             |           |           |        |          | 04.2     |        |         |        |                 |          |            |             |      |
| D4.3 Report on target parameters optimization throught PIC code for the<br>experiment in the third laser facility             |             |           |           |        |          |          |        |         |        |                 | D4.3     |            |             |      |
| D4.4 Report on target parameters optimization throught hydrodynamic code                                                      |             |           |           |        |          |          |        |         |        |                 |          |            |             |      |
| for the experiment in the fourth laser facility                                                                               |             |           |           |        |          |          |        |         | D4.4   |                 |          |            |             |      |
| D4.5 Report on the comparison between the experimental results and PIC,                                                       |             |           |           |        |          |          |        |         |        |                 |          |            |             | D4.5 |
| Monte Carlo and hydrodinamic simulations                                                                                      |             |           |           |        |          |          |        |         |        |                 |          |            |             | 51.0 |
| WP5: Plasma and radiation diagnostic                                                                                          |             |           |           |        |          |          |        |         |        |                 |          |            |             |      |
| D5.1 Report on ion collector and scintillator detector realization and its<br>releated preliminary results on electronic test |             |           |           | D5.1   |          |          |        |         |        |                 |          |            |             |      |
| D5.2 Report on high sensitivity detector for alpha products and p, 11B                                                        |             |           |           |        |          |          |        |         |        |                 |          |            |             |      |
| characterization, its related preliminary results on electronic tests                                                         |             |           |           |        |          |          | C      | 05.2    |        |                 |          |            |             |      |
| D5.3 Report on "Full-Range" thompson parabola realization and its releated<br>preliminary results on electronic test          |             |           |           |        |          |          |        |         | D5.3   |                 |          |            |             |      |
| D5.4 Report on interferometry and x-ray spectroscopy system realization                                                       |             |           |           |        |          |          |        |         |        |                 | D5.4     |            |             |      |

GANTT of the FUSION project

Sezione di Roma Tor Vergata

## **INFN Sections**



FUSION participants: ➤ 10 Sections INFN

> > 47 participants

➤ ~ 15 FTE

INFN sections, with the corresponding local responsibles, their belonging institution and the activity WP

| INFN Unit | Local Responsible         | Institution                             | WPs activity            |
|-----------|---------------------------|-----------------------------------------|-------------------------|
| Bologna   | Dr Fabrizio Odorici       | INFN of Bologna (I)                     | WP2, WP5                |
| Catania   | Prof Antonio Trifiro'     | University of Messina (I)               | WP2, WP3, WP5           |
| Firenze   | Prof Gabriele<br>Pasquali | University of Florence (I)              | WP2, WP5                |
| Lecce     | Prof Rosaria Rinaldi      | University of Salento (I)               | WP3                     |
| LNGS      | Prof Libero Palladino     | University of l'Aquila (I)              | WP2, WP5                |
| LNS       | Dr Giacomo Cuttone        | INFN-LNS, Catania (I)                   | WP1, WP2, WP3, WP4, WP5 |
| Milano    | Dr Davide Bortot          | Milan Polytechnic, (I)                  | WP3, WP4, WP5           |
| Roma 2    | Prof Claudio Verona       | University of 'Tor Vergata', Rome (I)   | WP1, WP2, WP3, WP4, WP5 |
| TIFPA     | Dr Antonino Picciotto     | Fondazione Bruno Kessler, Trento<br>(I) | WP1, WP3                |
| Torino    | Dr Raffaella Testoni      | Turin Polytechnic (I)                   | WP4                     |



| Name                   | Institution | FTE |
|------------------------|-------------|-----|
| Claudio Verona         | UniTV       | 0.3 |
| Gianluca Verona Rinati | UniTV       | 0.3 |
| Marco Marinelli        | UniTV       | 0.3 |
| Silvia Palomba         | UniTV       | 0.4 |
| Fabrizio Consoli       | ENEA        | 0.5 |
| Mattia Cipriani        | ENEA        | 0.4 |
| Massimiliano Scisciò   | ENEA        | 0.3 |
| Massimo Alonzo         | ENEA        | 0.3 |
| тот                    | FTE         | 2.8 |

#### INFN Sezione di Roma Tor Vergata

## INFN - Roma2

**UniTV** has extensive experience in fabrication and characterization of diamond-based devices for different applications and in laser-generated plasma experiment. In this project, it will contribute to the development of novel diamond diagnostics for p-11B induced by laser (WP5) and to support the experimental campaigns (WP1)

**ENEA** (FSN-PLAS-PAX) group will contribute to all the WPs and co-coordinate the Units. It has wide expertise in: nuclear fusion (inertial confinement & magnetic confinement), laser-matter interactions, laser-triggered p-<sup>11</sup>B reactions and related diagnostics.





FUSION costs are break down into the following categories: Consumables, Instrumentation, Travels etc.. The budget for 2023 is reported in Table for INFN-Roma2.

| Cost Category | Item                                                                                                                                                                               | l anno      |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|               | #20 Diamond substrates (213 €)                                                                                                                                                     | € 4,500.00  |
| Consumabile   | Mechanical parts (Al plates to be modelled by CNC) and vacuum components (2 x KF50 flange with 4 BNC coaxial feedthrough, grounded shielded) for detector housing to EMP shielding | € 3,000.00  |
|               | Target foam                                                                                                                                                                        | € 4,000.00  |
|               | MHV vacuum feedthrough (x4)                                                                                                                                                        | € 1,600.00  |
| Attrezzature  | Fronte-end electronics (picoscope 1 Ghz)                                                                                                                                           | € 18,000.00 |
|               | 2 Wide Band Preamplifier                                                                                                                                                           | € 3,000.00  |
|               | 4 Bias-Tee                                                                                                                                                                         | € 2,500.00  |
|               | HV power supply (x2) +-10 kV                                                                                                                                                       | € 3,500.00  |
| Impianti      | High Sensitivity alpha-particle detector: Mechanical components for Detector of alpha products and p-11B reagents (incl. parts                                                     |             |
| Inplanti      | realization, adjustment and assembly)                                                                                                                                              | € 12,100.00 |
| Viaggi        | Detector characterizations under protons and alpha at CEDAD                                                                                                                        |             |
|               | (University of Salento)                                                                                                                                                            | € 1,500.00  |
|               | Meeting                                                                                                                                                                            | € 1,500.00  |
|               | TOTAL                                                                                                                                                                              | € 55,200.00 |