

A nTD silicon based experimental apparatus for measurement of (n,cp) cross sections

Concept

- **n_TOF** very well suited for performing the needed measurement thanks to:
- Wide neutron energy interval
- High instantaneous flux

2

Concept

- **n_TOF** very well suited for performing the needed measurement thanks to:
- Wide neutron energy interval
- High instantaneous flux

(e) 10^{6} 10^{6} 10^{6} EAR1 (2011) EAR2 (2014) 10^{4} 10^{5} 10^{6} 10^{7} 10^{8} 10^{9} Neutron energy (eV)

Development of **versatile experimental apparatuses** to measure (n,cp) cross section **between the threshold and tens of MeV**.

Detector concept – Silicon

Possibility to use an apparatus based on nTD annular silicon detector to overcome the limits of telescopes:

Particle discrimination based on Pulse Shape ٠ (backside mode to enhance effects)

Silicon strip detector

Low energy threshold (2-3 MeV) •

neutrons

Possibility to measure angular distribution

Additional silicon

Simone Amaducci – LNS Meeting on (n,cp) – 19 July 2022

Additional sil. for

1 annular 300um @ CERN

1 nTD annular 300um @ LNS

1 square strip 5x5 cm² 400um

large angles?

ordered (october?)

target

neutrons

Experimental technique

The pulse shape technique is a **well established** technique to perform particle identification **on the basis of the charge collection time** in a silicon detector with Vbias close to the depletion voltage and injecting from the N-side.

Avoiding the usual telescope approach we should be able to **lower the threshold**, in particular in the case of alpha particles.

M. Assié et al. Eur. Phys. J. A (2015) 51: 11 DOI 10.1140/epja/i2015-15011-6

Preliminary test

Fast test carried out in EAR1 at the very end of 2021 campaign (total beam time <6h):

- Annular detector not nTD + in air
- Reading directly the signal from the preamplifier
- 8 channels connected (1 cable not working)
- Vbias = Vdepletion

Sample configuration:

- 1) Thin Al
- 2) ⁶LiF (1.6um) on mylar (1.5um)
- 3) Al + Polyethylene (1mm) + ⁶LiF

New pulse shape routine

Pulse analysis

New routine build especially for this experimental apparatus, with **Python** and the possibility to use **machine learning** (CNN) to improve signal discrimination (and more).

Time difference between the gflash (identified by the new routine) and PKUP.

Spectroscopic information for neutron energy < 1 keV.

Only tritons (3cm of air) Useful to calibrate

Energy Calibration

Spectra calibrated using the peak of the **tritons produced via** ⁶Li(n,t)⁴He for En<1keV (produced with 2.73 Mev but degraded in the dead layers).

Simone Amaducci – LNS Meeting on (n,cp) – 19 July 2022

Q

Energy Calibration

Calibration confirmed by the good agreement between experimental data and simulations for the **punch through of protons for neutron energy [1,30] MeV**.

2D spectra of the deposited energy vs neutron energy for the 7 channels for the sample3 (AI + Polyethylene (1mm) + LiF).

Good agreement between the experimental and simulated 2D spectra of Deposited Energy vs Neutron Energy, despite of the not accurate calibration.

12

Starting from 10 MeV we start to observe a second structure, corresponding to the alpha (present detector not nTD, we expect a better separation with nTD).

13

The agreement between Exp and MC for the **fraction of signals due to alpha** is good (despite a very low statistic) for both polyethylene and aluminum target.

14

Experimental configuration - EAR1

The two apparatuses will be used in parallel in both experimental areas.

15

Simone Amaducci – LNS Meeting on (n,cp) – 19 July 2022

Proton request (approved by INTC)

EAR1:

 Al_2O_3 and polyethylene 0.3×10^{18} protons on target to further study the pulse shape technique and to optimize the detectors

¹²C sample (300um) 1x10¹⁸ protons on target full physic measurement of the ¹²C(n,p) cross section, that will serve as validation for the technique and the experimental apparatus comparing with the results of the measurement already performed at n_TOF **Empty** 0.2x10¹⁸ protons on target to measure the background during the ¹²C measurement

Total protons EAR1: 1.5x10¹⁸

EAR2:

 Al_2O_3 , polyethylene and metallic Al 0.5×10^{18} protons on target study the response of the detectors in EAR2 in particular the possibility to measure ${}^{16}O(n,\alpha)$ reaction

Total protons EAR2: 0.5x10¹⁸

Yield estimation

Expected number of proton for **300 um** ¹²**C sample** with a threshold of 1 MeV for **10**¹⁸ **protons on target**, simulated with Binary Cascade (total 2200).

Average statistical uncertainty 10%

18

Plan for this year

- Develop the mechanic support for the detector and the electronic board
- Test the not-nTD annular silicon in EAR2
- Paratistic test in the second half of November during the DDX detector test behind the TAC with the nTD silicon in vacuum
- Keep working on the analysis routines and Monte Carlo simulations

New vacuum chamber delivered last Friday

Motivation and applications

Missing (or discrepant) experimental data set for many (n,p) and (n,α) reactions of interest for modeling the structural material in fusion reactors (Fe, V, W).

Nuclide	Abund.	Reaction	Residual	Priority	Comment
Ne-20	90%	(n,p)	F-20	1	No data, judged measurable
Ne-22	9.2%	(n,α)	0-19	1	No data, judged measurable
Ne-22	9.2%	(n,d)	F-21	1	No data, judged measurable
S-34	4.2%	(n,d)	P-33	1	No data, judged measurable
S-34	4.2%	(n,α)	Si-31	1	Discrepant data
Cl-37	24%	(n,p)	S-37	1	Discrepant data
Ni58	68%	(n,t)	Co-56	1, A	Discrepant data
Zn-67	4.1%	(n,p)	Cu-67	1, B	Discrepant data
Ga-71	40%	(n,t)	Zn-69	1	No data, judged measurable
Kr-78	0.3%	(n,α)	Se-75	1	No data, judged measurable
Zr-90	51%	(n,p)	Y-90g	1, B	Discrepant data
Mo-92	15%	(n,d)	Nb-91	1	Discrepant data
Mo-94	9.2%	(n,p)	Nb-94	1	Discrepant data
Xe-132	27%	(n,α)	Te-129	1	No data, judged measurable
Re-187	63%	(n,t)	W-185	1	No data, judged measurable
Pt-195	34%	(n,d)	Ir-194m	1	No data, judged measurable
Pb-208	52%	(n,t)	Tl-206	1	No data, judged measurable

Nuclide	Abund.	Reaction	Comment
Ta-181	100%	(n,α)(n,p)	Lack of data below 14 MeV
W-182	26%	(n,α)(n,p)	Lack of data / No data for (n,α)
W-183	14%	(n,α)(n,p)	Lack of data / No data for (n,α)
W-184	31%	(n,α)(n,p)	Lack of data below 14 MeV
W-186	28%	(n,α)(n,p)	Lack of data below 14 MeV

(n,p) and (n,α) cause gas production, with bubble formations and embrittlement.

High energy cross section needed to correct the IFMIF data for neutrons > 14 MeV.

Motivation and applications

Missing (or discrepant) experimental data set for many (n,p) and (n,α) reactions of interest for modeling the structural material in fusion reactors (Fe, V, W).

(n,p) and (n, α) cause gas production, with bubble formations and embrittlement. High energy cross section needed to correct the IFMIF data for neutrons > 14 MeV.

Simone Amaducci – LNS Meeting on (n,cp) – 19 July 2022

Present data and libraries

Inconsistent data for many fundamental reactions, in particular involving **beryllium and tungsten** which are largely present in the reactor walls (beryllium) and in the divertor (tungsten).

Additional reactions of interest for astrophysics (e.g. ${}^{41}Ca(n,p)$, ${}^{16}O(n,\alpha)$, ...). Beryllium largely used in neutrino sources for many applications (mainly as a target).

Simone Amaducci – LNS Meeting on (n,cp) – 19 July 2022