DE LA RECHERCHE À L'INDUSTRIE

Review of (n,cp) evaluations, data, and (possible) needs

Emmeric DUPONT CEA Irfu/DPhN

Meeting on (n,cp) reactions at n_TOF, Catania, 20 July 2022

www.cea.fr

- (1) (n,cp) data in evaluated libraries
- (n,cp) data for activation
- (n,cp) data in the HPRL
- (n,cp) data for gas production
- 5 Conclusions

Evaluations

- Main General Purpose files (ENDF, JEFF, JENDL) initially developed for fission reactors... with (partial) extension for fusion (up to 15 MeV) and later on for ADS (up to 200 MeV)
- Many Special Purpose files developed for other applications, e.g., FENDL for fusion, IRDFF for dosimetry, EAF for activation, JENDL/HE up to 3 GeV, etc...

See for example JENDL Special Purpose files at https://wwwndc.jaea.go.jp/jendl/jendl.html

Since ~2007, TENDL aims at providing a true General Purpose file with the initial motto *"First completeness, then quality"* (TENDL is now competing with other main libraries... depending on the application...)

Characteristics of (n,cp) cross sections (wrt usual low-energy scattering/capture/fission xs)

- Many channels above a few MeV
- ➢ No data with challenging target accuracy, such as U-235 fission
- Relatively easy to model, plenty of data available thanks to TALYS

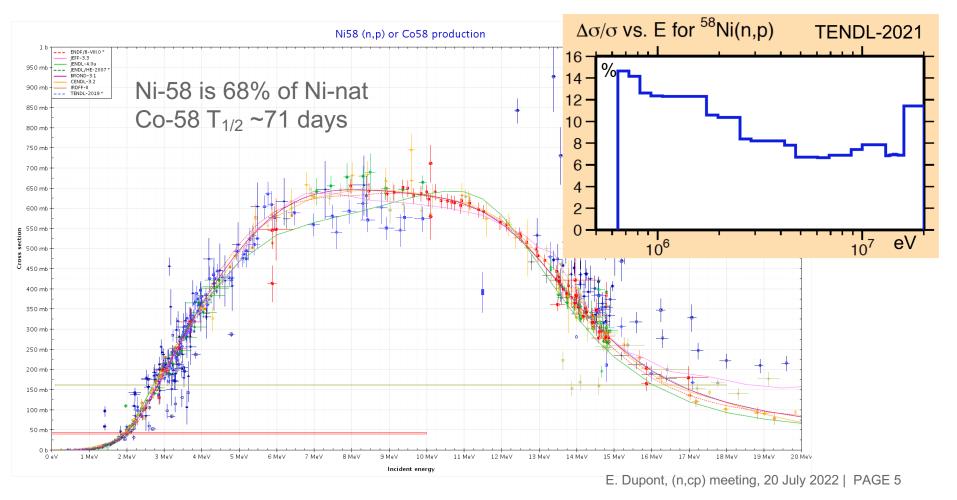
Nevertheless...

... model uncertainties are large,

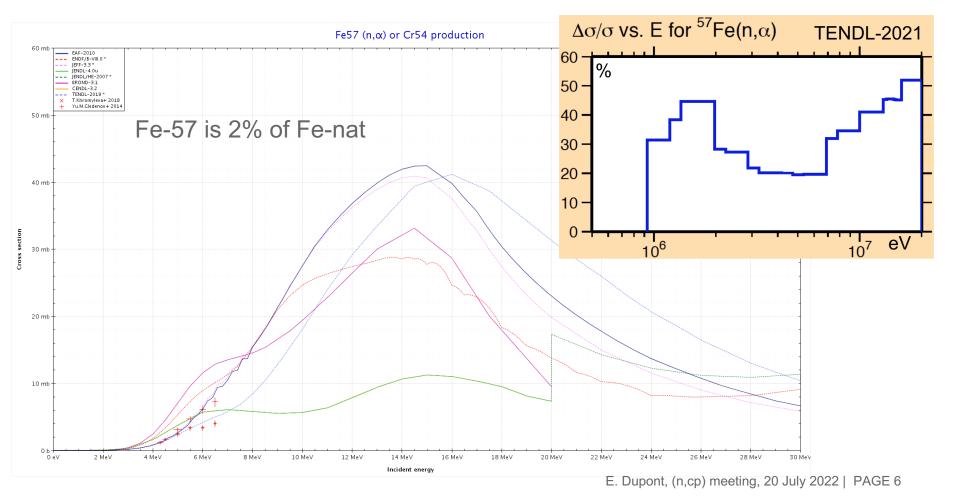
- ≻ ~50% for (n,p) on average
- $> \sim 100\%$ for (n, α) on average

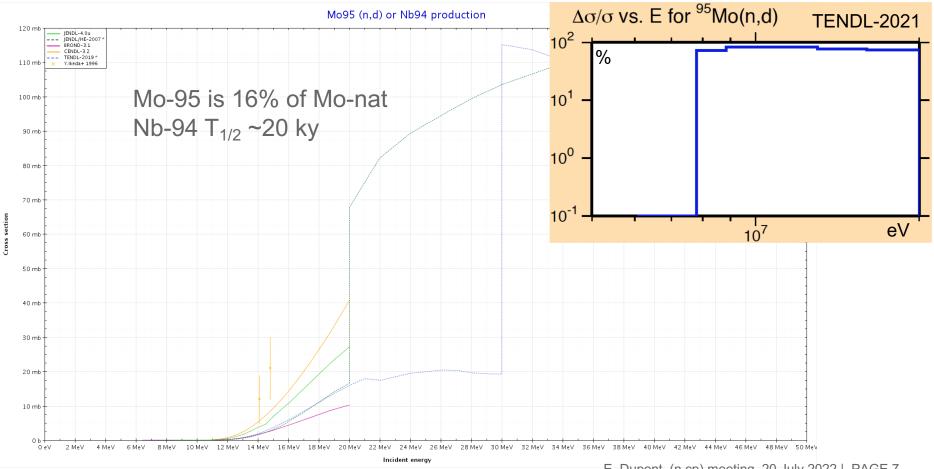
cf. Table I in <u>NDS 155 (2019) 1</u>

TABLE I. Global cross section uncertainties per reaction channel from default TALYS calculations; average deviation and parameters for energy-dependent variation, see Eq. (22). The relative deviations s_{ave} , s_{min} , a and c are given in %, b is a dimensionless factor, while the energies d and E_c are given in MeV.


Reaction	s_{ave}	s_{min}	a	b	с	d	E_{c}
(n,tot)	6	8	60	0.3	0	12	6
(n,el)	10	12	60	0.3	0	12	6
(n,non)	10	12	60	0.3	0	12	6
(n,inl)	50	12	100	1	100	12	5
(n,γ)	62	40	60	0.3	0	20	20
(n,2n)	25	24	100	1	100	15	6
(n,3n)	150	40	100	1	100	12	6
(n,f)	110	50	100	1	100	12	6
(n,p)	53	34	100	1	100	12	6
(n,α)	120	45	100	1	100	12	6

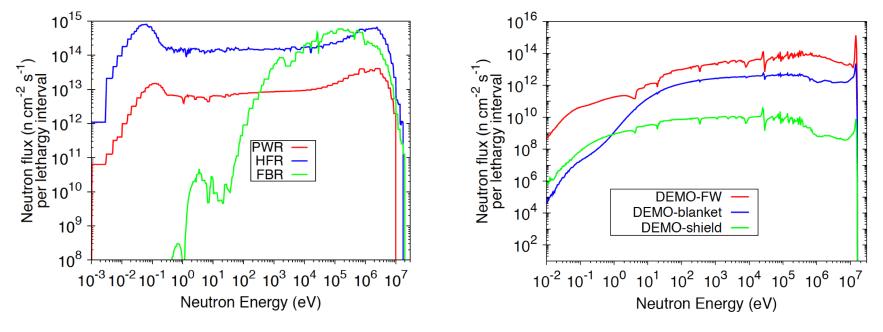
- Infu


Example of well-known activation (and gas production) xs



Example of not so well-known gas production xs

Example of unknown activation xs

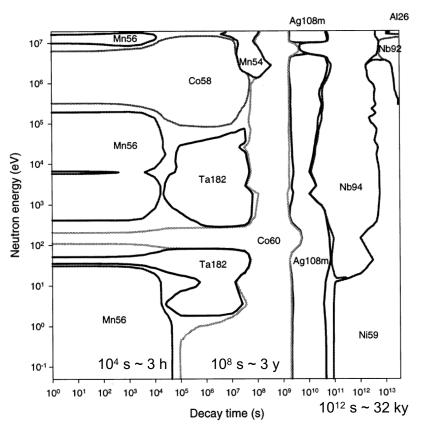

E. Dupont, (n,cp) meeting, 20 July 2022 | PAGE 7

Applications

- ➢ Fast fission breeder reactors (FBR) up to ~10 MeV
- Fusion reactors (DEMO) up to 15 MeV (+ IFMIF/DONES up to 60 MeV)
- > FBR and DEMO have similar neutron flux in the keV-MeV range
- > They essentially share the same structural materials

(n,cp) data for activation

Activation



- Some general information
 - A wide range of materials need to be considered, including impurities
 - Low xs matter as the neutron fluence can be extremely large
 - From the application viewpoint the focus is on the production xs of the residual, whatever the reaction, (n,np) or (n,d) for example
 - (n,t) reaction is the exception as it is important for tritium production
- > The European Activation System (EASY) is widely used, it includes
 - an inventory code (FISPACT)
 - and various libraries (EAF, TENDL...)
- The European Activation File (EAF) was the reference until recently (EAF-2010 is the last version, efforts are now directed towards TENDL)

Importance diagrams reveals the main production routes of the major activation products for any irradiated element [Forrest, <u>Fusion Engineering and Design 43 (1998) 209</u>]

Example of an importance diagram for stainless steel SS316 irradiated for 1 year in a flux of 10¹² n/cm²/s

Production of Co-58 (T_{1/2} ~71 days)

- Ni-58(n,p)Co-58 (major pathway)
- Co-59(n,2n)Co-58 (minor pathway)

Production of Nb-94 (T_{1/2} ~20 ky)

- Mo-95(n,d)Nb-94 (major pathway)*
- Mo-94(n,p)Nb-94 (major pathway)*
 *depending on the neutron energy

- Activation xs are measured using... the activation technique! J∩TOF But stable residuals appear in multistep production routes! Example for the production of Na-22 (T_{1/2} ~3y) from silicium, ²⁸Si(n,nα) → ²⁴Mg(n,np) → ²³Na(n,2n) → ²²Na (stable isotopes are in bold)
- EAF-2003 contains more than 12 000 cross sections up to 20 MeV, but only 1340 reactions are required to describe the production of all dominant activation products [Gilbert and Forrest, UKAEA FUS 509, 2004]
- R. Forrest reviewed the priority needs for EAF in <u>Fusion Engineering and</u> <u>Design 81 (2006) 2143</u>
- This review highlights 61 high-priority (n,cp) reaction cross sections on stable targets (on a total of more than 400 priority needs) – most of them difficult/impossible to measure using the activation technique

Playa.

Top-priority (n,cp) xs measurements (rows 1-15) requested in Table 2,3,4 of <u>Fusion Engineering and Design 81 (2006) 2143</u>

Nuclide	Abund.	Reaction	Residual	Half-life	Intensity	Comment
Ne-20	90%	<u>(n,d)</u>	F-19	stable	N/A	No data, difficult to measure
Ne-20	90%	<u>(n,p)</u>	F-20	11 s	lγ ~100%	No data, judged measurable
Ne-22	9.2%	<u>(n,α)</u>	O-19	27 s	Iγ ~ 96%	No data, judged measurable
Ne-22	9.2%	<u>(n,d)</u>	F-21	4 s	Iγ ~99%	No data, judged measurable
Mg-24	79%	<u>(n,d)</u>	Na-23	stable	N/A	No data, difficult to measure
S-34	4.2%	<u>(n,d)</u>	P-33	25 d	?	No data, judged measurable
S-34	4.2%	<u>(n,α)</u>	Si-31	2.6 h	Iγ ~0%	Discrepant data
Cl-37	24%	<u>(n,p)</u>	S-37	5 m	Iγ ~94%	Discrepant data
Ca-40	97%	(n,2p)	Ar-39	269 y	?	No data, difficult to measure
Ti-46	8.2%	<u>(n,α)</u>	Ca-43	stable	N/A	No data, difficult to measure
Ti-47	7.4%	<u>(n,α)</u>	Ca-44	stable	N/A	No data, difficult to measure
Ti-47	7.4%	<u>(n,t)</u>	Sc-45	stable	N/A	No data, difficult to measure
Ni58	68%	<u>(n,t)</u>	Co-56	77 d	lγ ~100%	Discrepant data
Zn-64	49%	(n,d)	Cu-63	stable	N/A	No data, difficult to measure
Zn-67	4.1%	(n,p)	Cu-67	62 h	Iγ ~49%	Discrepant data

Top-priority (n,cp) xs measurements (rows 16-30) requested in Table 2,3,4 of <u>Fusion Engineering and Design 81 (2006) 2143</u>

Nuclide	Abund.	Reaction	Residual	Half-life	Intensity	Comment
Ga-71	40%	<u>(n,t)</u>	Zn-69	stable	N/A	No data, judged measurable
As-75	100%	<u>(n,t)</u>	Ge-73	stable	N/A	No data, difficult to measure
Br-79	51%	<u>(n,t)</u>	Se-77	stable	N/A	No data, difficult to measure
Kr-78	0.3%	<u>(n,α)</u>	Se-75	120 d	Iγ ~59%	No data, judged measurable
Kr-82	12%	<u>(n,α)</u>	Se-79	295 ky	?	No data, difficult to measure
Rb-85	72%	<u>(n,t)</u>	Kr-83	stable	N/A	No data, difficult to measure
Sr-84	0.6%	<u>(n,α)</u>	Kr-81	229 ky	Iγ ~0%	No data, difficult to measure
Sr-88	83%	(n,d)	Rb-87	stable	N/A	No data, difficult to measure
Zr-90	51%	(n,p)	Y-90g	2.7 d	Iγ ~0%	Discrepant data
Zr-91	11%	<u>(n,α)</u>	Sr-88	stable	N/A	No data, difficult to measure
Zr-91	11%	<u>(n,t)</u>	Y-89	stable	N/A	No data, difficult to measure
Mo-92	15%	<u>(n,d)</u>	Nb-91	680 y	Iγ ~0%	Discrepant data
Mo-94	9.2%	(n,p)	Nb-94	20 ky	Iγ ~100%	Discrepant data
Mo-95	16%	(n,d)	Nb-94	20 ky	Iγ ~100%	No data, difficult to measure
Ru-96	5.5%	(n,α)	Mo-93	4 ky	?	No data, difficult to measure

Top-priority (n,cp) xs measurements (rows 31-45) requested in Table 2,3,4 of <u>Fusion Engineering and Design 81 (2006) 2143</u>

Nuclide	Abund.	Reaction	Residual	Half-life	Intensity	Comment
Cd-110	12%	(n,α)	Pd-107	6.5 My	?	No data, difficult to measure
In-113	4.3%	(n,p)	Cd-113m	14 y	Iγ ~0%	No data, difficult to measure
Sn-116	14%	(n,α)	Cd-113m	14 y	Iγ ~0%	No data, difficult to measure
Sb-121	57%	(n,p)	Sn-121m	44 y	Iγ ~2%	No data, difficult to measure
Te-124	4.7%	(n,α)	Sn-121m	44 y	Iγ ~2%	No data, difficult to measure
Te-126	19%	(n,d)	Sb-125	2.8 y	Iγ ~30%	No data, difficult to measure
I-127	100%	<u>(n,t)</u>	Te-125	stable	N/A	No data, difficult to measure
Xe-129	26%	(n,p)	I-129	16 My	Iγ ~8%	No data, difficult to measure
Xe-132	27%	(n,α)	Te-129	70 m	lγ ~16%	No data, judged measurable
La-138	0.1%	(n,α)	Cs-135	2.3 My	?	No data, difficult to measure
La-139	99.9%	(n,h)	Cs-137	30 y	Iγ ~85%	No data, difficult to measure
Ce-136	0.2%	(n,α)	Ba-133	10 y	Iγ ~62%	No data, difficult to measure
Ce-140	88%	<u>(n,t)</u>	La-138	stable	N/A	No data, difficult to measure
Eu-151	48%	(n,p)	Sm-151	90 y	Iγ ~ 0%	No data, difficult to measure
Gd-155	15%	(n,p)	Eu-155	4.7 y	Iγ ~31%	No data, difficult to measure

Top-priority (n,cp) xs measurements (rows 45-61) requested in Table 2,3,4 of <u>Fusion Engineering and Design 81 (2006) 2143</u>

Nuclide	Abund.	Reaction	Residual	Half-life	Intensity	Comment
Er-166	33%	(n,p)	Ho-166m	1.2 ky	Iγ ~73%	No data, difficult to measure
Er-167	23%	<u>(n,t)</u>	Ho-165	stable	N/A	No data, difficult to measure
Tm-169	100%	<u>(n,t)</u>	Er-167	stable	N/A	No data, difficult to measure
Yb-171	14%	(n,p)	Tm-171	1.9 y	Iγ ~0%	No data, difficult to measure
Yb-171	14%	<u>(n,t)</u>	Tm-169	stable	N/A	No data, difficult to measure
Lu-175	97%	<u>(n,t)</u>	Yb-173	stable	N/A	No data, difficult to measure
Hf-176	5.3%	(n,p)	Lu-176	stable	N/A	No data, difficult to measure
W-184	31%	(n,h)	Hf-182	8.9 My	Ιγ ~80%	No data, difficult to measure
Re-187	63%	<u>(n,t)</u>	W-185	75 d	Iγ ~0%	No data, judged measurable
Os-186	1.6%	(n,p)	Re-186m	200 ky	Ιγ ~18%	No data, difficult to measure
Pt-195	34%	(n,d)	Ir-194m	171 d	Iγ ~8%	No data, judged measurable
Pt-196	25%	(n,h)	Os-194	6 y	Iγ ~5%	No data, difficult to measure
Au-197	100%	<u>(n,t)</u>	Pt-195	stable	N/A	No data, difficult to measure
Hg-196	0.1%	(n,α)	Pt-193	50 y	?	No data, difficult to measure
Pb-204	1.4%	(n,p)	TI-204	3.8 y	?	No data, difficult to measure
Pb-208	52%	<u>(n,t)</u>	TI-206	4 m	Iγ ~ 0%	No data, judged measurable

(n,cp) data in the HPRL

HPRL

HPRL request for NaK used for cooling materials under irradiation at IFMIF/DONES (<u>https://www.oecd-nea.org/dbdata/hprl/hprlview.pl?ID=466</u>)

- K-39(n,p)Ar-39 cross section
 - Ar-39 (T_{1/2} ~269 years) is the dominant contribution to the long-lived radioactive inventories in NaK
 - Gas production (Ar)
- ➢ K-39(n,np)Ar-38 cross section
 - Gas production (Ar)
- Request for xs measurements at 14 MeV with an accuracy of 10%

HPRL request for fast chloride molten salt reactors (<u>https://www.oecd-nea.org/dbdata/hprl/hprlview.pl?ID=540</u>)

- CI-35(n,p) cross section
 - Impact on the reactor reactivity (i.e. the neutron multiplication factor)
 - Production of S-35 (which is an issue for corrosion)
- Request for xs measurements
 - in the energy range 100 keV 5 MeV
 - with an accuracy of 5-8%

(n,cp) data for gas production

Gas production

- Gas production (H and He) from (n,p/d/t) and (n,h/α) reactions in structural materials could be an issue for their mechanical properties
- Main structural material isotopes (with natural abundance > 1%)
 - Be-9
 - V-51
 - Cr-50,52,53,54
 - Fe-54,56,57
 - Ni-58,60,62
 - Cu-63,65
 - Zr-90,91,92,94
 - Nb-93
 - Ta-181
 - W-182,183,184,186
 - etc...

as plasma-facing material in vanadium-based alloy of the first-wall structure as major component of stainless steel as major component of stainless steel as major component of stainless steel mixed with Nb-Ti superconducting strands in the CuCrZr alloy of the blanket in the Nb-Ti superconducting magnets in W-Ta alloy

in the divertor structure

(n,p) and (n, α) xs of the main structural material isotopes lacking experimental data (Be-9, V-51, Fe-54, Ni-58,60, Cu-63, Zr-94 are better known)

Nuclide	Abund.	Reaction	Comments (2022) *
Cr-50	4.3%	<u>(n,α)</u> (n,p)	No/little data
Cr-52	83.8%	<u>(n,α)</u>	One data set only
Cr-53	9.5%	<u>(n,α)</u>	One data set only
Cr-54	2.4%	<u>(n,α)</u> (n,p)	Lack of data below 14 MeV
Fe-56	91.7%	<u>(n,α)</u>	Discrepant data
Fe-57	2.1%	<u>(n,α)</u> (n,p)	Lack of (n, α) / Discrepant (n,p)
Ni-60	26%	<u>(n,α)</u>	One data set only
Ni-62	4%	<u>(n,p)</u>	Discrepant data
Cu-65	31%	<u>(n,a)</u>	Discrepant data
Zr-90	51%	<u>(n,α)</u>	No data
Zr-91	11%	<u>(n,α)</u>	No data
Zr-92	17%	<u>(n,α)</u>	Lack of data below 14 MeV

Nuclide	Abund.	Reaction	Comments (2022) *
Nb-93	100%	<u>(n,p)</u>	No data
Ta-181	100%	<u>(n,α)</u> (n,p)	Lack of (n, α) data above 14 MeV
W-182	26%	<u>(n,α)</u> (n,p)	Lack of data / No data for (n, α)
W-183	14%	<u>(n,α)</u> (n,p)	Lack of data / No data for (n, α)
W-186	28%	<u>(n,α)</u> (n,p)	Discrepant (n,p) data

* As of July 2022 after visual checking of EXFOR content in JANIS Book (https://www.oecd-nea.org/janisweb)

Conclusions

> The (n,cp) data playground is wide and getting wider with energy

- No key xs to measure as accurately as possible
- Many xs are equally relevant for the applications
- All xs are available from TALYS (with large uncertainties by default)
- Measurements are needed to reduce uncertainties (down to ~10%)
- > Needs (priority should be discussed with users)
 - HPRL includes two requests for (n,cp) data: (n,p) on K-39 and CI-35
 - R. Forrest has reviewed the priority needs for improving EAF below 20 MeV. That work should be extended to 60 MeV for IFMIF/DONES.
 - Very basic review of gas production in structural material shows a lack of data. This could be further investigated with the user community.

Thank you for your attention!

Commissariat à l'énergie atomique et aux énergies alternatives Centre de Saclay | 91191 Gif-sur-Yvette Cedex T. +33 (0)1 69 08 xx xx | F. +33 (0)1 69 08 xx xx

Direction de la Recherche Fondamentale Institut de Recherche sur les lois Fondamentales de l'Univers Département de Physique Nucléaire

Etablissement public à caractère industriel et commercial RCS Paris B 775 685 019