

MATHER3D (new project)

MAgnetic hyperthermia and hadron THERapy applied to 3D cellular scaffolds

RN - Alessandro Lascialfari

INFN Units

Pavia - RL Manuel Mariani

Milano - RL Ivan Veronese

Firenze - RL Claudio Sangregorio

Duration of the project: 3 yrs (2022-2024)

External participants

Fondazione CNAO - Pavia

IRCCS S. Matteo - Pavia

Fondazione Maugeri - Pavia

INTRODUCTION: the clinical techniques

Hadron Therapy (HT)

- (A) targeted proton therapy deposits most energy on target;(B) conventional radiation therapy deposits in a wider area

CNAO

Makes use of Magnetic NanoParticles (MNPS)

Clinic (mainly glioblastoma): Germany, Poland, USA, France, Spain, UK,....

INTRODUCTION: old projects and the new one

Hadron Therapy and Magnetic Fluid Hyperthermia:

treatments for cancers where the "classical" therapies fail - their combination is clinically un-explored

Previous INFN experiments_on BxPC3 pancreatic tumor cells → combined HT and hyperthermia work!

Currently proposed experiment: same combination on 3D scaffolds charged with BxPC3 cells containing MNPs

OBJECTIVES

Combined action of HT and MFH techniques

on 3D scaffolds containing pancreatic BxPC3 tumor cells.

To <u>translate to clinic</u>: IN-VIVO PRECLINICAL MODELS ARE NECESSARY but CNAO has not still the beam available for this.

Other translational aspect: HOSPITALS ARE GOING TO INSTALL PROTON THERAPY

- 1) Synthesis and optimization of magnetic nanoparticles and their SAR optimization
 - 2) **3D Scaffolds preparation** (natural and, contingency plan, artificial)
 - 3) Inclusion of Cells + MNPs in 3D scaffolds
 - 4) Combined therapies on 3D scaffolds containing cells+MNPs
 - 5) **Effects of therapies on 3D scaffolds**: morphology, DBSs, clonogenic survival

METHODS: schematic workflow (feedbacks not marked)

Synthesis of Magnetic NPs

(thermal decomposition)

Cells uptaking the MNPs (24/48 hrs uptake)

3D scaffolds preparation (de-cellularization of liver parts, synthetic scaffolds)

Characterization of MNPs

(SQUID susceptibility and magnetization, NMR,)

MFH in solution

(SAR by calorimetric measurements using AC fields with chosen f,H_{AC})

Preparation of 3D scaffolds charged with cells+MNPs (to be optimized......)

MFH on 3D scaffolds containing cells+MNPs (calorimetry)

Irradiation with combined hadron-therapy and MFH techniques (protons/carbons irradiation + calorimetric MFH)

Morphological studies, clonogenic survival, DSBs, apoptosis (biological methods)

Budget (tentative) and FTE-Pavia

Budget Pavia

Total 43-50 kEuro

Consumables

40-46 kEuro

6-8 scaffolds; 21-23 plast/reagents/suppl.;

6-8 immunoist., etc; 4 liquid helium + lab spares chemicals,

electronics, ...; 3 MRI consumables;

Missions2-3kEuroLaptop for MFH1kEuro

Other Units Budget

Milano 14-16 Keuro

(6-7 reagenti/kit bio; 6-7 ICP/imaging scaffold; 2 AFM/ipertermia; 2 missioni)

Firenze 14-16 keuro

(5 elio liq+reagenti chimici; 8 gene expression, kit reagents for RNA extraction, primary monoclonal and polyclonal antibodies, etc; 2 missioni)

Anagrafica di Pavia 2023 – 2.4 FTE Alessandro Lascialfari (RN) – PO – UNIPV 0.3 0.3Manuel Mariani (RL) - RU - UNIPV Francesca Brero - postdoc - INFN 0.2 0.2 Marta Filibian – technician - UNIPV 0.5 Margherita Porru – PhD Ilaria Villa – MD (ass.ric.) – UNIPV 0.2 Angelica Facoetti - CNAO-INFN 0.4 0.3 Marco Pullia – CNAO-INFN

The end

FRAMEWORK OF OUR PROJECT: recent advances in therapies......

Mutidisciplinary importance of:

- combined therapies (e.g. chemotherapy and radiation therapy)
- Nanomedicine and nanotechnology

ABRAXANE Value Proposition

- Improved clinical outcomes in metastatic breast cancer and lung cancer vs. paclitaxel
- Emerging, unprecedented data in pancreatic cancer
- Comprehensive, ongoing clinical program with recognized KOLs ensuring a steady flow of data in additional solid tumor cancers
- Leveraging our combined expertise to improve patient care

ABRAXANE extended market exclusivity from proprietary nab technology

Nowadays: NPs, interdisciplinarity and world interest

UCL Nanotechnology center

Track 4: Advances in Nanomedicine

- » Track 4-1 ï¤ Drug delivery
- » Track 4-2 im Tissue engineering
- » Track 4-3 ï¤ DNA technology
- » Track 4-4 in Nanobiotechnology
- » Track 4-5 ï¤ BLOOD Purification
- » Track 4-6 in Cancer
- » Track 4-7 i'm Photodynamic teraphy
- » Track 4-8 ï¤ Medical devices

6th Global Experts Meeting & Expo on Nanomaterials and Nanotechnology, "Advances in Nanomaterials & Nanotechnology", April 21-23, 2016 Dubai, UAE

OUR PROJECT

It's the first time (to our knowledge) that Magnetic Fluid Hyperthermia and Proton Therapy are combined

The INFN group: a combination of skills/expertise on:

Magnetism and nanoscale, Nanotechnology
Radiobiology, Irradiation therapies, Imaging,....

Old projects' experience: EU-FP7 (Nanother), COST-Radiomag, FIRB-Riname, AIRC, INFN, Cariplo, FBML, etc.

Why NPs in biomedicine (I)

Why Magnetic NPs in biomedicine (II)

Sensing

(MRI, Sentimag, MEG-SQUID,...)

Moving (navigation)

Heating (Magnetic Hyperthermia)

Simplest form: magnetic core (often simple ferrites) + organic coating

- * Natural NPs (magnetosomes)
- * Hollow / different shape

High monodispersity

What is hyperthermia?

- THERMOABLATION: if temperature is raised > 50°C high enough to cause immediate cellular death
- HYPERTHERMIA: it refers to smaller temperature rises, usually to 40–45°C, rendering the cells susceptible to various forms of damage including apoptosis, leading to subsequent cell death.

Magnetic Fluid Hyperthermia (MFH)

Magnetic Fluid Hyperthermia allows to strictly controlling the region under treatment by using Magnetic Nanoparticles (MNPs) as heating elements.

Used in clinics (Germany, USA) on glioblastoma and prostate

Web-site: http://www.magforce.de/en/home.html

- Heating through application of AC magnetic field via activation of MNPs directly injected in the tumour mass at high doses (ca. 50 mg/cm³).
- Typically: f ~ 100 kHz, amplitude ~ 10 kA/m.
- Minor side-effects

To specify the efficiency of MNPs in releasing heat, the Specific Absorption Rate (SAR)

Magnetic Fluid Hyperthermia - Clinical applications

Diagnostics: MRICA, fluorescence

Therapy: Magnetothermia, drug release

