

ADA_5D (nuova sigla)

Avalanche Diodes Array for position, charge and timing (5D) measurements RL – Lodovico Ratti

RN - Pier Simone Marrocchesi (INFN PI)

Personnel involved in the experiment

Sezioni coinvolte:

PD (G. Collazuol, 1.2 FTE)
PI (P.S. Marrocchesi, 4.8 FTE)
PV (L. Ratti, 3.5 FTE)
TIFPA (L. Pancheri, 2.2 FTE)

TOTALE: 11.7 FTE

Anagrafica di Pavia

Simone Giroletti (dott.): 100% Marco Grassi (RTDb): 50% Piero Malcovati (PO): 30% Joana Minga (dott.): 100% Ratti Lodovico (PO): 30% Vacchi Carla (RU): 40%

Goal of the project

Overall plan:

develop a new LGAD based detector capable of simultaneously measuring position, charge and time of arrival of the impinging particle – application to charge identification of individual cosmic ray elements for the next generation of space-borne experiments

Role of the Pavia group:

design and characterize the frontend circuit for the detector

- 2x2 array of processing channels performing preamplification, shaping and analog to digital conversion
- 65 nm CMOS technology

The ADA_5D concept

CHARGE IDENTIFICATION of cosmic-ray (CR) ions with charge $1 \le Z \le 30$ with dE/dx $\propto Z^2$ measurements in a **silicon charge detector** (SCD) at the top of the instrument

- **Backscattering (BS)** from the calorimeter generates fake hits in the charge detectors and in the tracker.
- The tracker back extrapolates to the SCD with an impact point IP resolution ~ 150 - 200 um
- BS increases with energy and deteriorates the charge ID of individual CR elements.

ADA-5D concept: reject BS with a high resolution ToF measurement

FLUKA simulation of 1 TeV incident carbon nucleus

Arrival time of BS particles

- ToF of incident particle to CALO ~ 1ns
- BS flight time:
 - ~ 1ns for ultra-relativistic particles (e, γ)
 - > 1ns for NR (neutrons)

Geometry

Calorimeter: 50x50 cm² Pb 30 X₀ 300 micron Silicon array (50x50 cm²) e.g.: 30 cm distance to calorimeter

- filled-green: back-scattered **photons** (create ionizing secondaries → fake hits in SCD);
- filled-blue: back-scattered neutrons;
- filled-orange: back-scattered electrons depositing energy in the charge detector;
- filled-red: incident protons on charge detector (generated at t=0);
- blue non-filled: histogram inclusive of all above..

Total time > 2ns

Detector specifications

VERY stringent requirements for a space experiment:

Charge measurement:

- large dynamic range > 1000 m.i.p.
- charge resolution for proton < 0.1 => 200-300 μ m sensors for primary ionization

Timing measurement:

• sub-ns resolution (e.g., for 10 - 20 cm flight path $\rightarrow 100$ ps)

Space resolution and granularity:

- modest granularity (3mm x 3mm pixels) to cover large O(m²) sensitive area
- an independent TRACKER is in charge of the fine spatial resolution

Power budget:

• VERY challenging < 150 W/m²

Radiation hardness:

modest problem for space experiments < 10¹¹ 1 MeV neq (TID ~100 krad)

Development of LGADs at FBK

- large pixels (e.g.: 3mm x 3mm)
- sensor thickness 200-300 um

with G~ 10-20 the dominant term for the time resolution is the jitter => 100 ps feasible with a low threshold

e.g.: 100 ps resolution with:

- o 300 um thickness
- G=23
- \circ threshold ~ 20 30 mV

Nuclear Instruments and Methods in Physics Research A 845 (2017) 47–51

Front-end chip for LGAD detector

FRONT-END CHIP

Timing

- Clock-less operation
 - TAC (TDC) starts when an LGAD (pixel) is hit
 - TAC (TDC) stops when a trigger signal is received

Timing

- Clocked operation
 - TAC (TDC) starts when an LGAD (pixel) is hit
 - TAC (TDC) stops at the next clock rising edge

Detector architecture

mini-TILE (2.4 cm x 2.4 cm): 16 FE = 8 x 8 LGADs

TILE (9.6 cm x 9.6 cm): 16 mini-tiles = 256 FE = 16 x 8 x 8 = 1024 LGADs

Detector architecture

Tile 1

Tile N

R/O		R/O
R/O		R/O
R/O		R/O
R/O		R/O

overlapping staggered layers

ADA-5D goal is limited to the development of one TILE (or mini-TILE)

Financial request (PV, 2023)

	2023 - Sez. di Pavia	k€
Missioni	Missione a Trento presso FBK per meeting su progettazione dell'elettronica di front-end e sua interconnessione con sensori LGAD (2 persone – 2gg)	1
	Missione a Pisa presso INFN per meeting su elettronica di front-end e suo interfacciamento con elettronica di reaodut digitale (2 persone – 2gg).	1
	Componenti elettronici (inclusi microcontrollori ed FPGA con schede di collaudo) per la caratterizzazione dei prototipi dell'elettronica di front-end.	2
Consumi	Run mini@sic, attraverso il consorzio Europractice, per la produzione di prototipi del canale di lettura in tecnologia CMOS 65 nm (il costo dei run mini@asic è dettagliato sul sito del consorzio all'indirizzo https://europractice-ic.com/schedules-prices-2022/). Costo IVA inclusa.	24
Apparati	Produzione di schede di test per la caratterizzazione dei prototipi del canale di lettura	2
	PV-TOTAL	30

Overall cost estimate (2023-2025)

	ADA_5D 2023 - 2025	2023	2024	2025
Missioni	beam tests (sj)		15	15
	missioni in italia	10.5	6	6
Consumi	componentistica elettronica + meccanica + schede	26	25	28
	tracker upgrade	3.5	6	
	runs di produzione del chip di front-end	24	42	
Apparati	runs di produzione di LGADs a FBK	27.5	27.5	
	TOTAL 262	91.5	121.5	49