

CSN5 INFN new research project proposal (2023-2025)

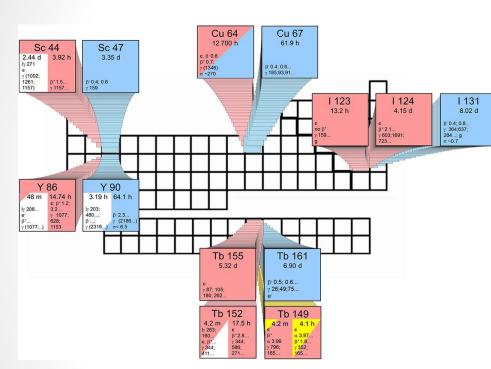
CUPRUM-TTD

^{67/64}CU PRoduction and Use in Medicine – Target Technology Development

J. Esposito on behalf of INFN/UNIPD/UNIFE/SCDC Hospital (Negrar, VR)/IOV/Padua Hospital/ICMATE-CNR collaboration network

New research project proposal to CSN5 INFN, July 1st, 2022

⁶⁷Cu and ⁶⁴Cu: a theranostic pair


Radioisotope

⁶⁴Cu

⁶⁷Cu

[NuDat 3.0]

Real Theranostic pairs

[C. Müller et al. J Nucl Med 2014, 55:1658-64]

Imaging (PET, SPECT)Therapy

[N.Herrero Álvarez *et al,* ChemMedChem **2021**, 16: 2909 –2941]

Half-life [h]

12.72

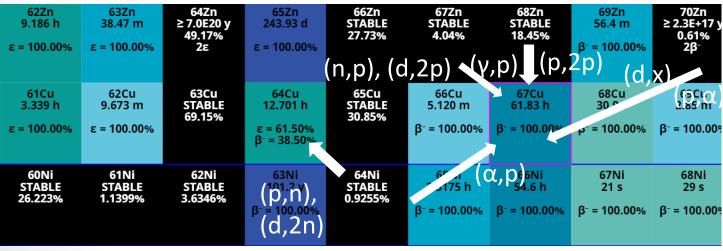
61.83

Decay (%)

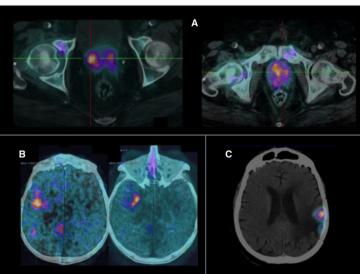
β⁻ (38.5%)

 $\beta^{+} (17.5\%) \qquad \beta^{+} 653 (17.5\%) \\ EC (44\%) \qquad \gamma 511 (35\%) \\ \gamma 1346 (0.5\%) \\ \beta^{-} 1346 (0.5\%) \\ \beta^{-} 562 (20\%) \\ \beta^{-} 468 (22\%) \\ \beta^{-} 468 (22\%) \\ \beta^{-} 377 (57\%) \\ \gamma 185 (49\%) \\ \gamma 91-93 (23\%) \\ * \beta^{-}/\beta^{+} end-point energy \\ \end{cases}$

Alpha Particle Therapy

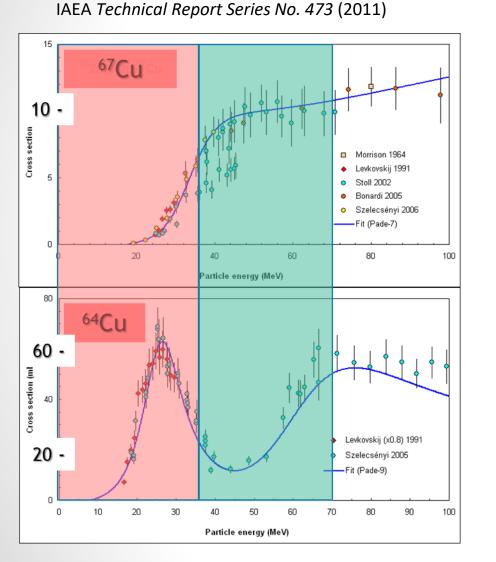

Main emissions (%)

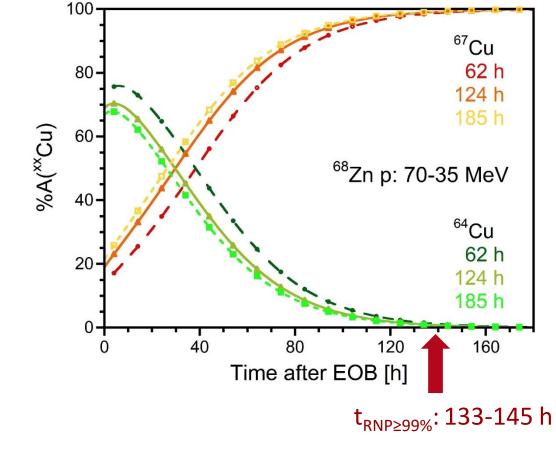
[KeV]


β⁻ 579 (38.5%)

State of the art and background experience on Cu radiometals

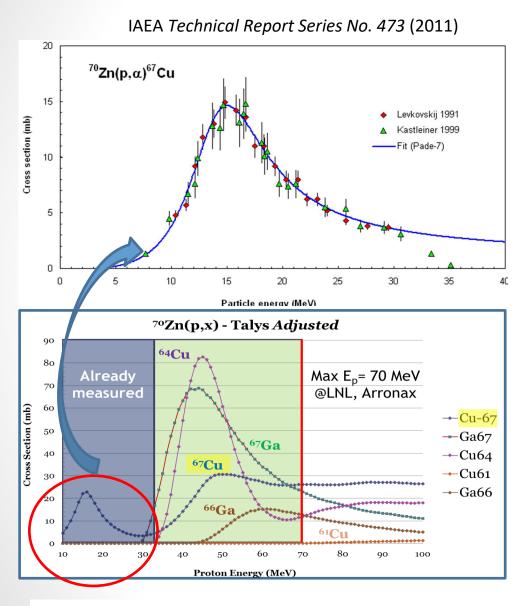
- ⁶⁴Cu is ALREADY commercially available and used in nuclear medicine for PET
- ⁶⁴Cu seems to provide excellent results also in THERAPY (even under simple ⁶⁴CuCl₂)
- ⁶⁷Cu is a promising radionuclide for Theranostic and Radioimmunotherapy, as single isotope, or in pair with ⁶⁴Cu
- ⁶⁷Cu's limiting factor: still lacking a **REGULAR availability worldwide**
- Only recently become available in US in enough quantities for medical research applications (DOE-IP)
- Production capability upon request (~ 1-2 Ci/batch, 1 patient dose~100 mCi = 3.7 GBq) @ ANL-LEAF via ⁶⁸Zn(γ,p) nuclear reaction (BNL through the ⁶⁸Zn(p,2p))
- ⁶⁷Cu future supply in Europe: Goal both for ARRONAX and LARAMED

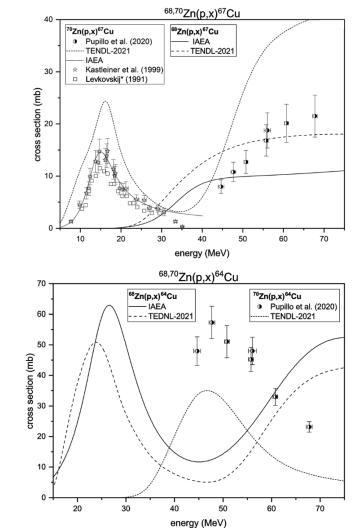

[https://www.nndc.bnl.gov/nudat3/]



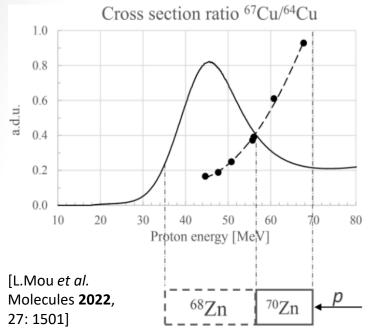
PET/CT images collected after i.v. injection of ⁶⁴CuCl₂ in patients with (a) prostate cancer, (b) cerebral tumor, (c) glioma.

A. Duatti et al. / Nuclear Medicine and Biology 42 (2015) 216-218


⁶⁸Zn(p,2p)⁶⁷Cu reaction production route


 In order to have a pure ⁶⁷Cu (RNP>99%) it is necessary to wait that ⁶⁴Cu decays → lose ≈ 80% of ⁶⁷Cu activity

⁶⁷Cu alternative production route: ⁷⁰Zn(p,α)⁶⁷Cu

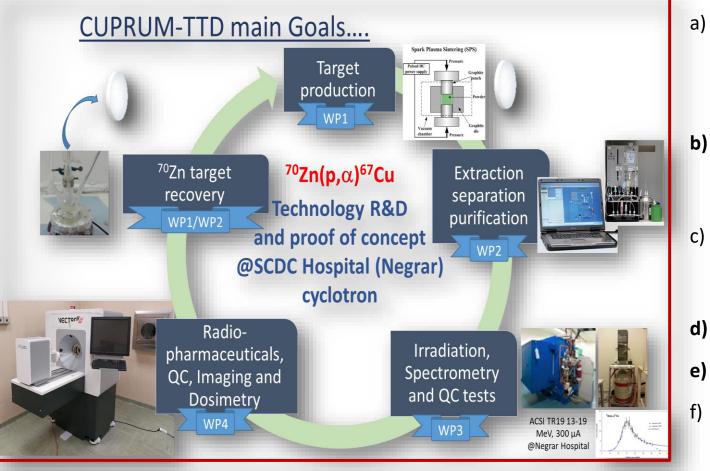

No experimental data available for $E_P > 35$ MeV

CoMe project (COpper xs MEasurement) : INFN funded (Dotazioni CSN3_2016): ⁷⁰Zn(p,x)^{67,64}Cu xs measurements in 45-70 MeV range

[G. Pupillo Radiochim. Acta 2022]

Main achievement held by COME prj

"A method and a target for the production of ⁶⁷Cu" Mou, Pupillo, Martini, Pasquali International Patent


^ n° WO 2019/220224 A1

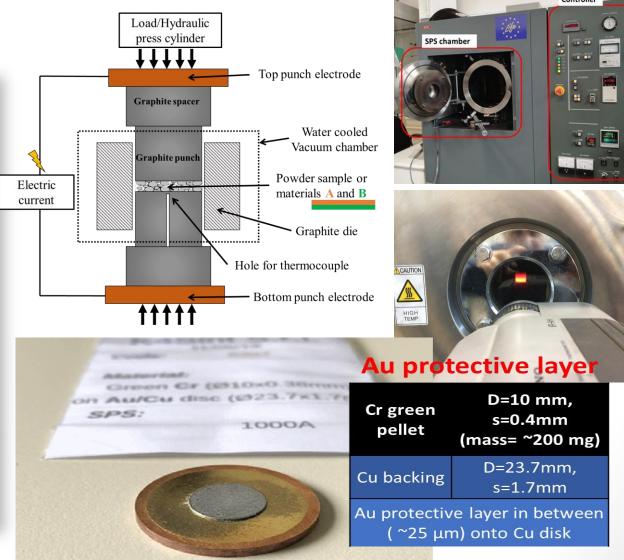
	lrr. time (h)	⁶⁷ Cu at EOB (MBq/µA)	⁶⁴ Cu at EOB (MBq/µA)	⁶¹ Cu at EOB (MBq/µA)	⁶⁰ Cu at EOB (MBq/µA)	<i>t</i> _{99%} (h)	⁶⁷ Cu at t _{99%} (MBq/μA)
⁶⁸ Zn: 70–35 MeV	62	1240.1	6512.0	1140.1	26.5	145	244.1
	124	1859.4	6732.9	1140.1	26.5	136	404.8
	185	2165.2	6740.4	1140.1	26.5	133	487.5
⁷⁰ Zn: 70–45 MeV	62	1751.7	7506.7	11.7	_	139	368.7
	124	2626.5	7761.4	11.7	_	131	604.8
	185	3058.5	7770.0	11.7	_	128	728.3
⁷⁰ Zn: 70–55 MeV + ⁶⁸ Zn:	62	1881.3	5825.0	40.0	0.0012	132	428.3
	124	2820.9	6022.6	40.0	0.0012	123	710.5
55–35 MeV	185	3284.9	6029.3	40.0	0.0012	120	855.6

[De Nardo L. et al. Med Phys. 2022;1–16]

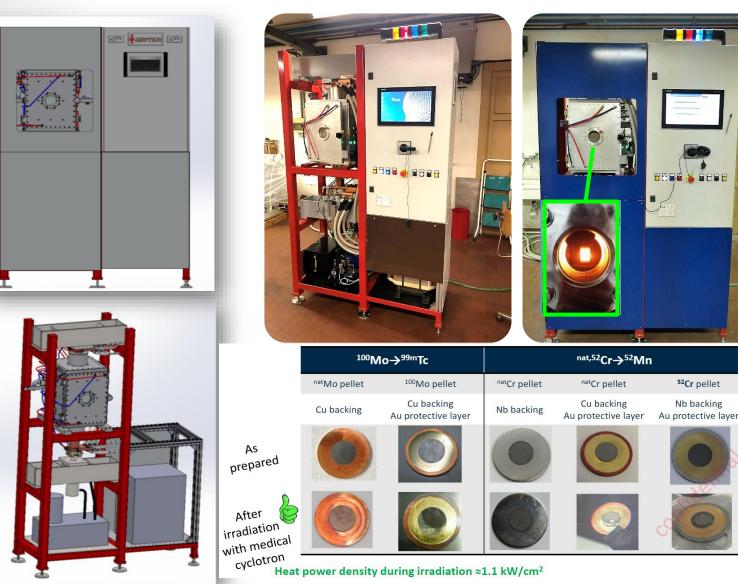
CUPRUM-TTD (2023-2025) research project

In view of the next preclinical/clincal applications the goal of the current research proposal is therefore to develop beforehand a reliable technology aimed at **producing clinical-grade batches of** ⁶⁷Cu- ⁶⁴Cu, on a routine basis by small medical cyclotrons.

Main project GOALS:


-) to acquire a robust and reliable target manufacturing technology to produce ⁷⁰ZnO target (and ^{nat}Ni targets for first ⁶⁴Cu yield batches from ⁶⁴Ni(p,n)⁶⁴Cu at a later stage);
- b) to design and construct proper targets, able to sustain beam power levels from medical cyclotrons (i.e. 18-20 MeV, 2/3 kW max);
 - to develop/optimize the radiochemistry separation/purification methods: Zn→Cu to achieve a clinical-grade ⁶⁷Cu radionuclide;
 -) Implementation of *in-vitro* survival studies;
 - Pre-clinical and clinical phantom imaging;
 - to develop /optimize technology for the **costly** ⁷⁰Zn-enriched target material recovery.

INFN –LNL Target technology development


The starting point is the *know-how* gained for **metallic targets manufacturing** for medical cyclotrons (up to 1.0 kW/cm²) successfully produced by a refined SPS (Spark Plasma Sintering) technique.

SPS (Spark Plasma Sintering) main advantages:

- Only few minutes for target fabrication compared to conventional sintering techniques
- Sintering of high melting point materials e.g metals Mo/Cr/Y or oxides
- ✓ Bonding between different materials (target material on backing) → no filler material in between
- ✓ Starting materials → powder or foil
- ✓ 100% efficiency→ very negligible losses of isotope-enriched material during manufacturing
- Possibility to produce easily 100-500 μm
 thickness pellet

The new SPS TT SINTER machine developed by INFN Pavia and PV University to be installed in the future LARAMED target laboratory

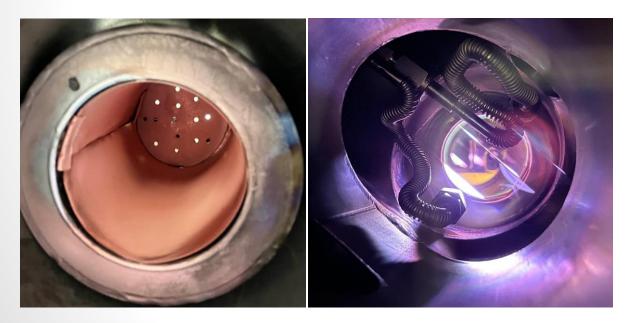
 machine design based upon LNL specifications

Y→⁸⁹Zr

^{nat}Y foil

Nb backing

52Cr pellet


Nb backing

SPS technique: some past results

Inverted magnetron deposition system developed for solid target production

The new, optimized, and alternative magnetron deposition setup as developed in the framework of METRICS (CSN5 2017-2021) – INTEF_TOTEM (2021-2022) projects.

Main idea: combine the advantages of Magnetron Sputtering (MS) deposition, along with target material improved usage or/and high recovering level.

Inverted magnetron: target (left view) and plasma (right view)

The vacuum system dedicated for inverted magnetron deposition test and future target production

CUPRUM-TTD proposed approach

- Development of a robust and reliable target manufacturing technology suitable for irradiations at small medical proton cyclotrons (e.g. up to 19 MeV like the ACSI TR19-300 of SCDCH - Negrar, VR) by using ^{nat}ZnO material.
 - know-how acquisition to manufacture <u>Zn oxides targets</u> (not metallic) in view of their future use with higher power proton beams like the SPES cyclotron (Zn melting temp.: 1970 °C in oxide form, 419.5 °C in metal form).
- Development of the radiochemical procedure for ^{nat}ZnO processing and extraction of the product ^{6x}Cu (semi-automatic/automatic module).
- Irradiation test @ HSCDC TR19/300 cyclotron with first ⁷⁰ZnO targets produced and separation of ⁶⁷Cu product, QC studies, transport @ LNL and imaging @ LARIM lab (LNL), with the micro-PET/SPECT/CT small animal scanner (collaboration with IOV).

CUPRUM-TTD proposed approach for **phase 1 project**: ^{nat}ZnO target production for first irradiation tests @HSCDC

Study of the SPS process to obtain ^{nat}ZnO pellets;

- pellet main features -> thickness 0.7 mm; mass about 500 mg
- backing optimization (chemically resistant, high thermal conductivity):

Goal: max sustainable beam-on-target current determination

Bonding	•	(Nb, Ta, RG_C?) + Au : backing + coating; → Spark Plasma Sintering (SPS) process
Pellet+Backing mat	•	capsule holder (Al/Nb depending upon the needs) \rightarrow SPS process for ^{nat} ZnO pellet only
(Possible approaches)	•	ZnO layer on selected backing -> Magnetron Sputtering

Tests to be carried out :

- natZnO layer characterization with different techniques @ LNL: SEM, Energy Dispersive X-ray Spectroscopy (EDS) and profilometer (Surf. Treat. Lab.);
- ^{nat}ZnO pellet mechanical resistance determination (target upload/download from target station);
- Thermomechanical tests resistance (19 MeV, 5-50 μ A \rightarrow ~0.1 ~1.0 kW)

Collaboration with : HSCDC (Negrar –VR) INFN divisions involved: **LNL** (PV)

CUPRUM-TTD proposed approach for **phase 1 project**: Target radiochemistry processing studies from ^{nat}ZnO targets @HSCDC

To develop the optimized ^{nat}ZnO targets dissolution/separation/purification system following the first irradiation tests

- preliminary studies with ^{nat}ZnO pellets (cold tests) to assess chemistry separation techniques (e.g. solvent-extraction, extraction chromatography etc.) – (^{nat}Ni pellets at a later stage)
- design of the reactor system configuration when first ^{nat}ZnO/ ^{nat}Ni pellets/targets will be available
- radiochemistry process optimization (and system semi-automation) once the first target samples (pellet + backing) will be available

Tests to be carried out :

- ICP-OES analysis (in collaboration with UniFE);
- gamma-spectrometry measurements and QC assessment (in collaboration UniFE, UniMI @ LASA and HSCDC, Negrar-VR)

Goal: Development of the semi-automated ^{6x}Cu isotopes separation/purification with minimum isotopic contaminants Collaboration with : HSCDC (Negrar –VR) INFN divisions involved: LNL, Fe, (PV), MI

CUPRUM-TTD proposed approach for **phase 2 project:** first ⁷⁰ZnO-enriched targets beam tests and ⁶⁷Cu batches production @HSCDC

(⁷⁰Zn-enriched) ZnO first target samples manufacturing

- a) selection of beam parameters suitable to yield small batches of ⁶⁷Cu based on theoretical calculations;
- b) Irradiation @ SCDC TR19/300 cyclotron: Emax = 19 MeV ; t_{irr} = ? ; I_{max} = ?
 - [thermomechanical tests]
- c) Radiochemistry separation and purification tests of the ⁶⁷Cu samples produced;
 - [QC assessment]
 - [labeling tests with selected pharmaceutical products]

Experimental activities with ⁶⁷Cu thus produced:

- Pharmacology lab @UNIFE available for cellular *in-vitro* studies and with ⁶⁷CuCl₂; (1 transport Negrar-UNIFE about 200 €)
- SPECT phantom imaging studies with ⁶⁷Cu with preclinical and clinical gamma-camera (@ LARIM and Padua Univ. Hospital)
- Possible in-vivo studies @LARIM (depending upon the completion of plants and re-starting activities)?

Goal: First ⁶⁷Cu *in-vitro* (*in vivo*?) imaging studies with known (or new) carrier molecules.

Collaboration with : HSCDC (Negrar –VR) and IOV

INFN divisions involved: LNL, Fe, PD

CUPRUM-TTD proposed approach for phase 2 project: first ⁶⁴Ni-enriched targets production for ⁶⁴Cu batches @ HSCDC

- (⁶⁴Ni-enriched) Ni first target samples manufacturing
- SPS process to obtain first ⁶⁴Ni-enriched and targets (Nb/Au/XX config.)
- ⁶⁴Cu: ⁶⁴Ni(p,n)⁶⁴Cu \rightarrow energy range 11.5 9 MeV \rightarrow target: ~100 μ m ⁶⁴Ni

To seek for alternative nuclear production routes...

⁶⁷Cu/⁶⁴Cu (⁶¹Cu) with <u>alpha-induced reactions</u> @ARRONAX– Milan contribution

- ⁶¹Cu: ^{nat}Ni(alpha,pxn)^{61,64,67}Cu \rightarrow energy range 70 8 MeV \rightarrow target: ~20 µm ^{nat}Ni with the study of contaminants and the determination of RNP and SA
- ⁶⁷Cu: ⁶⁴Ni(alpha,p)⁶⁷Cu → energy range 30 15 MeV → Thick Target Yield (TTY), using a thick target produced @LNL
- ⁶¹Cu: ⁵⁹Co(alpha,2n)⁶¹Cu → energy range 70 8 MeV → target: ~20 µm ⁵⁹Co with the study of contaminants

Collaboration with : HSCDC (Negrar –VR) and ARRONAX center (Nantes- FRA)

INFN divisions involved: LNL, MI, PV, PD

CUPRUM-TTD WP1: Target production and recovery

Target material

Gal Jua

Gio

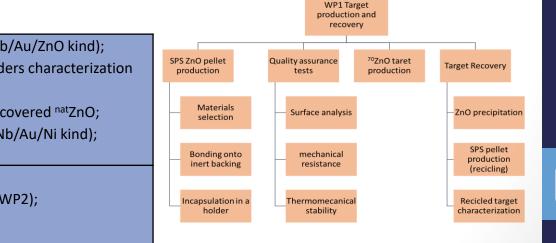
Osc

Alis

Um

Tan

- ⁷⁰ZnO Tm=1975°C (25\$/mg)
- 1 target 500mg → 4 target 41.6k€


Target production by SPS technique:

- Collaboration with Chem Dept UNIPV (ZnO +Ni pellet)
- Support/holder investigation
- Target recovery and recycling (SPS)

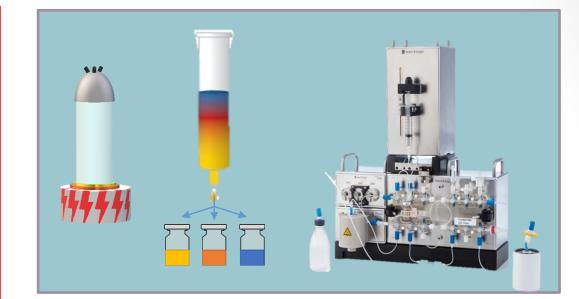
Spark Plasma Sintering (SPS)

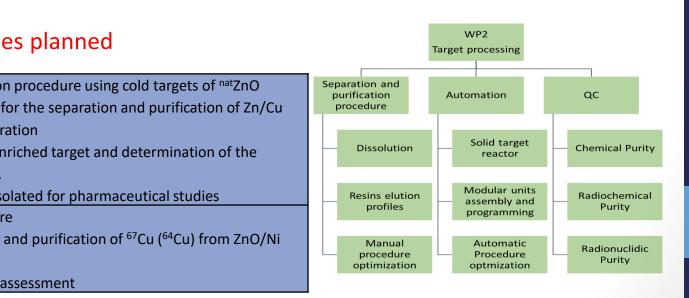
Milestones and deliverables planned

WP1		M1: SPS technique development for ZnO target manufacturing (Nb/Au/ZnO kind);
orgio Keppel car Azzolini	LNL	M2: recovery process development for ^{nat} ZnO, and material powders characterizati (SEM, EDS, profilometer); M3: trial of target production with SPS technique starting from recovered ^{nat} ZnO; M4: SPS technique development for ^{nat} Ni target manufacturing (Nb/Au/Ni kind);
sa Kotliarenko nberto A. mburini U	NIPV	D1: 2/3 ZnO targets for surface analyses investigations (WP2); D2: 5 ZnO targets for cold test chemical processing optimization (WP2);
		D3: 2/3 ⁷⁰ ZnO targets for production test; D4: recovered ^{nat} ZnO powders.

CUPRUM-TTD WP2: Target radiochemistry processing

Separation and purification procedure development:


- cold tests ^{nat}ZnO •
- ICP(OES) characterization @UNIFE \bullet


Automated module prototype development

- Purchase of modular units •
- Hot test ^{nat}ZnO \bullet

Quality Control (QC) assessment on RCP:

Hot tests ⁷⁰ZnO

Milestones and deliverables planned

WP2		M5: development of separation and purification procedure using cold targets of ^{nat} ZnO
Petra Martini		M6: development of a semi-automatic system for the separation and purification of Zn/
Alessandra Boschi		M7: optimization and automation of ^{6x} Cu separation
	NIFE	M8: productions tests of ⁶⁷ Cu (⁶⁴ Cu) by using enriched target and determination of the
Licia Uccelli Lorenza Marvelli		extraction yield and purity of the final product.
	SCDC	M9: QC analysis on ⁶⁷ Cu (⁶⁴ Cu) produced and isolated for pharmaceutical studies
		D5: Zn/Cu separation and purification procedure
		D6: semi-automatic module for the separation and purification of ⁶⁷ Cu (⁶⁴ Cu) from ZnO/
		target

D7: 67Cu (64Cu) radiochemistry product quality assessment

CUPRUM-TTD WP3: Irradiation, y-spectrometry and QC test

Irradiation runs on ^{nat}ZnO/^{nat}Ni for targets and radiochemical separation optimization

- selection of beam parameters suitable to yield small batches of ⁶⁷Cu/ ⁶⁴Cu based on theoretical calculations;
- 3 irradiation runs on ⁷⁰ZnO for first batches of ⁶⁷Cu;
- 2 irradiations runs on ⁶⁴Ni for first batches of ⁶⁴Cu;
- 4 irradiations runs on ^{nat}Ni and ⁵⁹Co with alpha particles for ^{61,64,67}Cu optimization production (xs meas. @ARRONAX)
- 2 irradiations runs on thick target of ⁶⁴Ni for TTY

for ⁶⁴Cu).

WP3

LNL

HSCDC

INFN-

PD

UNIMI

(INFN-

MI)

Liliana Mou

Gaia Pupillo

Juan Esposito

Emiliano Cazzola

Giancarlo Gorgoni

Francesca Barbaro

Francesca Cagnetta

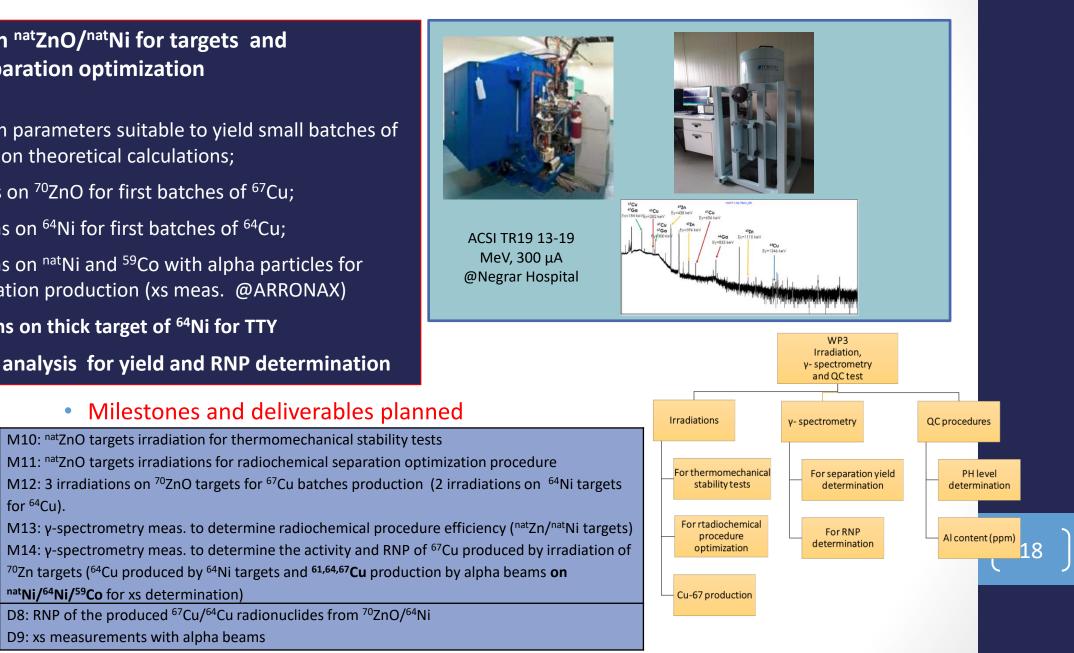
Simone Manenti

Flavia Groppi

Luciano Canton

Carlos Rossi Alvarez

y-spectrometry analysis for yield and RNP determination


^{nat}Ni/⁶⁴Ni/⁵⁹Co for xs determination)

D9: xs measurements with alpha beams

Milestones and deliverables planned

M10: natZnO targets irradiation for thermomechanical stability tests

D8: RNP of the produced ⁶⁷Cu/⁶⁴Cu radionuclides from ⁷⁰ZnO/⁶⁴Ni

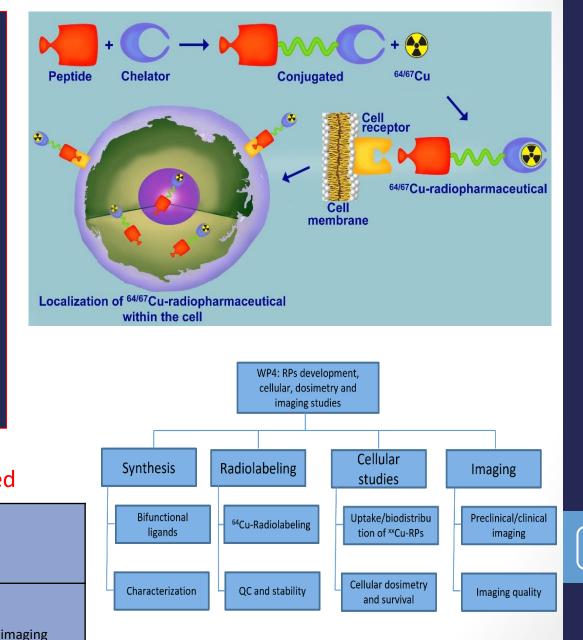
WP4: RPs development, cellular, dosimetry and Imaging studies

Bifunctional ligand synthesis @LARIM

Radiolabeling with **Cu @LARIM

Characterization and stability evaluation of ^{xx}Cu RPs @LARIM @ICMATE-CNR

Evaluation of specific uptake and internalization in both PSMA-positive and negative PCa cells


Cellular Dosimetry calculations @ INFN-PD

Preclinical and clinical Nuclear Imaging quality studies with ^{xx}Cu @LARIM @Padova Hospital

WP4		
Laura Melendez-A.	IOV	
Alessandra Zorz	(INFN-	• 1
Marta Paiusco	LNL/Pd)	M15: sy
Laura De Nardo	UNIPD	M15: Sy M16: Ra
Michele Bello	(INFN-	
Diego Cecchin	Pd/LNL)	M17: Ce
	CNR	M18: ph
Cristina Bolzati	(INFN-Pd)	D10: cor
Giov. Di Domenico	UNIFE	D11: me
Angelo Taibi	(INFN-FE)	D12: Mir

Milestones and deliverables planned

M15: synthesis of new conjugates
M16: Radiolabeling and stability studies
M17: Cellular uptake and dosimetry/survival calculations
M18: phantom imaging studies
D10: conjugates
D11: method to obtain Cu-PSMA RPs with high radiochemical yield
D12: Minimum activity and dimension of the tumor to obtain good i

Research units/collaborations taking part...

Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Legnaro

Istituto Nazionale di Fisica Nucleare

- Ferrara Branch
- Padua Branch
- Milan Branch

UNIVERSITÀ DEGLI STUDI DI MILANO

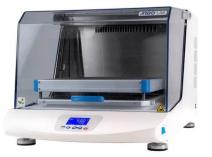
UNIVERSITÀ DEGLI STUDI DI PADOVA Dipartimento

UNIVERSITÀ DI PAVIA

CUPRUM-TTD project 2023: FTE

Anagrafica LNL 2023	FTE: 4.8	Anagrafica INFN-PD 2023	FTE: 1.5	Anagrafica INFN-FE 2023	FTE: 4.0
Esposito J.	0.5	De Nardo L.	0.5	Martini P.	0.6
Pupillo G.	0.2	Canton L.	0.1	Di Domenico G.	0.1
Mou L.	0.2	Barbaro F.	0.1	Taibi A.	0.1
Sciacca G.	0.5	Zorz A.	0.2		0.1
Cisternino S.	0.4	Paiusco M.	0.2	Boschi A.	0.7
Melendez-Alafort L.	0.4			Uccelli L.	0.5
Bello M.	0.8	Cecchin D.	0.2	0.2 0.2 Marvelli L.*	1.0
Kotliarenko A.	0.4	Bolzati C.****	0.2		1.0
Keppel G.	0.1				
Azzolini O.	0.1			Anagrafica INFN-MI 2023	FTE: 2.1
Anselmi-Tamburini U.	0.2	 * associazione INFN-Fe da settembre ** associazione INFN-Mi da settembre 		Groppi F.	0.4
Borsista***	1.0	*** contratto da firmare a ottobre 202			0.4
		**** associazione INFN-Pd da gennaio	0 2023	Manenti S.	0.3
TOTALE FTE 12.	4			Cagnetta F.	0.4

Bolchini F.C.**


21

1.0

CUPRUM-TTD project INFN-Padua

PLANNED ACTIVITIES for 2023 and budget quotation (12 K€)

ltem	What is needed	Estimated cost K€
In vitro studies to determine the percent of		
specific uptake and internalization in cells	⁶⁴ Cu to radiolabel the developed Radiopharmaceuticals (2x10mCi)	3.0
	Consumables for cellular studies	1.0
Travels	Domestic travels Padua-Legnaro	0.5
TOTAL	·	12

Nessuna richiesta di servizi in sezione

Summary overall budget request CUPRUM FY2023

29.06.2022

(2023-2025) project proposal CSN5 INFN l. Esposito on behalf of collaboration network fo CUPRUM-TTD

Sezioni / Lab	Missioni	Consumo/ Altri consumo	Trasporti	Manutenzione	Inventario	apparati	Sp- servizi	Tot. per sez/lab	FTE previsto
LNL	10.0	27.0				26.0		63.0	4.8
Fe	2.5	18.0						20.5	4.0
Pd	0.5	4.0			7.5			12.0	1.5
Mi	8.5	5.0	7.5	4.0				25.0	2.1
TOTALE	16.5	52.0	15.0	4.0		18.0		120.5	12.4

Budget request outlook CUPRUM-TTD FY2024 ~ 180 kEuro (circa 110 kEuro modulo automatico) FY2025 ~ 70 kEuro

TOTAL BUDGET request (3yrs)

~ 370 kEuro

GRAZIE

CUPRUM-TTD project INFN-LNL

ltem	What is needed	Estimated cost K€
 ZnO/Ni powder pellets production for target processing investigations 	Equipment for target manufacturing and raw materials	5.0
 Preparation of samples with SPS technique @ PV university and first attempts with MS technique @LNL 	Chemical products for ZnO/Ni radiochemical separation	5.0
Manufacturing of first prototype ZnO/Ni	Nb backing + capsule procurement	5.0
targets	Gold foil for Cu target protecting layer	10.0
	Muffola for ZnO recovery	
Equipment (lab. Furniture)	Hydraulic press for pellets preparation	7.5
	Quartz/borosilicate/Peek reactor vessels procurement	7.5
Upgrade inverted MS system	 dedicated vacuum chamber Dedicated magnetic coil for cylindrical MS Zn/ZnO target material Cathode body for sputtering 	3.0 5.0 1.0 1.0
Travels	Domestic travels Padua-Legnaro Padua-Ferrara, Padua- Pavia + presentations nat./intern. Congresses	10.0
	TOTAL	63.0

CUPRUM-TTD project INFN-Ferrara

ltem	What is needed	Estimated cost K€
Early experiments on the proper separation and purification procedure using cold targets of ^{nat} ZnO and ^{nat} Ni	Consumables: solvents, glassware, chemical products to optimize the radiochemistry method. Materials to assess the quality control of the extracted radionuclide.	16.0
Service	Chemical analyses: ICP(OES) characterization @UNIFE	2.0
Travels	Domestic travels for meetings and experimental activity at the SCDCH (Negrar –VR) cyclotron unit	2.5
	TOTAL	20.5

CUPRUM-TTD project INFN-Milano

PLANNED ACTIVITIES for 2023 and budget quotation (25.0 k€)

ltem	What is needed	Estimated cost k€	
 . ^{nat}Ni, ⁵⁹Co, ^{nat}Cu – commercially . ⁶⁴Ni targets produced by LNL/UNIPV for testing at ARRONAX facility with alpha beams Spectrometry analyses of ^{67/64/61}Cu thus produced at the LASA lab 	Targets purchase Spectrometry lab components	5.0	
Radioactive transport service	Nantes-MI; Pavia-Milano routes	7.5	
Travels	Domestic travels: Milano, Legnaro, Pavia, Verona International travels: Milano-ARRONAX for irradiations (2/3)	8.5	
Mantainace	Nitrogen; Radiochemical Lab.; Filters hoods	4.0	
	TOTAL	25.0	