

Advanced Dosimetry Methods and In-vitro Radiobiology of Ag-111 Labeled radiopharmaceuticals

- **Principal Investigator** *Alberto Andrighetto, INFN-LNL.*
- INFN Research Units LNL, Padova, TIFPA, LNS, Pavia, Bologna.

Research Fields

Medical Physics, Radiation Detectors, Radiobiology.

Duration

3 years.

The ISOLPHARM method

ISOLPHARM history

2018 – 2019 Simulations and feasibility evaluation.

ISOLPI IARM_EIRA

2020 - 2022

First production of ¹¹¹Ag in reactor and beginning of *in-vitro* and *in-vivo* testing.

2023 - 2025

Providing new tools for preclinical trials on 3D scaffolds.

Where we are : ISOLPHARM_EIRA

Project structured in 3 main tasks:

Where we are : ISOLPHARM_EIRA

Contribution of the different participants to the ISOLPHARM_EIRA tasks

Infrastructures and Laboratories

INFN

ISOLPHARM & EIRA Achievements

Istituto Nazionale di Fisica Nucleare

Design & Construction of the IRIS station for radioisotope deposition and spectroscopic characterization

Isobaric

Results from ISOLPHARM_EIRA CSNV Experiment

PET/CT fused image after 24 h from the radiolabeled compound injection

ISOLPHARM - ADMIRAL

ISOLPI IARM_EIRA

2018 – 2019 Simulations and feasibility evaluation.

IS LPHARM

2020 - 2022

First production of ¹¹¹Ag in reactor and beginning of *in-vitro* and *in-vivo* testing.

2023 - 2025

Providing new tools for preclinical trials on 3D scaffolds.

WP 1 & WP 2

WP1

WP Leader: F. Mastrotto (UNIPD)

Work Package Aim

WP1 will sum up all the preexisting activities leading to the **development of the radiopharmaceutical itself**, with the addition of the **tissue-mimicking scaffold production** to generate **more realistic 3D cell cultures** to be employed in the other work packages.

WP Leader: M. Lunardon (UNIPD)

Work Package Aim

This WP will be devoted to the **design**, **construction** and **characterization** of a new large-area detector for 2D β imaging at high resolution. This new device will take advantage of the monolithic silicon pixel technology developed recently for the ALICE experiment, namely the **ALPIDE**, the Monolithic Active Pixel Sensor of the new Inner Tracking System (ITS).

WP 3 & WP 4

WP3

WP Leader: G. Baldazzi (UNIBO)

Work Package Aim

This WP is aimed at the **design and development** of a planar scintigraphic system optimized for the incoming **γ emission** from the de-excitation of ¹¹¹Cd after the radioactive decay of ¹¹¹Ag. The design and construction of the imaging device will begin considering **all its components**, from **detectors** to **data acquisition software**.

GAGG scintillators in slab and matrix produced by EPIC-Crystals

WP Leader: S. Bortolussi (UNIPV)

Work Package Aim

The whole set of experimental activities concerning **radiobiology**. In particular cell survival in 2D and 3D scaffolds will be evaluated. The acquired **radiobiological data** will be related to the absorbed **dose at cell** level, which will be calculated using Monte Carlo method, exploiting the available data about ¹¹¹Ag uptake *in vitro* and transporting the emitted radiation in simulated geometries that reproduce the monolayer or the **3D scaffold**.

SPES More on WP2: the beta-imaging detector at PD

- ALPIDE chips: technology from HEP
- 15 mm x 30 mm active area with 512 x 1024 pixels (typical size about 25 um)
- low-cost readout electronics using commercial FPGA + custom PCB + dedicated Firmware
- modular system, scalable size, compact, easy to use. With 8 chips an active plate of 60 mm x 60 mm can be easily assembled.

A possible framework for dose estimation in cell survival experiments using confocal and β-imaging.

WP2 : β-imaging

- Mechanics & electronics design
- Monte Carlo simulations for mechanics and detector design
- Detector characterization and tests with fluorescence

More applications of this technology:

- Direct detection of electrons in the 10 keV 100 keV range in Photo Electron Emission Microscopy (PEEMs), as focal plane detector instead of MCP + phosphor screen => large improvement in spatial resolution and reading speed
- Stack of 10 or more layers for **3D detection of X-rays** up to 1 MeV with single photon and micrometric resolution

Schematic concept of a bivalent fluorescent radiopharmaceutical.

Cell culture in 3D scaffold slice administered with a pharmaceutical: fluorescence confocal microscopy (unlabeled) vs β -microdetector simulation using Geant4 (labeled with ¹¹¹Ag; pixel size 20 μ m, noise 12%, 10⁶ CCK2 receptors [26], detector distance 10 μ m).

ADMIRAL – GANTT

		Year 1		Year 2				Year 3				Notes		
_		M3	M6	M9	M12	M15	M18	M21	M24	M27	M30	M33	M36	Required for
	WP1 - Radiopharmaceutical production													
MS1.1	Production of Ag-111 at the LENA facilities, purification and quality control	+	٥		0		0		0		0		٠	MS1.2
MS1.2	Synthesis of the macromolecule for Ag-111 transport and CCK2R-targeted delivery	\rightarrow	0		0		0		0	1	0		•	MS1.3, MS2.3, MS3.3, MS4.1, MS4.2
MS1.3	Macromolecules modification with fluorescent with confocal microscopy imaging					+	o					-		MS2.3, MS4.4
MS1.4	Bioengineering of 3D scaffolds for in vitro tissue mimicking	\rightarrow	0	-	0		0		0	1	0		•	MS4.2
	WP2 - β-Imaging													
MS2.1	Electronics and mechanics design	*			0		1			1	-	+	-	MS2.3
MS2.2	Preliminary Monte Carlo simulations for mechanics and detector design	\rightarrow		0								+		MS2.3
MS2.3	Detector characterization and test with fluorescence	-	7.3	1		+			0				•	MS4.4
	WP3 - y-Imaging													
MS3.1	Preliminary Monte Carlo simulations for detector design	\rightarrow	0											MS3.2
MS3.2	Planar imaging detector construction for Ag-111 y detection					÷	0							MS3.3
MS3.3	Characterization and test of the planar system								178	+			•	
	WP4 - Targeted Radiobiology	-		-								+	N	
MS4.1	Cell survival tests in 2D Petri dishes					+	0		•					MS4.4
M54.2	Cell survival tests in 3D scaffold dynamic cultures						1	+	0		0		•	MS4.4
M54.3	Comparison between different Monte Carlo codes (Geant4, MCNPX, PHITS)	\rightarrow			•	(_			-		+		MS4.4
M54.4	Dose computation in cell cultures using MC based on β-imaging/fluorescence					1			0		1		•	MS4.1, MS4.2
+	Activity started	- 11				1								
0	Checkpoint (preliminary/partial results required to start other activities)													
	Milestone reached													

ADMIRAL – Personnel and budget

Sezione	Resp. Locale	FTE
LNL	Stefano Corradetti	7.4
PD	Marcello Lunardon	1.4
PV	Aldo Zenoni	2.5
BO	Anselmo Margotti	4.8
TIFPA	Devid Meniglio	2.2
LNS	Giorgio Russo	2.0

Total		~20		Year 2	Year 3	Total						
Total		20	[k€]	[k€]	[k€]	[k€]				-		-
	ID	WP 1 - Radiopharmaceutical production (LNL, PV, TIFPA)						WP 3 - y-Imaging (BO)	1			
	1	Reagents - LNL	8	7	8	23	EQUIPMENT	16 Detector Collimator - BO	0	10	0	10
	2	Laboratory material - LNL	8	8	7	23		17 Laboratory material - BO	1	0	0	1
CONSUMABLES	3	110Pd - PV	5	5	5	15	CONSUMABLES	18 Electronics - BO	10	0	12	22
	4	Cell cultures - LNL	7	7	7	21	19	19 Crystals - BO	0	6	0	6
	5	Material for scaffold development - TIFPA	3	3	2	8	SHIPPING	20 Shipping of detectors, etc BO	3	3	3	9
	6	Shipping of samples, targets, etc LNL	2	2	2	6	TRAVELS	21 Travels for experimental activity - BO	3	3	3	9
SHIPPING	7	Shipping of samples, targets, etc PV	2	2	2	6		TOTAL WP 3	17	22	18	57
	8	Shipping of samples, targets, etc TIFPA	3	3	3	9		WP4 - Targeted Radiobiology (PV, LNS)				
	9	Travels for experimental activity - LNL	3	3	3	9		22 Incubator - PV	10	0	0	10
TRAVELS	10	Travels for experimental activity - PV	1	1	1	3	EQUIPMENT	23 Cell refrigerator - PV	2	0	0	2
-	11	Travels for experimental activity - TIFPA	3	3	3	9	10.000	24 Biology material - PV	2	5	5	12
		TOTAL WP 1	45	44	43	132	ONSUMABLES	25 Laboratory material - PV	4	3	3	10
WP 2 - β-Imaging (PD)				in the second second			26 Laboratory material - LNS	1	1	1	3	
CONSUMABLES	12	Mechanical and ancillary components - PD	9	5	5	19		27 Shipping of samples, targets, etc PV	3	3	3	9
	13	Electronics - PD	6	5	5	16	SHIPPING	28 Shinning of samples, targets, etc INS	2	2	2	6
SHIPPING	14	Shipping of detectors, etc PD	2	2	2	6		29 Travels for experimental activity - PV	2	2	2	6
TRAVELS	15	Travels for experimental activity - PD	3	4	4	11	TRAVELS	30 Travels for experimental activity - LNS	3	3	3	9
		TOTAL WP 2		16	16	52		TOTAL WP 4	29	19	19	67
					-			TOTAL BUDGET	111	101	96	308

INFN-PD – details for 1st year

	INFN-PD			
	Mechanical and Ancillary components:			
	 Thorlabs mech. + opt. components for beta-imaging sensor test 	3		
	- Thorlabs precision XY movements	5		
	- other components	1	5	5
Consumables	Electronics			
	- Xylinx FPGA development kit	3		
	- FPGA boards Trenz Electronic GmbH	1		
	- Power supply Keysight Tech	1		
	- other components	1	5	5
Shipping	Shipping of detectors from PD to test sites in Italy	2	2	2
Travels	Travels for experimental activity	3	4	4
	TOTAL INFN-PD	20	16	16

Anagrafica: M. Lunardon 0.3, S. Moretto 0.1, P.Lotti 0.3, L. Zangrando 0.2, Chiara Bonini 0.5 (new, gruppo di Piero Giubilato) TOT = 1.4 FTE

NB: dal 1 novembre ci sarà un assegnista di ricerca al 100% sul progetto (bando PRD 2022 cofinanziato INFN, approvato)

Richieste servizi: 1 M.U. officina meccanica per realizzazione pezzi per supporto e movimentazione del beta-imaging system

Thank you for your attention!

ISOLPHARM: Why ¹¹¹Silver

In the market No radiopharmaceuticals Si lver-based!

111Ag can be produced
 @ SPES with high purity
 & also with high
 production rate.

■ No Isobaric radioactive contamination in the secondary target (also with LASER off)!

111 Isobaric chain	t _½	Decay	Target Yield
¹¹¹ Cadium	Stable		Low yield production
¹¹¹ Silver	7.45 days	β-	Good yield production
¹¹¹ Palladium	23.4 min	β-	Bad release, short $T_{1/2}$
¹¹¹ Rhodium	11 sec.	β-	No release, very short $T_{1/2}$

ISOLPHARM: ¹¹¹Silver versus ¹⁷⁷Lutetium

