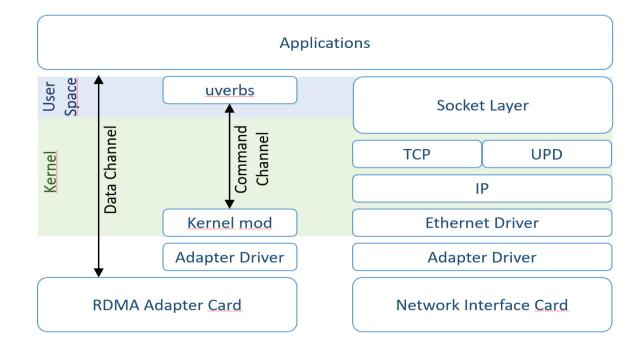


FEROCE

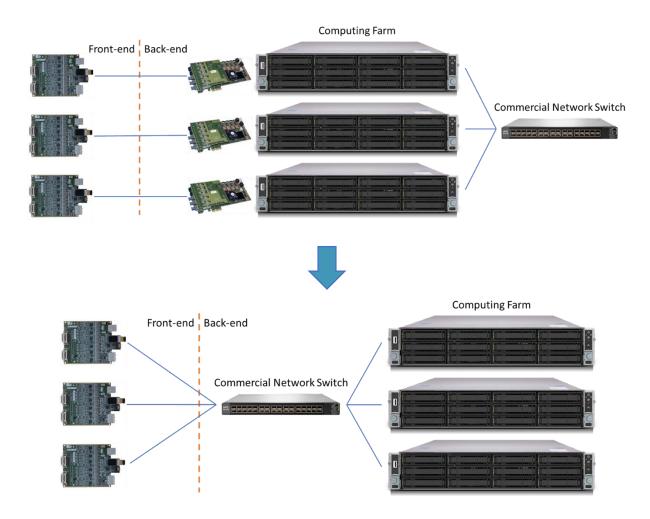
Front-End Rdma Over Converged Ethernet


1 Luglio 22 - Presentazioni Preventivi 2023 - Gruppo V

Context

- Constant trend in producing larger and larger dataset in almost every field of experimental physics
 - Heightened in experiments without hardware trigger system
 - Less inefficiencies
 - Relaxed latency budget
 - LHCb is an example
 - Hardware pre-processing of the data stream followed by a software online selection similar to the one applied in offline analyses
 - CMS could follow
 - Calorimeter and muon system are candidates for streaming readout (bunch crossing rate)
 - Fast calibration or monitoring or even to allow the possibility of studying new physics channels
 - Modern data science techniques can be employed on accelerating hardware with a relaxed latency constraint
 - Beyond HEP
 - CTA advanced camera prototype
 - AGATA electronics upgrade to a FPGA based front-end

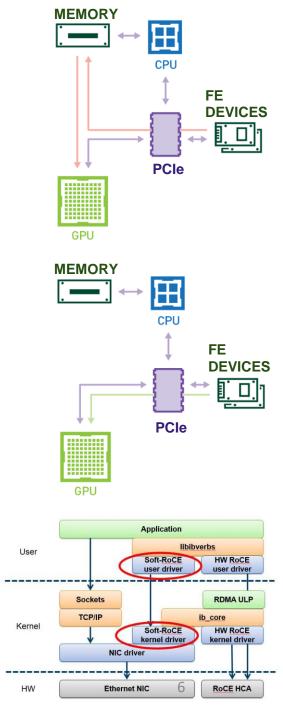
Objectives


- Processing power is important as an efficient data movement
- In a DAQ system a large fraction of CPU is engaged in networking
 - Data manipulation (several copies)
 - Latency increase and throughput reduction
- Zero-copy is obtained by adding RDMA layer to the network stack

- FEROCE wants to move the adoption of the network protocol to the data producer
 - Front-end initiates the RDMA transfer
 - No point to point connection between front-end and back-end
 - Dynamical switching routing according to node availability

Methodology

- Several network stacks implementing RDMA
 - InfiniBand, RoCE, iWARP...
- RoCE (RDMA over Converged Ethernet)
 - Based on Ethernet networks
 - Industry-standard
 - Multi-vendor ecosystem
 - RoCE v2 packet switching (layer 2 and 3)
- FPGA are already used for implementing network stacks
 - Data center
 - ATLAS



FW activities

- Development of the firmware block needed by a RoCE endpoint
 - Small appliance of RoCE stack
 - Small scale FPGAs
 - No external memory or soft-core processor
 - Setup a global-oriented simulation environment
 - Language heterogeneity
 - Dynamic simulation
 - Test of the RoCE stack on evaluation platform
 - Capability of scale down the datapath
 - 100GbE/10GbE/1GbE
 - Many small distributed endpoints
 - Commercial switch port aggregation
 - Porting the front-end RoCE core to flash-based FPGA (radiation environment)
 - No technology dependent IPs or proprietary compilation tools

Networking activities

- Real-time processing of streaming data from FE devices with zero-copy access to memory
- Unburdening CPU by serving data directly to GPU memory
 - RDMA to GPU (GPUDirect)
 - Enabling CUDA-based applications on front-end data
- Expected activities
 - Emulating the RoCE transport in SW (via Soft-RoCE drivers) to enable testing of RDMA over Ethernet-enabled servers before the RoCE networking HW procurement
 - Deployment of networking hardware devices and qualification of the infrastructure in terms of throughput, latency and congestion avoidance
 - Test the commercial-available SW to move and control the data flow from RoCE to GPU

Project organization

- Two working package
 - WP1 Application layer and emulation
 - WP2 Front-end firmware core
- Four milestones
 - 31 Dec 2023 M1.1 Testing a RoCE network based on COTS products (WP1)
 - 31 Dec 2023 M1.2 Setting up of a global-oriented simulation environment for a small appliance of the RoCE stack (WP2)
 - 31 Dec 2024 M2 Complete test of the scalable RoCE firmware stack for front-end (WP1+WP2)
 - 31 Dec 2025 M3 Complete test of the developed firmware on a radiation tolerant front-end FPGA (WP1+WP2)

					2023		2024				2025		
					Q1	Q2	Q3	Q1	Q2	Q3	Q1	Q2	Q3
WP	01	Application layer and emulation		Soft RoCE	Setting up	Test of RoCE	Acquisition system		Test FE RoCE	GPUdirect	Test of	Test on flash	
VVP	T				RoCE network	network			on network		GPUdirect	FPGA	
		Front-end firmware core		Development light RoCE		Simulation			Test FE RoCE	Porting to flash technology		Test on flash	
WP	· Z					light RoCE			on network			FPGA	

Research group

Padova

- Marco Bellato (0.3)
- Antonio Bergnoli (0.2)
- Daniele Mengoni (0.15)
- Matteo Migliorini (0.3)
- Fabio Montecassiano (0.2)
- Jacopo Pazzini (0.15)
- Andrea Triossi (0.3)
- Marco Zanetti (0.15)
- LNL
 - Damiano Bortolato (0.15)

Total FTE: 1.9

Richiesta finanziaria

Anno	Missioni	Inventariabile	Consumo	Licenze e Specifiche tecniche	Totale
2023	1	12	4	5	22
2024	1	9			10
2025	1	10			11
Totali	3	31		5	43

La parte di apparati è dettagliata come segue:

2023	2x adapter NVIDIA ConnectX-6	4kE
	1x 100GbE switch 8 porte	12kE
	Specifiche RoCE	5kE
2024	1x scheda di valutazione FPGA Xilinx	8kE
	1x scheda di valutazione FPGA Microchip	1kE
2025	1x GPU NVIDIA	10kE