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OUTLINE

• θ-dependence in QCD: motivation and predictions

• θ-dependence from lattice QCD: main challenges

• Well established results for SU(N) pure gauge theories

• Open challenges for full QCD: where my path met Guido’s



Many non-perturbative properties of strong interactions are related to the topological

classification of the QCD path integral

gauge configurations divide into non-trivial homotopy classes, labelled by an integer

winding number Q =
∫

d4x q(x)
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g2

32π2
Ga

µν(x)G̃
a
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64π2
ǫµνρσG
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16π2
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a
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a
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GG ∝ ~Ea · ~Ea + ~Ba · ~Ba ; GG̃ ∝ ~Ea · ~Ba

Homotopy group: π3(SU(N)) = Z



GG̃ is renormalizable and a possibile coupling to it is a free parameter of QCD

Z(θ) =

∫

[DA][Dψ̄][Dψ] e−SQCD eiθQ

the theory at θ 6= 0 is well defined, but presents explicit breaking of CP symmetry.

SinceQ is integer valued, θ behaves like an angular variable. Non-trivial θ-dependence

emerges because of the existence of configurations with finite action and Q 6= 0

(e.g., classical solutions: instantons and anti-instantons)

From a lattice QCD perspective, numerical computations at θ 6= 0 are made difficult

by the appearance of a complex factor in the path-integral: sign problem

we can only access a small region around θ = 0 by a Taylor expansion approach



How to compute QCD at non-zero θ

The free energy density f(θ) = −T logZ/V is a periodic even function of θ

It can be related to the probability distribution P (Q) at θ = 0 via Taylor expansion:

f(θ)− f(0) =
1

2
f (2)θ2 +

1

4!
f (4)θ4 + ... ; f (2n) =

d2nf

dθ2n
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A common parametrization is the following

f(θ, T )− f(0, T ) =
1

2
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1 + b2(T )θ
2 + b4(T )θ

4 + · · ·
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P (Q) is non-perturbative: a lattice investigation is the ideal first-principle approach



Dynamical fermions enter the game in a non-trivial way

Index theorem =⇒ Q = Index(D) = n+ − n− = Tr(γ5)

where n± are, respectively, the number of left-handed and right-handed zero-modes

of the Dirac operator D.

Axial anomaly =⇒ ∂µj
5
µ = 2Nfq(x) ; j5µ =

Nf
∑

f=1

ψ̄fγµγ5ψf

An axial U(1)A rotation on fermion fields moves θ to the quark sector

ψf → eiαγ5ψf , ψ̄f → ψ̄fe
iαγ5 =⇒ θ → θ−2α and the mass matrix becomes complex



Interplay with light fermions

• in the presence of massless quarks, θ can be freely changed, θ → θ − 2α, with

no other effect, hence one expects a trivial θ-dependence

Intuitive understanding:

Z(θ) =

∫

DUe−SY M det(D +mf )e
iθQ

for mf = 0, the determinant vanishes because of the zero modes when Q 6= 0

=⇒ P (Q) = 0 for Q 6= 0

• in the presence of light quarks, the θ term can be moved to the (small) mass

term, hence θ-dependence can be reliably studied within the framework of chiral

perturbation theory (χPT)



Experimental bounds on the electric dipole of the moment set stringent limits to the

amount of CP-violation in strong interactions.

|θ| . 10−10

So: why do we bother with θ-dependence at all?

• It enters phenomenology anyway, like in Witten-Veneziano mechanism for the η′

mass:

χYMN=∞
=

f 2
π

2Nf

(

m2
η′ +m2

η − 2m2
K

)

=⇒ χYMN=∞
≃ (180 MeV)4

• Strong CP-problem: why θ = 0? mf = 0 is ruled out.

A possible mechanism (Peccei-Quinn) invokes the existence of a new scalar field,

the QCD axion, which is also a dark matter candidate and whose properties are

largely fixed by θ-dependence



The QCD axion

Main idea: add a new scalar field acquiring a VEV which breaks a U(1) symmetry

(Peccei-Quinn). Various high energy models exist, low energy effective lagrangian:

Leff = LQCD +
1

2
∂µa∂

µa+

(

θ +
a(x)

fa

)

g2

32π2
GG̃+ . . .

• a ∼ Goldstone boson, with only derivative terms apart from a coupling to GG̃.

• shifting 〈a〉 shifts θ by 〈a〉/fa. However θ-dependence of QCD breaks the shift

symmetry and the system selects 〈a〉 so that θeff = 0.

• Assuming fa very large, a is quasi-static and its effective couplings (mass, interaction

terms) are fixed by QCD θ-dependence. For instance

m2
a(T ) =

χ(T )

f 2
a

=
〈Q2〉T,θ=0

V f 2
a

θ-dependence at finite T fixes axion parameters during the Universe evolution



Predictions about θ-dependence - I

Dilute Instanton Gas Approximation (DIGA) (Gross, Pisarski, Yaffe 1981)

Integration around classical solutions yields the one-instanton contribution∝ e−8π2/g2(ρ)

g(ρ) is the running coupling at the instanton scale ρ.

• by asymptotic freedom, works well for small instantons, which are then exponentially

suppressed and dilute, making the single instanton computation correct (DIGA)

• the presence of large instantons (1/ρ . ΛQCD) in general breaks DIGA.

• however, DIGA may work well only in the presence of an effective IR cutoff, like a

finite temperature T > ΛQCD which suppresses large instantons.



DIGA prediction for θ-dependence

• Instantons and Anti-Instantons are treated as uncorrelated (non-interacting) objects

=⇒ Poisson distribution with an average probability density p per unit volume

Zθ ∝
∞
∑

n−,n+=0

1

n+!n−!
(V4p)

n++n−eiθ(n+−n−) = exp
[

V4p(e
iθ − e−iθ)

]

= e2V4p cos θ

F (θ, T )− F (0, T ) ≃ χ(T )(1− cos θ) =⇒ b2 = −1/12 ; b4 = 1/360 ; . . .

should be valid as soon as instantons and anti-instantons are dilute enough

• Perturbative prediction for χ(T ):

χ(T ) ∼ T 4
(m

T

)Nf

e−8π2/g2(T ) ∼ mNfT 4− 11
3
Nc−

1
3
Nf ∝ T−7.66 (forNf = 2)

should be valid for large enough temperatures



Predictions about θ-dependence - II

Large-Nc for low T SU(Nc) gauge theories

Instanton computation is expected to fail at low T . It would also give a vanishing

θ-dependence in the large-Nc limit, contrary to the Witten-Veneziano formula.

Indeed, since g2Nc = λ is kept fixed as Nc → ∞ (’t Hooft scaling):

=⇒ Effective instanton weight e−8π2Nc/λ → 0 as Nc → ∞

Standard argument by E. Witten (Nucl.Phys.B 156 (1979) 269-283)

LYM(θ) =
1

4
Ga
µνG

a
µν + θ

g2

32π2
Ga
µνG̃

a
µν =

1

4
Ga
µνG

a
µν + θ

λ

32π2Nc

Ga
µνG̃

a
µν

the natural variable is θ/Nc, and the vacuum energy, including its θ dependence,

must be proportional to N2
c (numbers of degrees of freedom)

F (θ) = N2
c F̄ (θ̄)

where F̄ has a non-trivial dependence on θ̄ for Nc → ∞



Large-Nc scaling: consequences

∆F (θ) = F (θ)−F (0) = N2
c

(

power series in θ̄2
)

=
χ

2
θ2

(

1 + b2θ
2 + b4θ

4 + . . .
)

Matching powers of θ̄ and θ we obtain

χ ∼ N0
c ; b2 ∼ N−2

c ; b2n ∼ N−2n
c

P (Q) is Gaussian in the large Nc limit. Periodicity in θ enforces a multibranched

structure with phase transitions at θ = (2k + 1)π

θ)

0 π 2π θ3π−π

F(



Predictions about θ-dependence - III

Chiral Perturbation Theory (χPT) for low T

In the presence of light fermions, θ can be moved to the light quark sector by a U(1)

axial rotation. Then, χPT can be applied as usual.

Result for the ground state energy (Di Vecchia, Veneziano 1980)

E0(θ) = −m2
πf

2
π

√

1−
4mumd

(mu +md)2
sin2 θ

2

χ =
z

(1 + z)2
m2
πf

2
π , b2 = −

1

12

1 + z3

(1 + z)3
, z =

mu

md

Explicitly

z = 0.48(3) χ1/4 = 75.5(5)MeV b2 = −0.029(2)

z = 1 χ1/4 = 77.8(4)MeV b2 = −0.022(1)

this is the physical case and fixes the axion mass =⇒ ma ∼ 10−5

(

1012 GeV

fa

)



Studying topology on the lattice

(n’)
U (n)µ

n n+µ ψ

Gauge fields are 3 × 3 unitary complex matrixes living on

lattice links (link variables)

Uµ(n) ≃ P exp

(

ig

∫ n+µ

n

Aµdxµ

)

Fermion fields live on lattice sites, the fermion matrix M [U ]

is some discretized version of Dµγµ +mq

Z(V, T ) = Tr
(

e−
HQCD

T

)

⇒

∫

DUDψDψ̄e−(SG[U ]+ψ̄M [U ]ψ) =

∫

DUe−SG[U ] detM [U ]

• Is topology well defined? The concept of homotopy classes is recovered only

for smooth, semiclassical configurations. Standard discretizations of GG̃ need

renormalizations

• Are the chiral properties of discretized fermions good enough to correctly identify

zero modes? (both for measurement and for sampling!)



Studying topology on the lattice

outline of main issues and technical problems

• Renormalization issues

– Choose a discretization of Q (either gluonic or fermionic)

– Take care of renormalizations or make use of smoothing techniques to suppress them

• Control on continuum limit extrapolation

– approach to continuum limit can be much worse in the presence of light fermions

– det(D+m) should suppressQ 6= 0, but fails because of bad chiral properties of the discretization

• Algorithmic issues: critical slowing down and sampling of rare events

– in the continuum limit, homotopy classes are no more connected by finite action configurations.

Algorithms may lose ergodicity

– in a finite volume, it may happen that 〈Q2〉 = χV ≪ 1. One may need prohibitively long runs

to achieve enough statistics



Results from various methods for χ in SU(3) pure gauge - T = 0

agreement when expressed in the

same units: Sommer parameter

r0 ≃ 0.5 fm (r0/a from R. Sommer,

arXiv:1401.3270)

Fit to a constant: χ2/d.o.f. = 4.93/5

overall agreement and correct

assessment of systematics
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1. Subtraction of renormalizations: B. Alles, MD and A. Di Giacomo, Nucl. Phys. B 494, 281-292

(1997), hep-lat/9605013, now rescaled by r0 and continuum extrapolated

2. Latest cooling result: A. Athenodorou and M. Teper, arXiv:2007.06422

3. Wilson flow: M. Cè, M. Garcı́a Vera, L. Giusti and S. Schaefer, PLB 762, 232-236 (2016), arXiv:1607.05939

4. Overlap fermions: L. Del Debbio, L. Giusti and C. Pica, PRL 94, 032003 (2005) hep-th/0407052

5. Spectral projectors (Wilson): M. Luscher and F. Palombi, JHEP 09, 110 (2010), arXiv:1008.0732

6. Spectral projectors (staggered): C. Bonanno, G. Clemente, MD and F. Sanfilippo, JHEP 10, 187

(2019), [arXiv:1908.11832].



Large-N behaviour of χ
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The topological susceptibility has a smooth and finite large-N limit

data from C. Bonati, MD, P. Rossi and E. Vicari, Phys. Rev. D 94, no.8, 085017 (2016), arXiv:1607.06360



A finite χ at large N falsifies DIGA at T = 0
Further evidence of large-N Witten scaling from higher order cumulants
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recent determination by a new algorithm

which mitigates topological freezing =⇒

b̄2 = −0.193(10) (Bonanno, Bonati, MD, 2012.14000)



DIGA recovered at high temperature? At which scale?

any relation with the deconfining temperature Tc ≃ 280 MeV?

The topological susceptibility has a drop at Tc, sharper and sharper as N grows:
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The sharp drop of χ suggests the onset of a DIGA regime soon after Tc



More compelling evidence from b2 or from the power law drop of χ:
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DIGA values for higher cumulants reached quite

soon, already for T & 1.1 Tc.
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The perturbative power law behavior predicted for

χ at high T has been verified

χ(T ) ∝ 1/T b, where b = 7.1(4)(2) (perturbative

prediction b = 7), but absolute value a factor 10

larger



Let us switch now to full QCD results

C. Bonati, MD, M. Mariti, G. Martinelli, M. Mesiti, F. Negro, F. Sanfilippo and G. Villadoro, 1512.06746

Nf = 2 + 1 QCD, physical quark masses, improved staggered fermions
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finite T results showed a drop of χ(T ) much

smoother than perturbative estimate

χ(T ) ∝ 1/T b with b = 2.90(65) (DIGA

prediction: b = 7.66÷ 8)

resulting in a larger predicted axion mass

However UV artifacts were still quite large ...



Algorithmic problems: topological freezing at small a and difficult sampling of rare

events at high T

C. Bonati et al., JHEP 1603 (2016) 155 Nf = 2 + 1 QCD with physical quark masses
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Finite T results for Nf = 2 + 1 QCD: why is it difficult?

three monsters to defeat at the same time

1. discretization effects with physical quark masses: requires small lattice spacing

2. topological freezing at small lattice spacing

3. correct sampling of extremely rare topological modes at very high T

,
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Results from S. Borsanyi et al., 1606.07494

DIGA power law OK; ma(today) ∼ 100 µeV

with some approximations:

• simulations at fixed Q, in practice only

P (Q = 1)/P (Q = 0) is computed

• reweighting of configurations a posteriori by

mf/|mf + iλ| to force zero modes by hand

Any systematics related to that?



Defeating the rare event problem by a multicanonical approach

C. Bonati, MD, G. Martinelli, F. Negro, F. Sanfilippo and A. Todaro, arXiv:1807.07954

The idea is to modify the probability distribution, by adding a Q dependent potential

to the action and then reweight

〈Q2〉 =

∫

DUe−SQCD Q2

∫

DUe−SQCD
=

∫

DUe−SQCD−V (Q)Q2eV (Q)

∫

DUe−SQCD
=

〈Q2eV (Q)〉V
〈eV (Q)〉V

If V (Q) is chosen so as to enhance high Q configurations, the rare events will be

sampled more frequently and then correctly reweighted. The improvement in the

statistical error can be impressive.

A similar strategy is adopted in metadynamics, where V (Q) is made dynamical

(A. Laio, G. Martinelli and F. Sanfilippo, arXiv:1508.07270)
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As the lattice spacing decreases, χ drops

down and the gain increases

483 × 16 lattice, a = 0.0286, T = 430 MeV

In this case 〈Q2〉 = 2.1(7) × 10−4 and the

estimated gain is O(103).
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However, UV corrections are still significant,

leading to a continuum extrapolation with large

uncertainties



Improving on UV corrections by spectral projectors

A. Athenodorou, C. Bonanno, C. Bonati, G. Clemente, F. D’Angelo, MD, L. Maio, G. Martinelli, F. Sanfilippo and A. Todaro, arXiv:2208.08921

0.0 0.5 1.0 1.5 2.0 2.5 3.0
a2 [fm2] ×10−3

10

20

30

40

50

60

χ
1
/4

[M
eV

]

Borsanyi et al., 2016

Petreczky et al., 2016

Gluonic

SP, M/ms = 0.3

SP, M/ms = 0.5

A fermionic definition of Q based on

the same Dirac operator used for

sampling configurations (staggered

spectral projectors) leads to reduced

lattice artifacts and improved estimates.
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Gluonic

Spectral Projectors

Borsanyi et al., 2016

The behavior of χ(T ) is now in good

agreement with DIGA exponents for T &

300 MeV

χ(T ) ∝ 1/T b with b = 10(3) (DIGA

prediction: b = 7.66÷ 8)

some tension with previous lattice results, to

be clarified ...



Conclusions

Numerical results for pure gauge SU(N) gauge theories provide a clear picture,

consistent with available expectations and suggesting a strict relation between

confining/deconfining properties and θ-dependence.

• Large-N Witten scaling below Tc

• rapid onset of DIGA above Tc.

The investigation of QCD at the physical point still represents a challenge and will

require more computational and algorithmic efforts in the future

Guido, we have still a long way to go on these topics!

Happy Birthday Guido!


