Electroweak, Strong and New Interactions: a symposium to celebrate Guido Martinelli's 70th birthday, Accademia dei Lincei, R0me, Sept. 26, 2022

The "old" and the "new" muon g-2 puzzles

Antonio Masiero

Univ. of Padova and INFN, Padova

Based on the work on the muon g-2 problem done in these last years in collaboration with Luca Di Luzio, Bill Marciano, Paride Paradisi and Massimo Passera

On the "old" muon g-2 puzzle

During the long sequel of restless attempts of finding experimental evidences or at least hints of **NEW PHYSICS** beyond the SM along the **traditional High-Energy (HE) and High-Intensity** (HI) paths, several 3 or even 4 σ signals at variance w.r.t. the SM expectations have shown up, but they have also (rather sooner than later) invariably faded away.

A remarkable exception is represented by

the anomalous magnetic moment of the muon

which has been for several years now and still represents a major observational evidence along the HI frontier of the possible presence of NEW PHYSICS

The other more recent hint of NEW PHYSICS along these two roads is again in the HI frontier, namely the possible violation of lepton flavour universality in some B-meson semileptonic decays.

$$\vec{\mu}_{\ell} = \frac{e}{2m} \vec{\ell} \qquad \qquad \vec{\mu}_s = g \, \frac{e}{2m} \, \vec{s}$$

Put a beam of polarized muons into a storage ring

Both the muon spin and momentum precess

Because g is slightly greater than 2 the spin precesses faster than the momentum

a = (g-2)/2

 a_{μ}

 $\frac{eB}{mc}$

B. Chislett, Workshop of the Muon g-2 Theory Initiative, Edinburgh, Sept. 2022

The **EXP.** prospects

- Run-1 result confirmed the BNL result with only
 6% of our total statistics so far
- Run-2/3 result expected to be published early next year
 - ~ 2x improvement on the statistical error
 - Reduction in the systematic errors, closing in on the TDR goal
 - Would be helpful to have a recommendation for what theory prediction(s) to compare to in the paper
- There's still more data to analyse with runs 4 and 5 and we'll add more with run 6

• Kusch and Foley 1948:

$$\left(\frac{g_e}{2}\right)^{\exp} \equiv 1 + a_e^{\exp} = 1.00119 \pm 0.00005$$

Schwinger 1948 (triumph of QED!):

$$\left(\frac{g_e}{2}\right)^{\mathrm{th}} \equiv 1 + a_e^{\mathrm{th}} = 1.00116\dots$$

QED contribution

"g – 2 is not an experiment: it is a way of life."

[John Adams (Head of the Proton Synchrotron at CERN (1954-1961)]

This statement also applies to many theorists! [Nyffeler '16]

 $a_{\mu}^{
m QED}=(1/2)~(lpha/\pi)$ [Schwinger, 1948]

 $+0.765857426 (16) (\alpha/\pi)^2$

[Sommerfield; Petermann; Suura&Wichmann '57; Elend '66]

 $+ 24.05050988 (28) (\alpha/\pi)^3$

[Remiddi, Laporta, Barbieri...; Czarnecki, Skrzypek '99]

+ 130.8780 (60) $(\alpha/\pi)^4$

[Kinoshita et al. '81-'15; Steinhauser et al. '13-'16; Laporta '17] + 750.86 (88) $(\alpha/\pi)^5$ [Kinoshita et al. '90-'19]

[WP20 \equiv T. Aoyama *et al.*, Phys. Rept. '20]

EW contribution

One-loop plus higher-order terms:

The new muon g-2 puzzle

WP20 = White Paper of the Muon g-2 Theory Initiative: arXiv:2006.04822

The 4 classes of SM contributions: uncertainty largely dominated by the hadronic contributions in Vacuum Polarization (HVP) and Light-by-Light (HLbL)

 $a_{\mu}(SM) = a_{\mu}(QED) + a_{\mu}(Weak) + a_{\mu}(Hadronic)$

Numbers from Theory Initiative Whitepaper

C. Lehner, April 8, 2021 - CERN EP Seminar

$$a_{\mu}^{\text{EXP}} = 116592061(41) \times 10^{-11} \text{ [BNL + FNAL]}$$

$$a_{\mu}^{\text{SM}} = 116591810(43) \times 10^{-11} \text{ [WP20]}$$

$$\Delta a_{\mu} = a_{\mu}^{\text{EXP}} - a_{\mu}^{\text{SM}} \equiv a_{\mu}^{\text{NP}} = 251 \text{ (59)} \times 10^{-11} \quad (4.2\sigma \text{ discrepancy!})$$

$$\underbrace{(0.1)_{\text{QED}}, \quad (1)_{\text{EW}}, \quad (18)_{\text{HLbL}}, \quad (40)_{\text{HVP}}, \quad (41)_{\delta a_{\mu}^{\text{EXP}}}.$$

$$\underbrace{(43)_{\text{TH}}}$$

- Hadronic uncertainties (HLbL & HVP) are very hard to improve.
- ► $\delta a_{\mu}^{\text{EXP}} \approx 16 \times 10^{-11}$ by the E989 Muon g-2 exp. in a few years.

Muon g-2: FNAL confirms BNL

 a_{μ}^{EXP} = (116592089 ± 63) x 10⁻¹¹ [0.54ppm] BNL E821 a_{μ}^{EXP} = (116592040 ± 54) x 10⁻¹¹ [0.46ppm] FNAL E989 Run 1 a_{μ}^{EXP} = (116592061 ± 41) x 10⁻¹¹ [0.35ppm] WA

- FNAL aims at 16 x 10⁻¹¹. First 4 runs completed, 5th in progress.
- Muon g-2 proposal at J-PARC: Phase-1 with ~ BNL precision.

BNL+FNAL

WP20 $a_{\mu,e^+e^-}^{\text{HLO}} = 6931(40) \times 10^{-11}$

Shifts $\Delta \sigma(s)$ to fix Δa_{μ} are possible, but conflict with the EW fit if they occur above ~1 GeV Shifts below ~1 GeV conflict with the quoted exp. precision of $\sigma(s)$

Crivellin, Hoferichter, Manzari, Montuli; de Rafael; Malaescu, Schott; Colangelo, Hoferichter, Stoffer

Keshavarzi, Marciano, Passera, Sirlin, PRD 2020 (updated 2021)

NEW PHYSICS for the muon g-2: at which scale?

$$\Delta a_\mu \equiv a_\mu^{ ext{NP}} pprox (a_\mu^{ ext{SM}})_{weak} pprox rac{m_\mu^2}{16\pi^2 v^2} pprox 2 imes 10^{-9}$$

A weakly interacting NP at $\Lambda \approx v$ can naturally explain $\Delta a_{\mu} \approx 2 \times 10^{-9}$

 \land $\Lambda \approx v$ favoured by the *hierarchy problem* and by a WIMP DM candidate.

On the other hand, HE experiments (LEP, Tevatron, LHC) have NOT provided any clue for the presence of new (charged) particles at the ELW. scale

- ▶ NP is very light ($\Lambda \lesssim 1$ GeV) and feebly coupled to SM particles.
- NP is very heavy ($\Lambda \gg v$) and strongly coupled to SM particles.

P. Paradisi, La Thuile 2021

The case of AXION-LIKE PARTICLES (ALPs)

ALPs contributions to the muon g-2?

- Both scalar and pseudoscalar ALPs can solve ∆a_µ for masses ~ [100MeV-1GeV] and couplings allowed by current experimental constraints.
- Solution State in the second sec

Figure: Δa_{μ} regions favoured at 68% (red), 95% (orange) and 99% (yellow) CL. Gray regions are excluded by the BaBar search $e^+e^- \rightarrow \mu^+\mu^- + \mu^+\mu^-$ [Bauer, Neubert, Thamm, '17]

$$\mathcal{L} = \frac{1}{4} g_{a\gamma\gamma} a F_{\mu\nu} \tilde{F}^{\mu\nu} + i y_{a\psi} a \bar{\psi} \gamma_5 \psi$$

$$g_{a\gamma\gamma} \equiv \frac{2\sqrt{2}\,\alpha}{\Lambda} \, c_{a\gamma\gamma}$$

Pseudoscalar 1σ solution bands to the g-2 muon anomaly taking $\Lambda = 1$ TeV

Marciano, A.M., Paradisi, Passera '16

BMWc20: S. Borsanyi et al. 2002.12347, published on Nature, April 7, 2021 first published lattice result with sub-percent precision!

LO-HVP from Lattice QCD

G.Gagliardi, Workshop of the Muon g-2 Theory Initiative, Edinburgh, Sept. 2022

Colangelo, El-Khadra, Hoferichter, Keshavarzi, Lehner, Stoffer, Teubner, arXiv:2205.12963v2 (2022)

Figure 1: Short-distance, intermediate, and long-distance weight functions in Euclidean time (left), and their correspondence in center-of-mass energy (right).

Comparison with $e^+e^- \rightarrow$ hadrons results

G. Gagliardi, Edinburgh 2022, on behalf of the ETM Collaboration (Alexandrou, Bacchio, P. Dimopoulos, Finkenrath, Frezzotti, Garofalo, Hadjiyiannakou, Jansen, Lubicz, Kostrzewa, Petschlies, Sanfilippo, Simula, Urbach, Wenger)

- Tension in a^W_μ rises to 4.2σ if we combine ETMC '22, BMW '20 and CLS/Mainz '22 (informal average \rightarrow next WP).
- Deviation of e⁺e⁻ → hadrons data w.r.t. the SM in the low and (possibly) intermediate energy regions, but not in the high energy region.

The RBC/UKQCD22 result in context

 3.9σ tension of RBC/UKQCD22 with Colangelo et al. 22/Lattice

The NEW g-2 puzzle

If the new lattice results * – i.e., **BMWc** & (only for the (SD) + W windows, but not for the relevant LD window) **Mainz 2022+ETMC 2022 + RBC/UKQCD 2022** are correct (and will be confirmed also for the LD window!), then:

i) The "old" g-2 discrepancy would be basically gone, but

ii) A new significant discrepancy between the e^+e^- data- driven and lattice QCD evaluations of a_u^{HVP} becomes quite significant (> 4 σ)

* The lattice FNAL/QCDMILC collaboration is going to unblind its data soon

New Physics to solve the new muon g-2 puzzle?

NP in
$$\sigma_{had}(e^+e^- \rightarrow hadrons)$$
 such that

 $|. (a_{\mu}^{\rm HVP})_{e^+e^-}^{\rm WP20} \approx (a_{\mu}^{\rm HVP})_{\rm EXP}$

2. the approximate agreement between BMW and EXP is not spoiled

3. w/o a direct contribution a_{μ}^{NP} (i.e. NP not in muons)

L. Di Luzio, A.M., P. Paradisi, M. Passera, PLB 2022 (arXiv 2112.08312)

Light New Physics in σ_{had}

• Light new physics inducing a sub-GeV modification of σ_{had} is the only possibility

2. NP coupled only to hadrons

FSR effects due to NP should be included into $\sigma_{had}(s)$, not easy to be accounted for... (depend on exp. cuts and mass of NP)

-----> hov

however, we know that in the QED case

$$(a_{\mu}^{\text{HVP}})_{e^+e^-}^{\text{FSR}} \approx 50 \times 10^{-11} \longrightarrow |(a_{\mu}^{\text{HVP}})_{\text{BMW}} - (a_{\mu}^{\text{HVP}})_{e^+e^-}^{\text{WP20}}| \approx 150 \times 10^{-11}$$

Light New Physics in σ_{had}

NP

 \mathbf{NP}

. 2

 $\sigma_{
m had}$

$$\operatorname{Im} \operatorname{Mod} \sim \operatorname{Mod} \sim \operatorname{Mod} \sim \sigma(e^+e^- \to \gamma^* \to \operatorname{hadrons})$$
$$(a^{\mathrm{HVP}}_{\mu})_{e^+e^-} = \frac{\alpha}{\pi^2} \int_{m_{\pi^0}^2}^{\infty} \frac{\mathrm{d}s}{s} K(s) \operatorname{Im} \Pi_{\mathrm{had}}(s) = \frac{1}{4\pi^3} \int_{m_{\pi^0}^2}^{\infty} \mathrm{d}s K(s) \sigma_{\mathrm{had}}(s) \qquad \sigma_{\mathrm{had}} = \sigma_{\mathrm{had}}^{\mathrm{SM}} + \Delta \sigma_{\mathrm{had}}^{\mathrm{NP}}$$

SUBTRACTION since NP does **NOT** contribute to the HVP at the LO, but it **DOES** contribute to the cross-section at the LO

a **POSITIVE** SHIFT on $(a_{\mu}^{\text{HVP}})_{e^+e^-}$ requires $\Delta \sigma_{\text{had}}^{\text{NP}} < 0$ (negative interference)

The unique scenario to obtain such a **SIZEABLE NEGATIVE interference**

- SIZEABLE → TREE-LEVEL contribution to modify σ_{had} at √s < 1 GeV (hence, sub-GeV mediator coupling to the hadronic and electron currents at tree-level)
- **NEGATIVE INTERF.** \rightarrow NP particle couples via a **VECTOR** current to the u, d quarks (given the dominance of the $\pi^+\pi^-$ channel)

$$\mathcal{L}_{Z'} \supset (g_V^e \,\overline{e} \gamma^\mu e + g_V^q \,\overline{q} \gamma^\mu q) Z'_\mu \qquad q = u, d \qquad m_{Z'} \lesssim 1 \text{ GeV}$$

a light spin-1 mediator with vector couplings to first generation SM fermions

$$\frac{\sigma_{\pi\pi}^{_{\rm SM+NP}}}{\sigma_{\pi\pi}^{_{\rm SM}}} = \left| 1 + \frac{g_V^e(g_V^u - g_V^d)}{e^2} \frac{s}{s - m_{Z'}^2 + im_{Z'}\Gamma_{Z'}} \right|^2$$

Di Luzio, A.M., Paradisi, Passera 2112. 08312

However, severe constraints on the Z' couplings to electrons and to hadrons

(rescaling the lattice QCD calculation of Frezzotti, Gagliardi, Lubicz, Martinelli, Sanfilippo and Simula 2112.01066) At least TWO independent bounds prevent to get a sizeable contribution to Δa_{μ} modifying σ_{had} via Z' exchange to solve the "new" μ g-2 puzzle

 At present, the leading hadronic contribution aµ^{HLO} is computed via the timelike formula:

Alternatively, exchanging the x and s integrations in a_μHLO

Lautrup, Peterman, de Rafael, 1972

 $\Delta \alpha_{had}(t)$ is the hadronic contribution to the running of α in the spacelike region: a_{μ}^{HLO} can be extracted from scattering data!

M. Passera HC2NP September 23-28 2019

Carloni Calame, MP, Trentadue, Venanzoni, 2015

3

New Physics extracting $\Delta \alpha_{had}(t)$ at MUonE? Padova and Heidelberg 2020 \rightarrow NC

 \rightarrow NO, NP cannot spoil the validity of such extraction

MUonE: a new determination of $\Delta \alpha_{had}$

MUonE: Muon-electron scattering @ CERN

- $\Delta \alpha_{had}(t)$ can be measured via the elastic scattering $\mu e \rightarrow \mu e$.
- We propose to scatter a 150 GeV muon beam, available at CERN's North Area, on a fixed electron target (Beryllium). Modular apparatus: each station has one layer of Beryllium (target) followed by several thin Silicon strip detectors.

[Courtesy by M. Passera]

Letter of Intent submitted to CERN SPSC in 2019: Test run approved for 2021

a_µ^{HLO} : timelike vs spacelike method

some conclusive thoughts:

- attempt to solve the "new" muon g-2 puzzle introducing NP which modifies σ (e⁺e⁻ → hadrons), but without affecting a_µ^{HVP}:
 a) NP → light (<1 GeV) vector Z' coupling only to electrons and hadrons;
 b) the experimental constraints on the size of such couplings prevent the Z' exchange to provide the needed enhancement of the hadronic σ to suitably address the new g-2 puzzle
- Two directions to be vigorously pursued:

 perform new independent lattice QCD computations of the HVP contribution to a_µ to assess the validity of the BMWc result;
 identifies new experimental ways to probe a_µ^{HVP} (the MUonE exp. can (hopefully reasonably) soon provide an independent determination of the leading hadronic contributions to a_µ alternative to both the dispersive and lattice methods)

BACK-UP SLIDES

A closer look at σ_{had}

• dominated by $e^+e^- \rightarrow \pi^+\pi^-$ channel (70% of the full hadronic)

$$(a_{\mu}^{\text{HVP}})_{e^+e^-} = \frac{\alpha}{\pi^2} \int_{m_{\pi^0}^2}^{\infty} \frac{\mathrm{d}s}{s} K(s) \operatorname{Im} \Pi_{\text{had}}(s) = \frac{1}{4\pi^3} \int_{m_{\pi^0}^2}^{\infty} \mathrm{d}s K(s) \sigma_{\text{had}}(s)$$

- what is $\sigma_{had}(s)$?
 - Includes Final State Radiation (FSR)
 - Initial State Radiation (ISR) and FSR/ISR interference are subtracted
 - -Vacuum polarization also subtracted (by rescaling exp. cross-section by $|\alpha/\alpha(s)|^2$)

Figure 15: Comparison of results for $a_{\mu}^{\text{HVP, LO}}[\pi\pi]$, evaluated between 0.6 GeV and 0.9 GeV for the various experiments.

NP in Bhabha scattering?

• What if the measurement of the KLOE luminosity is affected by NP ?

[Darmé, Grilli di Cortona, Nardi 2112.09139]

 $\sigma_{
m had} \propto N_{
m had}/{\cal L}_{e^+e^-}$

 $\sigma_{
m had}
ightarrow \sigma_{
m had} (1 + \delta_R)$

 $a_{\mu}^{\mathrm{LO,HVP}} \rightarrow a_{\mu}^{\mathrm{LO,HVP}} \left(1 + \delta_{R}\right)$

Figure 3. Parameter range compatible at 2σ with the experimental measurement of Δa_{μ} (green region) resulting from a redetermination of the KLOE luminosity, for $\alpha_D = 0.5$, $m_{\chi_2} = 0.95 m_V$ and $m_{\chi_1} = 25$ MeV. In the blue region the KLOE and BaBar results for σ_{had} are brought into agreement at 2σ . The red region corresponds to a shift of the KLOE measurement in tension with BaBar (and with the other experiments) at more than 2σ .

The new muon g-2 puzzle

$e^+e^- \rightarrow \pi^+\pi^-$ dominance of the low-energy hadronic cross-section

$\Lambda \approx v$: SUSY and the muon (g - 2)

Figure: LHC Run 2 bounds on SUSY scenario for the muon g - 2 anomaly for tan $\beta = 40$. Orange (yellow) regions satisfy the muon g - 2 anomaly at the 1σ (2σ) level [Endo et al., '20].

Paride Paradisi (University of Padova and INFN)

■ Isospin-breaking correction $+(0.70 \pm 0.47) \times 10^{-10}$ included: $a_{\mu}^{\text{win}} = (237.30 \pm 0.79_{\text{stat}} \pm 1.13_{\text{syst}} \pm 0.05_{\text{Q}} \pm 0.47_{\text{IB}}) \times 10^{-10}$

- \blacksquare 3.9 σ tension with data-driven estimate in [2205.12963, Colangelo et al.].
- Genuine difference between lattice and data-driven results?

Simon Kuberski

HADRONIC VACUUM POLARIZATION CONTRIBUTION

Ab-initio lattice calculations

Dispersive relations, $e^+e^- \rightarrow$ hadrons exps.