From Flavor to Top, Higgs, and beyond Through the language of Effective Field Theories

Electroweak, Strong, and New Interactions: A symposium to celebrate Guido Martinelli's 70th birthday

Roma – Accademia Nazionale dei Lincei 26 Settembre 2022

<u>Laura Reina</u> (Florida State University)

From Flavor to Top, Higgs, and beyond

TOP from discovery to precision physics

M_t becomes a crucial input in precision fits of the SM (EW and flavor)

Anomalies in Top-quark EW couplings (W,Z,H) possible hint of BSM physics

Higgs from discovery to precision physics

M_H promoted to EW precision observable

M_W [GeV]

The big open questions

What is the origin of the EW scale?

The discovery of the Higgs boson has sharpened the big open questions and given us a unique handle on BSM physics.

- > Why the $M_H \ll M_{planck}$ hierarchy problem?
- What are the implications for Naturalness?
- Can we uncover the origin of BSM physics from precision measurement of Higgs properties (couplings, width, ...). Elementary vs composit? One Higgs? More?
- Can we measure the shape of the Higgs potential Higgs self coupling(s)
- > Can Higgs properties give us **insights on flavor** and vice versa?
 - Couplings to heavy flavors (bottom, top, ..)
 - Couplings to light quarks and leptons

The LHC era: exploring the TeV scale

Indirectly via Higgs and Top:

- Run 2 delivery for Higgs couplings outperformed expectations
- LHC will define top physics till the next high-energy collider
 - > e⁺e⁻ > 500 GeV
 - ➢ pp@100 TeV
 - μ+μ⁻ > 10 TeV

- → 2-fold increase in statistics by the end of Run 3
- → 20-fold increase in statistics by the end of HL-LHC!

Higgs zooming on couplings

- Couplings to W/Z at 5-10 %, couplings to 3rd generation fermions to 10-20%
- First measurements of couplings to 2nd generation fermions
- HL-LHC projections from YR: 2-5 % on most couplings and <50% on Higgs selfcoupling

Full Run2 results drastically improve partial Run 2 results (baseline for YR projections)

Higgs zooming on couplings, a little more ...

к

κ

К

К

к

к

Theory need to improve modeling and interpretation of LHC events, in particular when new physics may not be a simple rescaling of SM interactions

Beyond total rates

Need SM precision calculations at differential level both at **lower energy**, where rates are large and at **higher energy** where rates are small but effects of new physics may be more visible.

Extending the SM via effective interactions above the EW scale \rightarrow SMEFT

EFT allows multiple probes

Global fits of top observables

V. Miralles, et al. [arXiv:2107.13917]

... exploring boosted kinematics and off-shell signatures

Pointing to the need for precision in modelling signatures from tt+X processes in regions where on-shell calculations may not be accurate enough

EFT global fits

EW + Higgs

EFT connects different processes with large correlations: pattern of coefficients give insights on underlying BSM model

UCLouvain

... adding EW + Higgs + top and flavor!

$$\mathcal{L}_{\mathrm{SM}}^{\mathrm{EFT}} \stackrel{\Lambda \ll \Lambda_{EW}}{\longrightarrow} \mathcal{L}_{\mathrm{Weak}}^{\mathrm{EFT}} = \sum_{i=1}^{10} C_i^{\mathrm{WEFT}} \mathcal{O}_i^{\mathrm{WEFT}}$$

where

 $\mathcal{O}_i^{\text{WEFT}} \to 4\text{-fermion operators of quarks}(\text{except } t) \text{ and leptons}$ $C_i^{\text{WEFT}} \to \text{depend on } C_i^{\text{SMEFT}}$

Strong constraint from B-meson semileptonic decays and intriguing relation with flavor anomalies

near: including Belle II

and HL-LHC

Bissman et al. [arXiv:2-12.10456]