Electroweak, Strong and New Interactions: a symposium to celebrate Guido Martinelli's 70th birthday Accademia dei Lincei Rome, September 26th, 2022

Giovanni Ridolfi Università di Genova and INFN Sezione di Genova, Italy

International School of Physics "Enrico Fermi" Villa Monastero, Varenna, 26 June - 6 July 1984

So ietà Italiana di Fisica

INTER ATIONAL SCHOOL OF FHYSICS "ENRICO FERMI" VILLA MONASTERO - VARENNA -

SUMMER COURSES 1984

26 June - 6 July

"Clementary Particles"

G. Martinelli

EXPERIMENTAL TESTS AND
THEORETICAL PREDICTIONS
FOR ELECTROWEAK PROCESSES

- 1) BASIC SU(2)×U(1): DEFINITION OF THE PARAMETERS OF THE STANDARD MODEL
- 2) LOW ENERGY PROCESSES AND THE DETERMINATION OF SIL2 O.

wertinger C magnituders

warman (E. warman

3) RADIATIVE CORRECTIONS TO LOW ENERGY PROCESSES

and a support of the support of the

4) HEASUREMENTS OF HW AND ME AT THE SPS-COLLIDER AND COMPARISONS WITH PREDICTIONS Z. Phys. C - Particles and Fields 39, 21-37 (1988)

Parton densities from deep inelastic scattering to hadronic processes at super collider energies

M. Diemoz¹, F. Ferroni¹, E. Longo¹, G. Martinelli²

¹ Dipartimento di Fisica, Università "La Sapienza" di Roma, and I.N.F.N. Sezione di Roma, I-00100 Roma, Italy

² CERN, CH-1211 Geneva 23, Switzerland

Received 6 August 1987

- A groundbreaking work in many respects:
 - next-to-leading order Altarelli-Parisi evolution [first application of Curci, Furmanski, Petronzio 1980]
 - heavy quark thresholds
 - an estimate of uncertainties

Numerical evolution in the space of Mellin moments and numerical Mellin inversion

More on this later.

NNPDF 2022

Left plot: fig. 20 of the original DFLM paper Right plot: courtesy of Maria Ubiali for the NNPDF collaboration

Sudakov resummation: an overview

Electroweak, Strong and New Interactions: a symposium to celebrate Guido Martinelli's 70th birthday Accademia dei Lincei Rome, September 26th, 2022

Giovanni Ridolfi Università di Genova and INFN Sezione di Genova, Italy

1. Sudakov logarithms

Generic observable in perturbative QCD:

$$\sigma(Q^2, x) = \sum_n \alpha_s^n(Q^2) \sigma_n(Q^2, x); \qquad 0 \le x \le 1$$

with x defined so that the Born kinematics (soft emission, or threshold, limit) corresponds to x = 1.

$$\sigma_n(Q^2, x) = \sum_{k=1}^{2n} \sigma_{nk} \left[\frac{\log^{k-1}(1-x)}{1-x} \right]_+ + \sigma_{n0}\delta(1-x) + r_n(x)$$

We are interested in the region $x \to 1$

$$\int_{1-x_s}^{1} dx \,\sigma_n(Q^2, x) = \sum_{k=1}^{2n} \frac{\sigma_{nk}}{k} \log^k (1-x_s) + \sigma_{n0} + R_n(x_s)$$

"Convergence" spoiled if $\alpha_s \log^2(1-x_s) \sim 1$; all-order resummation needed

An example: The q_T spectrum of Higgs production at the LHC; $x = 1 - \frac{q_T^2}{Q^2}$ [Bozzi, Catani, de Florian, Grazzini 2006 following original work by Collins, Soper and Sterman 1984]

An example: The q_T spectrum of Higgs production at the LHC; $x = 1 - \frac{q_T^2}{Q^2}$

left: [Billis et al 2021] right: [Re, Rottoli, Torrielli 2021]

2. Resummation

To be definite, consider the production of a weakly-interacting, massive final state of squared mass Q^2 (Drell-Yan pair, Higgs boson) at squared energy s.

In this case $x = \frac{Q^2}{s}$ and $x \to 1$ in the threshold (soft emission) limit.

Resummation performed in terms of Mellin moments (factorization of phase space):

$$\tilde{f}(N) = \int_0^1 dx \, x^{N-1} f(x); \qquad f(x) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} dN \, x^{-N} \tilde{f}(N)$$

where $c > \operatorname{Re} \overline{N}_i$; \overline{N}_i singular points of $\tilde{f}(N)$.

Large-x region mapped onto large-N:

$$\int_0^1 dx \, x^{N-1} \left[\frac{\log^{k-1}(1-x)}{1-x} \right]_+ \sim \log^k N + \text{subleading logs}$$

Resummed result in N space:

$$\tilde{\sigma}^{\rm res}(N) = g_0(\alpha_s) \exp\left[\frac{1}{\alpha_s}g_1(\alpha_s\log N) + g_2(\alpha_s\log N) + \alpha_s g_3(\alpha_s\log N) + \dots\right]$$

[Catani, Trentadue 1989; Sterman 1987]

3. A difficulty: the Landau pole

The functions $g_1(\alpha_s \log N), g_2(\alpha_s \log N), \dots$ have a logarithmic branch cut on the positive real N axis. A consequence of resummation. Functions of

$$\alpha_s \left(\frac{Q^2}{N}\right) = \frac{\alpha_s(Q^2)}{1 - b_0 \alpha_s(Q^2) \log N} \left[1 + \text{NLL}\right]$$

(a proof by renormalization group [Contopanagos, Laenen, Sterman 1997; Forte, R 2002]) Branch cut for

$$\operatorname{Re} N > N_L = \exp \frac{1}{b_0 \alpha_s(Q^2)}$$

The inverse Mellin transform does not exist.

Way out [Catani, Mangano, Nason, Trentadue]: just don't care!

Take the inverse Mellin transform as usual, with $c \ll N_L$. Usually referred to as the Minimal Prescription.

Drawback: "inverse Mellin" different from zero (and oscillating) for x > 1.

[Bonvini, Forte, R 2010]

- Not a serious problem: The power expansion of the MP formula is free of ambiguities of the order of powers of $\frac{\Lambda_{\rm QCD}}{Q}$. The ambiguity associated with the asymptotic expansion of the MP resummation is exponentially suppressed, $e^{-\frac{Q}{\Lambda_{\rm QCD}}}$.
- Alternative prescriptions available, e.g. Borel sum [Forte, Ubiali, Rojo, R 2006; Abbate, Forte, R 2007; Bonvini, Forte, R 2009]; small differences.

4. When is resummation relevant?

At collider energies, $x = \frac{Q^2}{s}$ typically very small (~ 10⁻⁴ for Higgs production at the LHC). However

$$\sigma_{\text{hadr}}(Q^2, x) = \int_x^1 \frac{dz}{z} \mathcal{L}(z)\sigma(Q^2, \frac{x}{z})$$

What really matters is the range of z that dominates the convolution integral:

$$\frac{x}{z} = \frac{Q^2}{sz}$$

can be significantly larger than x, depending on the shape of parton densities.

Can we make this quantitative?

Mellin transform turns convolutions into ordinary products:

 $\tilde{\sigma}_{\text{hadr}}(Q^2, N) = \tilde{\mathcal{L}}(N)\tilde{\sigma}(Q^2, N)$

$$\sigma_{\text{hadr}}(Q^2, x) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} dN \, x^{-N} \tilde{\mathcal{L}}(N) \tilde{\sigma}(Q^2, N)$$
$$= \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} dN \, \exp E(N, x)$$

The exponent

$$E(N,x) = N \log \frac{1}{x} + \log \tilde{\mathcal{L}}(N) + \log \tilde{\sigma}(Q^2, N)$$

has always a minimum at $N = N_0(x)$ on the real N axis,

 $E'(N_0(x), x) = 0;$ $E''(N_0(x), x) > 0$

Saddle-point approximation:

$$\sigma_{\text{hadr}}(Q^2, x) \approx \frac{1}{\sqrt{2\pi E''(N_0(x), x)}} x^{-N_0(x)} \tilde{\mathcal{L}}(N_0(x)) \tilde{\sigma}(Q^2, N_0(x))$$

Many nice features:

- very accurate
- both N_0 and E'' essentially independent of $\tilde{\sigma}$, mostly determined by parton luminosity
- cross section in physical space expressed as an ordinary (as opposed to convolution) product.^a

Is $N_0(x)$ large for interesting values of x?

^aUseful for comparisons with SCET results [Bonvini, Forte, Ghezzi, R 2012; Bonvini, Forte, Rottoli, R 2015]

Not really:

[Bonvini, Forte, R 2012]

But ...

$$\tilde{\sigma}(m_H^2, N) = 1 + \alpha_s(m_H^2)C^{(1)}(N) + O(\alpha_s^2)$$

[Ball, Bonvini, Forte, Marzani, R 2012]

$$\tilde{\sigma}(m_H^2, N) = 1 + \alpha_s(m_H^2)C^{(1)}(N) + \alpha_s^2(m_H^2)C^{(2)}(N) + O(\alpha_s^3)$$

[Ball, Bonvini, Forte, Marzani, R 2012]

 $\tilde{\sigma}(m_H^2, N) = 1 + \alpha_s(m_H^2)C^{(1)}(N) + \alpha_s^2(m_H^2)C^{(2)}(N) + \alpha_s^3(m_H^2)C^{(2)}(N) + O(\alpha_s^4)$

[Bonvini, R 2022]

Known perturbative coefficients dominated by log contributions down to small values of N.

Questions:

- Is it true also for other processes?
- Is it true also at higher orders?
- Why?

5. Improved log approximations

Include cleverly-chosen subleading terms in order to improve the accuracy. The inverse Mellin of powers of $\log N$,

$$\mathcal{D}_k^{\log}(x) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} dN \, x^{-N} \log^k N = \left[\frac{\log^{k-1} \log x}{\log x} \right]_+$$

differs from what is found in explicit perturbative calculations

$$\mathcal{D}_k(x) = \left[\frac{\log^{k-1}(1-x)}{1-x}\right]_+$$

by non-logarithmically enhanced terms:

$$\log x = -(1-x) + O((1-x)^2))$$

Even better:

$$\log(1-x) \to \log \frac{1-x}{\sqrt{x}}$$

(also a subleading correction) for kinematical reasons (upper bound in the k_T integration).

In general

$$\mathcal{D}_k^{\log}(x) \to \hat{\mathcal{D}}_k(x) = \left[\frac{\log^{k-1}(1-x)}{1-x}\right]_+ - \frac{\log^{k-1}\sqrt{x}}{1-x}$$

Mellin transform computable in terms of polygamma functions; no unphysical branch cut on the negative real N axis.

- 6. Differential resummation of soft logarithms
 - Transverse momentum distributions
 - resummation of powers of $\log N$ at fixed q_T to NLL [De Florian, Kulesza, Vogelsang, 2006]
 - generalization to all-order accuracy [Forte, Rota, R 2021]
 - Rapidity distributions
 - Fully differential: work in progress

Many thanks to

- the organizers: Luca, Marco and Vittorio
- Marco Bonvini, Stefano Forte, Paolo Nason, Maria Ubiali

Best wishes Guido!