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Abstract. We give several sets of parton densities 
derived from recent measurements of structure func- 
tions in deep inelastic scattering. The difference among 
these densities reflects the uncertainties from deep 
inelastic data of different experiments, allowing an 
estimate of the error band for the predictions one may 
obtain for any given hadronic process at higher energy. 
The densities are available at any scale Q2< 
5.109GeV 2 and x>5.10 -5 and include next-to- 
leading corrections as well as threshold effects due t o  
heavy flavours. A comparison with a large set of data in 
a wide range of scales (Drell-Yan, W and Z production, 
etc.) is also presented. 

1 Introduction 
High statistics experiments on deep inelastic scattering 
have been performed in the last decade. As a conse- 
quence detailed information on the structure functions 
is now available. This information can be used to derive 
quark and gluon densities in the framework of the 
QCD improved parton model with a good degree of 
accuracy. These densities are the fundamental ingre- 
dients to make quantitative predictions for hadronic 
processes at very high energies. 

In this paper we present new sets of parton para- 
metrizations by analyzing recent experimental results 
on deep inelastic scattering. Our study differs with 
respect to previous works on the same subject [1 3] in 
many respects: 

1) Valence quark, antiquark and gluon densities 
have been extracted from the data at the reference scale 
Q~ = 10 GeV / taking consistently into account all the 
next to leading corrections at order ~s. 

2) Several sets of parton parametrizations, obtained 
by comparing different experimental determinations of 
the structure functions, are presented. Among them we 
indicate our preferred one, called "average" in the 
following. However by using the different sets pre- 

sented below it is possible to give, for any hadronic 
process, an estimate of the error which stems from the 
original uncertainties in the measurement of the struc- 
ture functions. We show in Sect. 5 that many experi- 
mental results coming from processes different from 
deep inelastic scattering lie within the band of error 
determined by using our different sets of parton 
densities. Thus we are confident that our theoretical 
predictions at much higher and still unexplored 
energies (HERA and Super Colliders) will constitute a 
reliable reference, within the band of error, for the 
experimental results still to come. 

3) The parton densities are evolved up to and 
including next-to-leading corrections and heavy quark 
thresholds; these latter according to the recent theoret- 
ical analysis of [4]. 

4) We do provide a computer program to evolve the 
parton densities at any scale Qz=<5.109GeV2 and 
x > 5.10 -5. In this program it is possible to vary not 
only the form of the input parton densities but also the 
definition (necessary beyond the leading logarithms) of 
the parton densities themselves, which in our standard 
version is the one suggested in [5, 6]. 

The paper is organized as follows: in Sect. 2 we recall 
the essential notation and formulae for deep inelastic 
scattering in the framework of the patton model; in 
Sect. 3 the evolution of the parton densities beyond the 
leading log approximation is discussed and all the 
relevant formulae given; in Sect. 4 the determination of 
the parton densities and of AQco from the structure 
functions is presented; in Sect. 5 we compare the 
predictions obtained by using our parametrizations 
with different experimental measurements in a wide 
range of energies. Finally in Sect. 6 we discuss the 
consequences of the input uncertainties when evolving 
the parton densities to scales appropriate for Super 
Collider physics. The FORTRAN code for the calcul- 
ation of the evolution of the patton densities is 
available upon request (ALG at CERNVM, 
VAXROM :: FERRONI, VAXROM ::DIEMOZ). 



A groundbreaking work in many respects:

• next-to-leading order Altarelli-Parisi evolution

[first application of Curci, Furmanski, Petronzio 1980]

• heavy quark thresholds

• an estimate of uncertainties

Numerical evolution in the space of Mellin moments and

numerical Mellin inversion

More on this later.
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Fig. 19. The 95~ c.l. upper limit on the additional number of light 
neutrino families obtained, as a function of the top quark mass, from 
the comparison of the experimentally determined value of R and our 
prediction. The allowed region is the one below the curve 

6 Parton densities at very high Q2 

This section is devoted to a detailed discussion of the 
patton densities evolved at scales much larger than 
Qo 2 = 10GeV 2. We study the indetermination of the 
parton densities at large scales stemming from the errors 
(and differences among different experiments) in low 
energy measurements of structure functions. Then we 
compare our results with DO and EHLQ. Finally we 
show separately and comment the results of the leading 
and next to leading logarithmic evolution of the 
densities, obtained using our definition beyond the 
leading order (cf. Sect. 2). The discussion on these 
points is important to monitor the error involved in 
theoretical predictions for cross sections at Super 
Collider energies. If not stated otherwise all figures 
refer to distributions evolved using only the lowest 
order Altarelli-Parisi kernels. 

As described in Sect. 4.2 we have derived for valence 
quarks hard distribution (from BEBC data), a soft 
distribution (from CHARM data) and an average one. 
In Fig. 20 we show the valence distribution 
x(u~(x) + d~(x)) in these three cases at Q2 = 104 GeV 2 
(intermediate vector boson scale) together with the 
corresponding curves obtained by DO and EHLQ. We 
see that the difference among the three different input 
distributions becomes smaller at higher scales. 

In the case of the antiquark density there are two 
main sources of error. The first one comes directly from 
the measurement error on the overall normalization 
discussed in Sect. 4.3; the second derives from the effect 
of qq pairs due to different initial gluon distributions. 
Since it is not possible to reconcile the CHARM and 
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Fig. 20. Oursoft, average and hard valence distributions (solid lines) 
evolved at Q2 = 10 4 GeV 2 are compared with DO (dashed line) and 
EHLQ (dotted line) predictions 
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Fig. 21. Antiquark distribution from average gluon (solid curve), 
soft gluon (dotted curve), hard gluon (dashed-dotted curve) and 
CDHS gluon (dashed curve) 

CDHS determination for the gluon we give separately 
in Fig. 21 curves for X?l = x ~  + x d  + xg corresponding 
to the gluo:a distribution from CDHS and the band 
obtained by varying the input gluon distribution 
within the confidence belt of the CHARM results. We 
also show in Fig. 22 x~ obtained in the extreme case in 
which the gluon distribution is fixed to zero at the 
initial scale Q~ as a test of the importance of the gluon 
density in the evolution of the antiquarks. 

In Fig. 23 we report the gluon distribution at Q2 = 
104 GeV 2, derived from the band given by the three 
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Left plot: fig. 20 of the original DFLM paper

Right plot: courtesy of Maria Ubiali for the NNPDF

collaboration
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1. Sudakov logarithms

Generic observable in perturbative QCD:

σ(Q2, x) =
∑
n

αn
s (Q2)σn(Q2, x); 0 ≤ x ≤ 1

with x defined so that the Born kinematics (soft emission, or

threshold, limit) corresponds to x = 1.

σn(Q2, x) =
2n∑
k=1

σnk

[
logk−1(1− x)

1− x

]
+

+ σn0δ(1− x) + rn(x)

We are interested in the region x→ 1∫ 1

1−xs

dxσn(Q2, x) =
2n∑
k=1

σnk
k

logk(1− xs) + σn0 +Rn(xs)

”Convergence” spoiled if αs log2(1− xs) ∼ 1; all-order resummation needed



An example: The qT spectrum of Higgs production at the LHC;

x = 1− q2
T

Q2 [Bozzi, Catani, de Florian, Grazzini 2006 following original

work by Collins, Soper and Sterman 1984]



An example: The qT spectrum of Higgs production at the LHC;

x = 1− q2
T

Q2
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2. Resummation

To be definite, consider the production of a weakly-interacting,

massive final state of squared mass Q2 (Drell-Yan pair, Higgs

boson) at squared energy s.

In this case x = Q2

s and x→ 1 in the threshold (soft emission)

limit.

Resummation performed in terms of Mellin moments

(factorization of phase space):

f̃(N) =

∫ 1

0

dxxN−1f(x); f(x) =
1

2πi

∫ c+i∞

c−i∞
dN x−N f̃(N)

where c > Re N̄i; N̄i singular points of f̃(N).



Large-x region mapped onto large-N :∫ 1

0

dxxN−1

[
logk−1(1− x)

1− x

]
+

∼ logkN + subleading logs

Resummed result in N space:

σ̃res(N) = g0(αs) exp

[
1

αs
g1(αs logN) + g2(αs logN) + αsg3(αs logN) + . . .

]
[Catani, Trentadue 1989; Sterman 1987]



3. A difficulty: the Landau pole

The functions g1(αs logN), g2(αs logN), . . . have a logarithmic branch

cut on the positive real N axis. A consequence of resummation.

Functions of

αs

(
Q2

N

)
=

αs(Q
2)

1− b0αs(Q2) logN
[1 + NLL]

(a proof by renormalization group

[Contopanagos, Laenen, Sterman 1997; Forte, R 2002])

Branch cut for

Re N > NL = exp
1

b0αs(Q2)

The inverse Mellin transform does not exist.



Way out [Catani, Mangano, Nason, Trentadue]: just don’t care!

c
NL

N space

Take the inverse Mellin transform as usual, with c� NL.

Usually referred to as the Minimal Prescription.



Drawback: ”inverse Mellin” different from zero (and oscillating)

for x > 1.
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• Not a serious problem: The power expansion of the MP

formula is free of ambiguities of the order of powers of
ΛQCD

Q

The ambiguity associated with the asymptotic expansion of

the MP resummation is exponentially suppressed, e
− Q

ΛQCD .

• Alternative prescriptions available, e.g. Borel sum [Forte,

Ubiali, Rojo, R 2006; Abbate, Forte, R 2007; Bonvini, Forte, R

2009]; small differences.



4. When is resummation relevant?

At collider energies, x = Q2

s typically very small (∼ 10−4 for Higgs

production at the LHC). However

σhadr(Q
2, x) =

∫ 1

x

dz

z
L(z)σ(Q2,

x

z
)

What really matters is the range of z that dominates the

convolution integral:

x

z
=
Q2

sz

can be significantly larger than x, depending on the shape of

parton densities.

Can we make this quantitative?



Mellin transform turns convolutions into ordinary products:

σ̃hadr(Q
2, N) = L̃(N)σ̃(Q2, N)

σhadr(Q
2, x) =

1

2πi

∫ c+i∞

c−i∞
dN x−N L̃(N)σ̃(Q2, N)

=
1

2πi

∫ c+i∞

c−i∞
dN expE(N, x)

The exponent

E(N, x) = N log
1

x
+ log L̃(N) + log σ̃(Q2, N)

has always a mimimum at N = N0(x) on the real N axis,

E′(N0(x), x) = 0; E′′(N0(x), x) > 0



Saddle-point approximation:

σhadr(Q
2, x) ≈ 1√

2πE′′(N0(x), x)
x−N0(x)L̃(N0(x))σ̃(Q2, N0(x))

Many nice features:

• very accurate

• both N0 and E′′ essentially independent of σ̃, mostly

determined by parton luminosity

• cross section in physical space expressed as an ordinary (as

opposed to convolution) product.a

Is N0(x) large for interesting values of x?

aUseful for comparisons with SCET results [Bonvini, Forte, Ghezzi, R 2012;

Bonvini, Forte, Rottoli, R 2015]



Not really:
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But ...



σ̃(m2
H , N) = 1 + αs(m

2
H)C(1)(N) +O(α2

s)
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σ̃(m2
H , N) = 1 + αs(m

2
H)C(1)(N) + α2

s(m2
H)C(2)(N) +O(α3

s)
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Known perturbative coefficients dominated by log contributions

down to small values of N .

Questions:

• Is it true also for other processes?

• Is it true also at higher orders?

• Why?



5. Improved log approximations

Include cleverly-chosen subleading terms in order to improve the

accuracy. The inverse Mellin of powers of logN ,

Dlog
k (x) =

1

2πi

∫ c+i∞

c−i∞
dN x−N logkN =

[
logk−1 log x

log x

]
+

differs from what is found in explicit perturbative calculations

Dk(x) =

[
logk−1(1− x)

1− x

]
+

by non-logarithmically enhanced terms:

log x = −(1− x) +O((1− x)2))



Even better:

log(1− x)→ log
1− x√
x

(also a subleading correction) for kinematical reasons (upper

bound in the kT integration).

In general

Dlog
k (x)→ D̂k(x) =

[
logk−1(1− x)

1− x

]
+

− logk−1√x
1− x

Mellin transform computable in terms of polygamma functions;

no unphysical branch cut on the negative real N axis.



6. Differential resummation of soft logarithms

• Transverse momentum distributions

– resummation of powers of logN at fixed qT to NLL [De

Florian, Kulesza, Vogelsang, 2006]

– generalization to all-order accuracy [Forte, Rota, R 2021]

• Rapidity distributions

• Fully differential: work in progress
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