
Application speed-
up: an example with

NAMD

FELICE PANTALEO – CERN

DANIELE CESINI – INFN-CNAF

Speedup of a real application

07/10/2022ESC22 - BERTINORO 2

NAMD

▪A parallel molecular dynamics code designed for high-performance simulation of large

biomolecular systems

▪Can be download here: https://www.ks.uiuc.edu/Research/namd/

▪Installing…

▪ https://github.com/infn-esc/esc22/blob/main/hands-on/mpi/Make_and_Install_NAMD.sh

▪Running on real molecule…

▪ https://github.com/infn-esc/esc22/blob/main/hands-on/mpi/HowTo_Launch_NAMD_on_APOA1.sh

▪GPU Porting available on CUDA

07/10/2022ESC22 - BERTINORO 3

https://www.ks.uiuc.edu/Research/namd/
https://github.com/infn-esc/esc22/blob/main/hands-on/mpi/Make_and_Install_NAMD.sh
https://github.com/infn-esc/esc22/blob/main/hands-on/mpi/HowTo_Launch_NAMD_on_APOA1.sh

Speedup of an application

May 2022D. CESINI - INFN-CNAF - INTRODUCTION TO BIG DATA PROCESSING INFRASTRUCTURES - BOLOGNA 4

Speedup: measures the increased performance in running in

parallel on P processors

𝑆 𝑃 =
𝑇𝑆𝑒𝑞 1

𝑇𝑃𝑎𝑟(𝑃)

Perfect Linear Speedup: no overhead due to parallelism.

Speedup equals the number of processors

S(P) = P

Parallel computation efficiency

May 2022D. CESINI - INFN-CNAF - INTRODUCTION TO BIG DATA PROCESSING INFRASTRUCTURES - BOLOGNA 5

Efficiency: measures how well the hardware resources (processors) are utilized

𝜀 =
𝑇
𝑆𝑒𝑞

𝑃∗𝑇𝑃𝑎𝑟 (𝑃)
=

𝑆 (𝑃)

𝑃

T = Elapsed Time
P = Number of processors Used

Speedup examples – NAMD APOA1

May 2022D. CESINI - INFN-CNAF - INTRODUCTION TO BIG DATA PROCESSING INFRASTRUCTURES - BOLOGNA 6

Speedup example – NAMD APOA1

May 2022D. CESINI - INFN-CNAF - INTRODUCTION TO BIG DATA PROCESSING INFRASTRUCTURES - BOLOGNA 7

Speedup – NAMD STMV

May 2022D. CESINI - INFN-CNAF - INTRODUCTION TO BIG DATA PROCESSING INFRASTRUCTURES - BOLOGNA 8

Let’s add dimensions….accelerators

07/10/2022ESC22 - BERTINORO 9

Reasonable Speedups - 1

May 2022D. CESINI - INFN-CNAF - INTRODUCTION TO BIG DATA PROCESSING INFRASTRUCTURES - BOLOGNA 10

© Tim Matson @ESC school

Reasonable Speedups - 3

May 2022D. CESINI - INFN-CNAF - INTRODUCTION TO BIG DATA PROCESSING INFRASTRUCTURES - BOLOGNA 11

© Tim Matson @ESC school

Apply it to our system

07/10/2022ESC22 - BERTINORO 12

CPU GPU

Chip DUAL IntelXeon Gold 6148 CPU @
2.40GHz

QUAD NVIDIA Tesla V100
SXM2 32GB

Compute Perf Peak
(single precision)

2(socket)*20(core)*2.4(clock
GHz)*512/32(avx) = 1.5TF (sp)

FP(32)(float performance)
==> 14.13TF

Bandwidth Peak 2 * socket * 6 (channel/sock) *
20GB/s =240GB/s

4x 143GB/s = 572GB/s

Max Speed-Up CPU/GPU

Compute Bound App (sp) 14.13/1.5 = 9.5

Bandwidth Bound App 572/240 = 2.4

Common Mistakes in Comparing CPU and GPU performances

May 2022D. CESINI - INFN-CNAF - INTRODUCTION TO BIG DATA PROCESSING INFRASTRUCTURES - BOLOGNA 13

▪Compare the latest GPU against an old CPU

▪Highly optimized GPU code vs. unoptimized CPU code

▪Compare optimized CUDA vs. Matlab or python

▪Parallel GPU code vs. serial, unvectorized CPU code

▪Ignore the GPU penalty of moving data across the PCI bus from the CPU to the GPU

▪GPUs and other accelerators can be great but be suspicious when people claim speedups

of 100+

© Tim Matson @ESC school

Parallelism beyond
the node:

Introduction to MPI
Programming

FELICE PANTALEO – CERN

DANIELE CESINI – INFN-CNAF

Reference Material

▪ MPI Standard: https://www.mpi-forum.org/docs/

▪ Open-mpi.org: https://www.open-mpi.org/doc/v3.0/man3/MPI_Wtime.3.php
▪ https://www.open-mpi.org/faq/

▪ MPICH.org: https://www.mpich.org/

▪ MPI Tutorial: https://mpitutorial.com/

▪Message Passing Interface (MPI). Author: Blaise Barney, Lawrence Livermore National
▪ https://hpc-tutorials.llnl.gov/mpi/

▪Tutorial and exercises @ Argonne National Laboratory:
https://www.mcs.anl.gov/research/projects/mpi/tutorial/mpiexmpl/contents.html

▪ www.google.com

07/10/2022ESC22 - BERTINORO 15

(Credits to Tim Mattson at IntelLab for his ““Hands-on” Introduction to MPI” at ESC15)

https://www.open-mpi.org/doc/v3.0/man3/MPI_Wtime.3.php
https://www.open-mpi.org/faq/
https://www.mpich.org/
https://mpitutorial.com/
https://hpc-tutorials.llnl.gov/mpi/
http://www.google.com/

Multithread vs Multiprocess

▪Multithreading and multiprocessing are two ways

to achieve multitasking

▪A process has its own memory

▪A thread shares the memory with the parent

process and other threads within the process.

▪pid is process identifier; tid is thread identifier

▪ (*)But as it happens, the kernel doesn't make a real
distinction between them: threads are just like
processes but they share some things (memory,
fds...) with other instances of the same group

▪Inter-process communication is slower due to

isolated memory

07/10/2022ESC22 - BERTINORO 16

(*)https://stackoverflow.com/questions/4517301/difference-between-pid-and-tid

Shared Memory Systems

▪Shared memory is memory that may be
simultaneously accessed by multiple programs with
an intent to provide communication among them
or avoid redundant copies

▪Shared memory is an efficient means of passing
data between programs

▪Shared memory systems may use uniform memory
access (UMA): all the processors share the
physical memory uniformly

▪Non-uniform memory access (NUMA): memory
access time depends on the memory location
relative to a processor

07/10/2022ESC22 - BERTINORO 17

NUMA Architecture Programming
◼ A programmer can set an allocation policy for its
program using a component of NUMA API called
libnuma.

◼ a user space shared library that can be linked to
applications

◼ provides explicit control of allocation policies to user
programs.

◼ The NUMA execution environment for a process
can also be set up by using the numactl tool

◼ Numactl can be used to control process mapping
to cpuset and restrict memory allocation to specific
nodes without altering the program’s source code

07/10/2022ESC22 - BERTINORO 18

http://halobates.de/numaapi3.pdf

Distributed Memory Systems

▪Distributed memory refers to a

multiprocessor computer system in which

each processor has its own private memory

▪Computational tasks can only operate on

local data

▪if remote data is required, the computational

task must communicate with one or more

remote processors

▪In contrast, a shared memory multiprocessor

offers a single memory space used by all

processors

07/10/2022ESC22 - BERTINORO 19

Shared vs Distributed Memory Systems

07/10/2022ESC22 - BERTINORO 20

Clusters

07/10/2022ESC22 - BERTINORO 21

[a cluster is a] parallel computer system comprising an integrated collection of independent nodes, each
of which is a system in its own right, capable of independent operation and derived from products
developed and marketed for other stand-alone purposes

© Dongarra et al. : “High-performance computing: clusters, constellations, MPPs, and future directions”,
Computing in Science & Engineering (Volume:7 , Issue: 2)

(*) Picture from: http://en.wikipedia.org/wiki/Computer_cluster

Top500.org 2021 stats

System Topology

▪Knowing where you

are is important!!

▪ Always try to
understand the
details of the
system you are
running on

07/10/2022ESC22 - BERTINORO 22

lstopo --no-io -.txt

System Networking

07/10/2022ESC22 - BERTINORO 23

hpc-200-06-06

hpc-200-06-17

hpc-200-06-18hpc-200-06-40

Shared Storage SAN

IB Switch
QDR: 40Gbit/s

OPA Switch
100Gbit/s

Ethernet Switch/Router: 1 Gbit/s

Other nodes
in cluster

Other nodes
in cluster

System Networking

07/10/2022ESC22 - BERTINORO 24

The Message Passing Programming Model

▪Program consists of a collection of

named processes

▪Number of processes almost always
fixed at program startup time

▪ Local address space per node -- NO
physically shared memory.

▪ Logically shared data is partitioned over
local processes

▪Communication happens by explicit

send/receive statements

07/10/2022ESC22 - BERTINORO 25

▪Message can be passed over a network

infrastructure o via the main memory,

“shared” memory

Performance and Efficiency Loss?

▪The latency of the DRAM can be measured in

tens of nanoseconds

▪Sending a byte to a networked computer can

take 2-3 orders of magnitude longer than DRAM,

depending on the interconnect technology

▪In using Message Passing, try hard to minimize

communication

▪In any case, the interconnection technology

greatly affects the program performances

▪ Ethernet 1Gbs latency O(10.000ns)

▪ Infiniband HDR latency O(200ns)

▪ DDR4-3600 latency O(60ns)

▪ DDR5-5600 latency O(10ns)

07/10/2022ESC22 - BERTINORO 26

Latency Numbers every programmer should know

Communication performances in MPI Applications

07/10/2022ESC22 - BERTINORO 27

8 processes
2 hosts
MPI send/receive
over ethernet

Communication performances in MPI Applications

07/10/2022ESC22 - BERTINORO 28

8 processes
2 hosts
MPI send/receive via
shared memory

Communication performances in MPI Applications

07/10/2022ESC22 - BERTINORO 29

MPI

▪ MPI is a standard : http://www.mpiforum.org/

▪ Defines API for C, C++, Fortran77, Fortran90

▪ Library with diverse functionalities:

▪ Communication primitives (blocking, non-blocking)

▪ Parallel I/O

▪ RMA

▪ Neighborhood collectives

▪When you run an MPI program, multiple processes

all running the same program are launched working

on their own block of data

07/10/2022ESC22 - BERTINORO 30

http://www.mpiforum.org/

SPMD – Single Program Multiple Data

▪Every process runs the same program…

▪ ……on P processing elements where P can be arbitrarily large

▪Each process has a unique identifier and runs the version of the

program with that particular identifier

▪ the rank - an ID ranging from 0 to (P-1)

▪ Each process access its own private data

▪You usually run one process per socket/core depending on the

parallelization strategy

▪And on the system topology

07/10/2022ESC22 - BERTINORO 31

SPMD – Single Program Multiple Data

Process 1

If pid == 1:

a = 5

Send (a,2)

Else:

Recv(b,1)

b++

07/10/2022ESC22 - BERTINORO 32

Process 2

If pid == 1:

a = 5

Send (a,2)

Else:

Recv(b,1)

b++

MPI Implementations

▪ MPICH
▪ The initial implementation of the MPI 1.x standard, from Argonne National Laboratory (ANL) and Mississippi

State University.

▪ ANL has continued developing MPICH for over a decade, and now offers MPICH-3.2, implementing the MPI-
3.1 standard

▪IBM also was an early implementor, and most early 90s supercomputer companies either
commercialized MPICH, or built their own implementation.

▪LAM/MPI from Ohio Supercomputer Center
▪ another early open implementation..

▪Open MPI (not to be confused with OpenMP) was formed by the merging FT-MPI, LA-MPI,
LAM/MPI, and PACX-MPI, and is found in many TOP-500 supercomputers.
▪ We will use OpenMPI for our exercises!!

▪Many other efforts are derivatives of MPICH, LAM, and other works, including, but not limited to,
commercial implementations from HP, Intel, Microsoft, and NEC.

07/10/2022ESC22 - BERTINORO 33

MPI HelloWorld

#include <iostream>
#include <mpi.h>

int main(intargc,char**argv){
int rank, world_size;

MPI_Init(&argc,&argv);
MPI_Comm_rank(MPI_COMM_WORLD,&rank);
MPI_Comm_size(MPI_COMM_WORLD,&world_size);
char processor_name[MPI_MAX_PROCESSOR_NAME];

int name_len;

MPI_Get_processor_name(processor_name, &name_len);

std::cout << "Hello world from processor " << processor_name << " rank " << rank << " of "
<< world_size << std::endl;

MPI_Finalize();
return 0;

}

07/10/2022ESC22 - BERTINORO 34

MPI_Init and MPI_Finalize

#include <iostream>
#include <mpi.h>

int main(intargc,char**argv){
int rank, world_size;

MPI_Init(&argc,&argv);
MPI_Comm_rank(MPI_COMM_WORLD,&rank);
MPI_Comm_size(MPI_COMM_WORLD,&world_size);
char processor_name[MPI_MAX_PROCESSOR_NAME];

int name_len;

MPI_Get_processor_name(processor_name, &name_len);

std::cout << "Hello world from processor " << processor_name << " rank " << rank << " of "
<< world_size << std::endl;

MPI_Finalize();
return 0;

}

07/10/2022ESC22 - BERTINORO 35

Called before any other MPI functions
- Initializes the library
- Argc and argv are the command line args passed to main

- - Open MPI accepts the C/C++ argc and argv
arguments to main, but neither modifies, interprets,
nor distributes them

Called to close any MPI program
- Frees memory allocated by MPI

How many processes?

#include <iostream>
#include <mpi.h>

int main(int argc, char** argv){
int rank, world_size;

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD,&rank);
MPI_Comm_size(MPI_COMM_WORLD,&size);

char processor_name[MPI_MAX_PROCESSOR_NAME];
int name_len;
MPI_Get_processor_name(processor_name, &name_len);
std::cout << "Hello world from processor " << processor_name

<< " rank " << rank << " of " << world_size << std::endl;

MPI_Finalize();
return 0;

}

07/10/2022ESC22 - BERTINORO 36

int MPI_Comm_size (MPI_Comm comm, int*

size)

- MPI_Comm, an opaque data type called a

communicator. Default context:

MPI_COMM_WORLD (all processes)
- MPI_Comm_size returns the number of

processes in the process group associated with

the communicator

Communicators consist of two parts, a context and a

process group. The communicator lets us control how

groups of messages interact.

Who am I? (which is my rank?)

#include <iostream>
#include <mpi.h>

int main(int argc, char** argv){
int rank, world_size;

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD,&rank);
MPI_Comm_size(MPI_COMM_WORLD,&size);

char processor_name[MPI_MAX_PROCESSOR_NAME];
int name_len;
MPI_Get_processor_name(processor_name, &name_len);
std::cout << "Hello world from processor " << processor_name

<< " rank " << rank << " of " << world_size << std::endl;

MPI_Finalize();
return 0;

}

07/10/2022ESC22 - BERTINORO 37

int MPI_Comm_rank (MPI_Comm comm, int*

rank)

- MPI_Comm, an opaque data type called a

communicator. Default context:

MPI_COMM_WORLD (all processes)
- MPI_Comm_rank returns an integer ranging from

0 to “(num of procs)-1”

Note that other than init() and finalize(), every MPI function

has a communicator which defines the context and group of

processes that the MPI functions impact

Communicators and Groups - 1
▪Internally, MPI has to keep up with (among other things) two major
parts of a communicator
▪ the context (or ID) that differentiates one communicator from another
▪ prevents an operation on one communicator from matching with a similar operation on another

communicator

▪ the group of processes contained by the communicator

▪Communicators provides a separate communication space

▪It’s not unusual to do everything using MPI_COMM_WORLD, but for
more complex use cases, it might be helpful to have more
communicators.
▪ MPI_Comm_split is the simplest way to create a new communicator

▪A Group is a little simpler, since it is just the set of all processes in the
communicator.
▪ MPI offers function to manage Groups: Union or Intersection

▪ Groups can be used to create Communicators

07/10/2022ESC22 - BERTINORO 38

Communicators and Groups - 2

// Get the rank and size in the original communicator
int world_rank, world_size;
MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);
MPI_Comm_size(MPI_COMM_WORLD, &world_size);

int color = world_rank / 4; // Determine color based on row

// Split the communicator based on the color and use the
// original rank for ordering
MPI_Comm row_comm;
MPI_Comm_split(MPI_COMM_WORLD, color, world_rank,
&row_comm);

int row_rank, row_size;
MPI_Comm_rank(row_comm, &row_rank);
MPI_Comm_size(row_comm, &row_size);

printf("WORLD RANK/SIZE: %d/%d \t ROW RANK/SIZE:
%d/%d\n",

world_rank, world_size, row_rank, row_size);

MPI_Comm_free(&row_comm);

07/10/2022ESC22 - BERTINORO 39

© https://mpitutorial.com/tutorials/introduction-to-groups-
and-communicators/

Split a Large Communicator into a Smaller ones

How do I run it?
▪ Compile it:
▪ mpic++ -o MPI_Hello.out MPI_Hello.cpp

▪Run it:
▪ mpirun –hostfile machinefile.txt –np <np>

MPI_Hello.out

▪ the command is implementation dependent
[cesinihpc@hpc-200-06-18 esc22]$ cat machinefile.txt

hpc-200-06-18 slots=2

hpc-200-06-17 slots=2

hpc-200-06-02 slots=2

07/10/2022ESC22 - BERTINORO 40

Add to the .bashrc the following two lines:
module load compilers/gcc-12.2_sl7
module load compilers/openmpi-4-1-4_gcc12.2

Use option --mca btl_openib_allow_ib 1
To suppress worning on IB usage (for
openMPI4.0 and later)

mpirun --mca btl_openib_allow_ib 1 -H hpc-200-06-18:2,hpc-
200-06-17:2,hpc-200-06-06:2 -np 6 MPI_Hello.outThe same of running this

A couple of notes

▪ The executable must be present in all the hosts used, in the same path

▪ You are lucky in the school nodes – shared homes!!

▪ OpenMPI in our cluster uses ssh to connect to the remote hosts

▪ ssh should work passwordless (HostBasedAuthentication yes in sshd_config)

▪ During login the OpenMPI environment should be loaded
▪ Typically via the .basrc file

07/10/2022ESC22 - BERTINORO 41

Point-to-Point Communication

07/10/2022ESC22 - BERTINORO 42

Messages

▪In general, in order to be able to communicate using messages you

need to fill in a header and a payload

▪Synchronous send: If the sender waits for the message to be received

▪Asynchronous send returns immediately after the message has been

sent

▪Receiving is usually synchronous

▪Messages have to match, otherwise deadlocks can occur

07/10/2022ESC22 - BERTINORO 43

Messages – Send and Receive

▪Int MPI_Send performs a blocking send of the specified data (“count” copies of type “datatype,”

stored in “buf”) to the specified destination (rank “dest” within communicator “comm”), with

message ID “tag”

▪ int MPI_Recv (void* buf, int count, MPI_Datatype datatype, int source, int tag, MPI_Comm comm,

MPI_Status* status)

▪“blocking” means the functions return as soon as the buffer, “buf”, can be safely used.

07/10/2022ESC22 - BERTINORO 44

int MPI_Send (const void* buf, int count, MPI_Datatype datatype, int dest, int tag, MPI_Comm comm)

int MPI_Recv (void* buf, int count, MPI_Datatype datatype, int source, int tag, MPI_Comm comm,
MPI_Status* status)

MPI Message Buffer

▪In a perfect world, every send operation would be
perfectly synchronized with its matching receive. This is
rarely the case.

▪The MPI implementation must be able to deal with
storing data when the two tasks are out of sync.

▪Consider the following two cases:
▪ A send operation occurs 5 seconds before the receive is

ready - where is the message while the receive is pending?

▪ Multiple sends arrive at the same receiving task which can
only accept one send at a time - what happens to the
messages that are "backing up"?

▪The MPI implementation (not the MPI standard) decides
what happens to data in these types of cases.

▪Typically, a system buffer area is reserved to hold data
in transit

07/10/2022ESC22 - BERTINORO 45

▪Opaque to the programmer and managed entirely by the MPI
library

▪A finite resource that can be easy to exhaust

▪Often mysterious and not well documented

▪Able to exist on the sending side, the receiving side, or both

▪Something that may improve program performance because
it allows send - receive operations to be asynchronous

Blocking vs Non-Blocking

▪Blocking:

▪ A blocking send routine will only "return" after it is safe to modify the application buffer (your sent data) for
reuse.

▪ Safe means that modifications will not affect the data intended for the receive task.

▪ Safe does not imply that the data was actually received - it may very well be sitting in a system buffer

▪Non-Blocking

▪ Non-blocking send and receive routines behave similarly - they will return almost immediately.

▪ They do not wait for any communication events to complete, such as message copying from user memory to
system buffer space or the actual arrival of message

▪ Non-blocking operations simply "request" the MPI library to perform the operation when it is able. The user
can not predict when that will happen.

▪ It is unsafe to modify the application buffer (your variable space) until you know for a fact the requested
non-blocking operation was actually performed by the library. There are "wait" routines used to do this.

▪ Non-blocking communications are primarily used to overlap computation with communication and exploit
possible performance gains

07/10/2022ESC22 - BERTINORO 46

Order

▪MPI guarantees that messages will not overtake each other.

▪If a sender sends two messages (Message 1 and Message 2) in succession to the same

destination, and both match the same receive, the receive operation will receive Message 1

before Message 2.

▪If a receiver posts two receives (Receive 1 and Receive 2), in succession, and both are looking

for the same message, Receive 1 will receive the message before Receive 2.

07/10/2022ESC22 - BERTINORO 47

Fairness

▪MPI does not guarantee fairness - it's up to

the programmer to prevent "operation

starvation".

▪Example: task 0 sends a message to task 2.

However, task 1 sends a competing message

that matches task 2's receive. Only one of the

sends will complete

07/10/2022ESC22 - BERTINORO 48

The scenario requires that the receive used the wildcard
MPI_ANY_SOURCE as its source argument.

Non-blocking Send and Receive

▪ int MPI_Isend begins a non-blocking send of the variable buf to destination dest.

▪Int MPI_Irecv begins a non-blocking receive

▪Since non-blocking operations may return before the requested system buffer space is obtained, the
system issues a unique "request number".
▪ The programmer uses this system assigned "handle" later (in a WAIT type routine) to determine completion of the

non-blocking operation
▪ MPI_Wait(request, status)

▪ MPI_Test(request, flag, status)

▪Anywhere you use MPI_Send or MPI_Recv, you can use the pair of MPI_Isend/MPI_Wait or
MPI_Irecv/MPI_Wait

07/10/2022ESC22 - BERTINORO 49

int MPI_ISend (const void *buf, int count, MPI_Datatype datatype, int dest, int tag, MPI_Comm comm,
MPI_Request *request)

int MPI_IRecv (void *buf, int count, MPI_Datatype datatype, int source, int tag, MPI_Comm comm,
MPI_Request *request)

Send and Receive exercise – the PingPong

https://github.com/infn-esc/esc22/blob/main/hands-on/mpi/PingPong.cpp

07/10/2022ESC22 - BERTINORO 50

Change the Network interface

▪Following the so-called "Law of Least Astonishment", Open MPI assumes that if you have both an IP

network and at least one high-speed network (such InfiniBand), you will likely only want to use the

high-speed network(s) for MPI message passing

▪ Open MPI may still use TCP for setup and teardown information — so you'll see traffic across your IP network
during startup and shutdown of your MPI job. This is normal and does not affect the MPI message passing
channels.

▪mpirun --mca btl_openib_allow_ib 1 -np 2 --hostfile machinefile.txt BandWidth.out

[cesinihpc@hpc-200-06-17 esc22]$ cat machinefile.txt

hpc-200-06-17 slots=1

hpc-200-06-18 slots=1

07/10/2022ESC22 - BERTINORO 51

Effect of changing the network interface
▪mpirun --mca btl_openib_allow_ib 1 -np 2 --hostfile machinefile.txt BandWidth.out

07/10/2022ESC22 - BERTINORO 52

▪mpirun --mca btl tcp,self,vader --mca pml ob1 --mca btl_tcp_if_include eth1 --hostfile machinefile.txt -
np 2 BandWidth.out

Now try using the SH (shared memory) MCA.…any improvement?

Non Blocking PingPong

07/10/2022ESC22 - BERTINORO 53

https://github.com/infn-esc/esc22/blob/main/hands-on/mpi/NoBloc_PingPong.cpp

Collective Communication

07/10/2022ESC22 - BERTINORO 54

Scope

▪A message can be sent to/received from a group of processes

▪Collective communication routines must involve all processes within

the scope of a communicator

▪It is the programmer's responsibility to ensure that all processes

within a communicator participate in any collective operations.

▪Use collective communication when possible

▪They are implemented more efficiently than the sum of their point-to-point
equivalent calls

07/10/2022ESC22 - BERTINORO 55

Types of Collective Operations

▪Synchronization - processes wait until all members of

the group have reached the synchronization point.

▪ Data Movement

▪ Broadcast

▪ Scatter/gather

▪ All-to-All.

▪Collective Computation (reductions)

▪ one member of the group collects data from the other
members and performs an operation on that data

▪ Min

▪ Max

▪ Add

▪ multiply

07/10/2022ESC22 - BERTINORO 56

MPI_Barrier

▪MPI_Barrier(MPI_Comm Comm)

▪Blocks until all processes have

reached this routine

▪ Blocks the caller until all group
members have called it

07/10/2022ESC22 - BERTINORO 57

An MPI Barrier call before a communication phase ensures a synchronized start of the
communication calls (top). When removing the barrier there is an un-synchronized start (bottom)

Broadcast

▪int MPI_Bcast_c(void *buffer, MPI_Count count,

MPI_Datatype datatype, int root, MPI_Comm

comm)

▪ broadcasts a message from the process with rank root to
all processes of the group, itself included.

▪ It is called by all members of the group using the same
arguments for comm and root.

▪ On return, the content of root’s buffer is copied to all
other processes.

07/10/2022ESC22 - BERTINORO 58

Gather

▪int MPI_Gather(const void *sendbuf, int
sendcount, MPI_Datatype sendtype, void
*recvbuf, int recvcount, MPI_Datatype
recvtype, int root, MPI_Comm comm)
▪ each process (root process included) sends the

contents of its send buffer to the root process.

▪ The root process receives the messages and
stores them in rank order

▪ The receive buffer is ignored for all non-root
processes

▪ Note that the recvcount argument at the root
indicates the number of items it receives from
each process, not the total number of items it
receives

07/10/2022ESC22 - BERTINORO 59

Scatter

▪int MPI_Scatter(const void *sendbuf, int sendcount,

MPI_Datatype sendtype, void *recvbuf, int recvcount,

MPI_Datatype recvtype, int root, MPI_Comm comm)

▪ the root sends a message with
MPI_Send(sendbuf,sendcountn, sendtype,…). This message
is split into n equal segments, the i-th segment is sent
to the i-th process in the group, and each process
receives this message as above.

▪ The send buffer is ignored for all non-root processes

07/10/2022ESC22 - BERTINORO 60

Reduce

▪int MPI_Reduce(const void *sendbuf, void *recvbuf,

int count, MPI_Datatype datatype, MPI_Op op, int

root, MPI_Comm comm)

▪ combines the elements provided in the input buffer of
each process in the group, using the operation op,
and returns the combined value in the output buffer
of the process with rank root.

▪ The input buffer is defined by the arguments sendbuf,
count and datatype; the output bu
er is defined by the arguments recvbuf, count and
datatype;

07/10/2022ESC22 - BERTINORO 61

Reduce Operations

▪MPI_MAX - Returns the maximum element

▪MPI_MIN - Returns the minimum element

▪MPI_SUM - Sums the elements.

▪MPI_PROD - Multiplies all elements.

▪MPI_LAND - Performs a logical and across the elements

▪MPI_LOR - Performs a logical or across the elements

▪MPI_BAND - Performs a bitwise and across the bits of the elements

▪MPI_BOR - Performs a bitwise or across the bits of the elements

▪MPI_MAXLOC - Returns the maximum value and the rank of the process that owns it

▪MPI_MINLOC - Returns the minimum value and the rank of the process that owns it

07/10/2022ESC22 - BERTINORO 62

Other Collective Opertaions

▪MPI_ALLGATHER can be thought of as

MPI_GATHER, but where all processes receive

the result, instead of just the root

▪MPI_ALLTOALL is an extension of

MPI_ALLGATHER to the case where each

process sends distinct data to each of the

receivers. The j-th block sent from process i is

received by process j and is placed in the i-th

block of recvbuf.

07/10/2022ESC22 - BERTINORO 63

The MPI_Pi
https://github.com/infn-esc/esc22/blob/main/hands-on/mpi/MPI_Pi.cpp

07/10/2022ESC22 - BERTINORO 64

Run-time Tuning: Process Affinity

▪Open MPI supports processor affinity on a variety of systems through process binding
▪ Each MPI process is "bound" to a specific subset of processing resources (cores, sockets, L* cache, hwthread etc.).

▪ The operating system will constrain that process to run on only that subset

▪Affinity can improve performance by inhibiting excessive process movement
▪ for example, away from "hot" caches or NUMA memory.

▪Judicious bindings can improve performance
▪ by reducing resource contention (by spreading processes apart from one another)

▪ improving interprocess communications (by placing processes close to one another).

▪Binding can also improve performance reproducibility by eliminating variable process placement.

▪Unfortunately, binding can also degrade performance by inhibiting the OS capability to balance loads.

▪Depending on how processing units on your node are numbered, the binding pattern may be good, bad, or
even disastrous
▪ If you want to control affinity you have to know what you are doing

07/10/2022ESC22 - BERTINORO 65

Mapping, Ranking, and Binding: Oh My!

▪Open MPI employs a three-phase procedure for assigning process locations and ranks:

▪Mapping
▪ Assigns a default location to each process

▪Ranking
▪ Assigns an MPI_COMM_WORLD rank value to each process

▪Binding
▪ Constrains each process to run on specific processors

▪To control process mapping in the command line:

▪ --map-by <foo>

▪ Map to the specified object, defaults to socket.

▪ <foo> can be: slot, hwthread, core, L1cache, L2cache, L3cache, socket, numa, board, node, sequential, distance,
and ppr.

07/10/2022ESC22 - BERTINORO 66

Often a good choice is to let MPI decide for you.
But if you want to master the MPI mapping, the
mpirun manual is a good starting point:
https://www.open-
mpi.org/doc/v4.1/man1/mpirun.1.php

Run-time Tuning - Binding

▪ In Open-MPI - mpirun automatically binds processes as of the

start of the v1.8 series

▪Two binding patterns are used in the absence of any further directives:
▪ Bind to core: when the number of processes is <= 2

▪ Bind to socket: when the number of processes is > 2

▪ To control process binding in the command line:
▪--bind-to <foo>:
▪ Bind processes to the specified object, defaults to core.

▪ Supported options include slot, hwthread, core, l1cache, l2cache, l3cache, socket, numa, board, and
none.

▪-report-bindings, --report-bindings: Report any bindings for launched
processes.

07/10/2022ESC22 - BERTINORO 67

Fine binding: The rankfile

▪-rf, --rankfile <rankfile>

▪ Provide a rankfile file for fine control of the process allocation

▪ rank <N>=<hostname> slot=<slot list>

For example:

$ cat myrankfile

rank 0=aa slot=1:0-2

rank 1=bb slot=0:0,1

rank 2=cc slot=1-2

07/10/2022ESC22 - BERTINORO 68

Rank 0 runs on node aa, bound to logical socket 1, cores 0-2.
Rank 1 runs on node bb, bound to logical socket 0, cores 0 and 1.
Rank 2 runs on node cc, bound to logical cores 1 and 2.

Bind-to core example

07/10/2022ESC22 - BERTINORO 69

A disastrous binding example

07/10/2022ESC22 - BERTINORO 70

Run-time tuning: Memory Affinity

▪Open MPI supports general and specific memory affinity,

▪it generally tries to allocate all memory local to the processor that asked for it.

▪When shared memory is used for communication, Open MPI uses memory affinity to make

certain pages local to specific processes in order to minimize memory network/bus traffic.

07/10/2022ESC22 - BERTINORO 71

Homework Exercise

▪Matrix transpose

▪ https://www.hpc.cineca.it/content/exercise-15

▪ Solution: https://www.hpc.cineca.it/content/solution-15

▪Matrix Multiplication

▪ https://www.hpc.cineca.it/content/exercise-16

▪ https://www.hpc.cineca.it/content/solution-16

▪2D Laplace Equation

▪ https://www.mcs.anl.gov/research/projects/mpi/tutorial/mpiexmpl/src/jacobi/C/main.html

07/10/2022ESC22 - BERTINORO 72

https://www.hpc.cineca.it/content/exercise-15
https://www.hpc.cineca.it/content/solution-15
https://www.hpc.cineca.it/content/exercise-16
https://www.hpc.cineca.it/content/solution-16
https://www.mcs.anl.gov/research/projects/mpi/tutorial/mpiexmpl/src/jacobi/C/main.html

