
www.casus.science

Efficient Scientific Computing School – 13th Edition
Introduction to Software Portability Among
Heterogeneous Architectures

ESC22 – Introduction to Software Portability Among Heterogeneous Architectures | 2

About Me

● Computer Scientist
● Email: j.stephan@hzdr.de
● GitHub: https://www.github.com/j-stephan

● PhD Student @ CASUS – Center for Advanced Systems Understanding
● Located in Görlitz, Germany
● Department of Helmholtz-Zentrum Dresden-Rossendorf (HZDR)
● Web page: https://www.casus.science

● Strong high-performance computing (HPC) focus
● Programming for heterogeneous hardware
● Designing and implementing abstraction layers
● Performance analysis

mailto:j.stephan@hzdr.de
https://www.github.com/j-stephan
https://www.casus.science/

ESC22 – Introduction to Software Portability Among Heterogeneous Architectures | 3

What is a heterogeneous system?

ESC22 – Introduction to Software Portability Among Heterogeneous Architectures | 4

Life After TBB

So far on ESC22

● Computer architectures

● Modern C++ programming

● Floating-point computations

● Parallel C++ programming with TBB

ESC22 – Introduction to Software Portability Among Heterogeneous Architectures | 5

Life After TBB

So far on ESC22

● Computer architectures

● Modern C++ programming

● Floating-point computations

● Parallel C++ programming with TBB

… What is missing?

ESC22 – Introduction to Software Portability Among Heterogeneous Architectures | 6

Life After TBB

So far on ESC22

● Computer architectures

● Modern C++ programming

● Floating-point computations

● Parallel C++ programming with TBB

… What is missing?

ESC22 – Introduction to Software Portability Among Heterogeneous Architectures | 7

Modern Heterogeneous Systems

● (Virtually) all modern desktops and laptops are heterogeneous systems
● Smartphones, too (probably)

● In science, we want to use all available computing power

● Problem: How to exploit the hardware?

Host
(also CPU)

CPU

NVIDIA GPU

ESC22 – Introduction to Software Portability Among Heterogeneous Architectures | 8

Modern Heterogeneous Systems

● (Virtually) all modern desktops and laptops are heterogeneous systems
● Smartphones, too (probably)

● In science, we want to use all available computing power

● Problem: How to exploit the hardware?

● Solution: Use NVIDIA CUDA! (Tomorrow on ESC22) Host
(also CPU)

CPU

NVIDIA GPU

ESC22 – Introduction to Software Portability Among Heterogeneous Architectures | 9

Modern Heterogeneous Systems

● (Virtually) all modern desktops and laptops are heterogeneous systems
● Smartphones, too (probably)

● In science, we want to use all available computing power

● Problem: How to exploit the hardware?

● Solution: Use NVIDIA CUDA? Host
(also CPU)

CPU

AMD GPU

ESC22 – Introduction to Software Portability Among Heterogeneous Architectures | 10

Modern Heterogeneous Systems

● (Virtually) all modern desktops and laptops are heterogeneous systems
● Smartphones, too (probably)

● In science, we want to use all available computing power

● Problem: How to exploit the hardware?

● Solution: Use NVIDIA CUDA? Host
(also CPU)

CPU

Intel GPU

ESC22 – Introduction to Software Portability Among Heterogeneous Architectures | 11

Illustrating the problem

ESC22 – Introduction to Software Portability Among Heterogeneous Architectures | 12

Your boss walks into your office...

“I need a simulation for our next paper!”

● Easily parallelizable algorithm

● Large amount of data

● Your workstation has a good CPU

● What do you do?

ESC22 – Introduction to Software Portability Among Heterogeneous Architectures | 13

ESC22 – Introduction to Software Portability Among Heterogeneous Architectures | 14

Some time later...

“Hey, your workstation has a NVIDIA GPU, right?”

● CUDA and TBB require different API calls, memory management, etc.

● You want to run the TBB-accelerated code, too.

● What do you do?

ESC22 – Introduction to Software Portability Among Heterogeneous Architectures | 15

ESC22 – Introduction to Software Portability Among Heterogeneous Architectures | 16

Three weeks later...

“Our IT department just installed new compute nodes!”

● Unfortunately (for you), they bought Intel GPUs.

● Intel GPUs are programmed using oneAPI DPC++ (a.k.a SYCL).

● Do you know oneAPI DPC++?

● What do you do?

ESC22 – Introduction to Software Portability Among Heterogeneous Architectures | 17

The Portability Problem

● Vendors supply their own toolchains for their special hardware.

● It is hard to program all of them efficiently.
● Different APIs
● Different performance characteristics
● …

● Maintenance & portability become time-consuming tasks.

ESC22 – Introduction to Software Portability Among Heterogeneous Architectures | 18

Choosing the right tool for the job

ESC22 – Introduction to Software Portability Among Heterogeneous Architectures | 19

Workload Patterns

CPU GPU AI FPGA

Scalar Vector Matrix Spatial

ESC22 – Introduction to Software Portability Among Heterogeneous Architectures | 20

CPUs

● General purpose tool

● Starting point and Host of any program

● Good for task parallelism and data parallelism with little data loads

● Bad for data parallelism with massive data loads
● Mitigated by (non-portable) SIMD instructions

CPU

Scalar

ESC22 – Introduction to Software Portability Among Heterogeneous Architectures | 21

CPUs

● General purpose tool

● Starting point and Host of any program

● Good for task parallelism and data parallelism with little data loads

● Bad for data parallelism with massive data loads
● Mitigated by (non-portable) SIMD instructions

CPU

Scalar

ESC22 – Introduction to Software Portability Among Heterogeneous Architectures | 22

GPUs

● Optimized for independent pixel processing

● Ideal for massively parallel workloads

● Bad for algorithms with much divergence (if … else)

● Good half-precision and single-precision floating-point performance

● (Historically) bad double-precision floating-point performance

● Okay integer performance

GPU

Vector

ESC22 – Introduction to Software Portability Among Heterogeneous Architectures | 23

GPUs

● Optimized for independent pixel processing

● Ideal for massively parallel workloads

● Bad for algorithms with much divergence (if … else)

● Good half-precision and single-precision floating-point performance

● (Historically) bad double-precision floating-point performance

● Okay integer performance

GPU

Vector

ESC22 – Introduction to Software Portability Among Heterogeneous Architectures | 24

AI Accelerators

● Optimized for AI training workloads

● Ideal for matrix-matrix or matrix-vector operations

● Good mixed-precision performance

● May support integer / float precisions not found on GPUs (Example: 4-bit integers)
● The supported precisions for floating point and integer vary between vendors and/or hardware generations
● Some common precisions may not be supported (Example: single-precision floating point on NVIDIA tensor cores)

AI

Matrix

ESC22 – Introduction to Software Portability Among Heterogeneous Architectures | 25

AI Accelerators

● Optimized for AI training workloads

● Ideal for matrix-matrix or matrix-vector operations

● Good mixed-precision performance

● May support integer / float precisions not found on GPUs (Example: 4-bit integers)
● The supported precisions for floating point and integer vary between vendors and/or hardware generations
● Some common precisions may not be supported (Example: single-precision floating point on NVIDIA tensor cores)

AI

Matrix

ESC22 – Introduction to Software Portability Among Heterogeneous Architectures | 26

Field-Programmable Gate Arrays (FPGAs)

● Allows to use hardware specialized for use case

● Can support (almost) any-length integers

● Data parallelism achieved by multiplying hardware layout

● Task parallelism achieved by placing hardware layouts next to each other

● (User-)deterministic time behaviour
● Example: Image processing with exactly 300 MHz

● Constrained by chip limits
● Low frequency
● Limited disk space

● Hardware synthesis takes a long time FPGA

Spatial

ESC22 – Introduction to Software Portability Among Heterogeneous Architectures | 27

Field-Programmable Gate Arrays (FPGAs)

● Allows to use hardware specialized for use case

● Can support (almost) any-length integers

● Data parallelism achieved by multiplying hardware layout

● Task parallelism achieved by placing hardware layouts next to each other

● (User-)deterministic time behaviour
● Example: Image processing with exactly 300 MHz

● Constrained by chip limits
● Low frequency
● Limited disk space

● Hardware synthesis takes a long time FPGA

Spatial

ESC22 – Introduction to Software Portability Among Heterogeneous Architectures | 28

Controlling the heterogeneous landscape

ESC22 – Introduction to Software Portability Among Heterogeneous Architectures | 29

Original Situation

CPU GPU AI FPGA

Portable Program

= code path required

ESC22 – Introduction to Software Portability Among Heterogeneous Architectures | 30

Improved Situation

CPU GPU AI FPGA

Portable Program

= code path required

Abstraction Layer

ESC22 – Introduction to Software Portability Among Heterogeneous Architectures | 31

Available Libraries

Developed by Sandia National Laboratories (USA)

Developed by Lawrence Livermore National Laboratory (USA)

Designed by the Khronos industry consortium (USA)
Implemented by hardware vendors

Developed by Helmholtz-Zentrum Dresden-Rossendorf (Germany)

ESC22 – Introduction to Software Portability Among Heterogeneous Architectures | 32

Available Libraries

Developed by Sandia National Laboratories (USA)

Developed by Lawrence Livermore National Laboratory (USA)

Designed by the Khronos industry consortium (USA)
Implemented by hardware vendors

Developed by Helmholtz-Zentrum Dresden-Rossendorf (Germany)

ESC22 – Introduction to Software Portability Among Heterogeneous Architectures | 33

Introduction to alpaka

alpaka – Abstraction Library for Parallel Kernel Acceleration

alpaka is…

● A parallel programming library: Accelerate your code by exploiting your hardware‘s parallelism!

● An abstraction library: Create portable code that runs on CPUs and GPUs!

● Free & open-source software

ESC22 – Introduction to Software Portability Among Heterogeneous Architectures | 34

Introduction to alpaka

Programming with alpaka

● C++ only!

● Header-only library: No additional runtime dependency introduced

● Modern library: alpaka is written entirely in C++17

● Supports a wide range of modern C++ compilers (g++, clang++, Apple LLVM, MS Visual Studio)

● Portable across operating systems: Linux, macOS, Windows are supported

ESC22 – Introduction to Software Portability Among Heterogeneous Architectures | 35

Introduction to alpaka

alpaka‘s purpose

Without alpaka

● Multiple hardware types commonly used (CPUs, GPUs, …)

● Increasingly heterogeneous hardware configurations available

● Platforms not inter-operable parallel programs not easily portable→

alpaka: one API to rule them all

● Abstraction (not hiding!) of the underlying hardware & software platforms

● Code needs only minor adjustments to support different accelerators

User

CPU

alpaka

GPU

ESC22 – Introduction to Software Portability Among Heterogeneous Architectures | 36

Portable Heterogeneous Parallel Programming

alpaka enables portability!

● Idea: Write algorithms once…
● … independently of target architecture
● … independently of available programming models

● Decision on target platform made during compilation
● Choosing another platform just requires another compilation pass

● alpaka defines an abstract programming model

● alpaka utilizes C++17 to support many architectures
● CUDA, HIP, OpenMP, TBB, …

User

CPU

alpaka

GPU

ESC22 – Introduction to Software Portability Among Heterogeneous Architectures | 37

The alpaka Library

alpaka’s design

Domain Host Device

Origin
alpaka
User

Concept
Device

Manager
Device Queue Event Buffer Task Kernel Accelerator

User
alpaka
User

ESC22 – Introduction to Software Portability Among Heterogeneous Architectures | 38

Portable Heterogeneous Parallel Programming

alpaka enables full utilization of heterogeneous systems!

● Algorithms are generally independent of chosen target architecture
auto const taskCpu = alpaka::createTaskKernel<AccCpu>(workDivCpu, kernel, …);
auto const taskGpu = alpaka::createTaskKernel<AccGpu>(workDivGpu, kernel, …);

● Optimization for specific architecture is still possible
// general case
template <typename TAcc>
void computationallyIntensiveFunction(TAcc const & acc) { … };

// specialization for AccGpu
template <>
void computationallyIntensiveFunction<AccGpu>(AccGpu const & acc) { … };

ESC22 – Introduction to Software Portability Among Heterogeneous Architectures | 39

Changing the Back-end

Moving from CPU to GPU

alpaka allows for easy …
● … exchange of the accelerator
● … porting of programs across accelerators
● … experimentation with different devices
● … mixing of accelerator types

User

CPU

alpaka

GPU

ESC22 – Introduction to Software Portability Among Heterogeneous Architectures | 40

Programming Heterogeneous Systems

Heterogeneous Systems

● Real-world scenario: Use all available compute
power

● Also real-world scenario: Multiple different
hardware types available

● Requirement: Usage of one back-end per
hardware platform

● Requirement: Back-ends need to be
interoperable

Host

CPU

NVIDIA GPU

ESC22 – Introduction to Software Portability Among Heterogeneous Architectures | 41

Programming Heterogeneous Systems

Using multiple Platforms

● alpaka enables easy heterogeneous
programming!

● Create one Accelerator per back-end

● Acquire at least one Device per
Accelerator

● Create one Queue per Device

// Define Accelerators
using AccCpu = AccCpuOmp2Blocks<Dim, Idx>;
using AccGpu = AccGpuCudaRt<Dim, Idx>;

// Acquire Devices
auto devCpu = getDevByIdx<AccCpu>(0u);
auto devGpu = getDevByIdx<AccGpu>(0u);

// Create Queues
using QueueProperty = property::NonBlocking;
using QueueCpu = Queue<AccCpu, QueueProperty>;
using QueueGpu = Queue<AccGpu, QueueProperty>;

auto queueCpu = QueueCpu{devCpu};
auto queueGpu = QueueGpu{devGpu};

ESC22 – Introduction to Software Portability Among Heterogeneous Architectures | 42

Programming Heterogeneous Systems

Communication

● Buffers are defined and created
per Device

● Buffers can be copied between
different Devices / Queues

● Not restricted to a single
platform!

● Restriction: CPU to GPU copies
(and vice versa) require GPU
queue

// Allocate buffers
auto bufCpu = allocBuf<float, Idx>(devCpu, extent);
auto bufGpu = allocBuf<float, Idx>(devGpu, extent);

/* Initialization … */

// Copy buffer from CPU to GPU - destination comes first
memcpy(gpuQueue, bufGpu, bufCpu, extent);

// Execute GPU kernel
enqueue(gpuQueue, someKernelTask);

// Copy results back to CPU and wait for completion
memcpy(gpuQueue, bufCpu, bufGpu, extent);

// Wait for GPU, then execute CPU kernel
wait(cpuQueue, gpuQueue);
enqueue(cpuQueue, anotherKernelTask);

ESC22 – Introduction to Software Portability Among Heterogeneous Architectures | 43

Programming Heterogeneous Systems

Heterogeneous programming with alpaka

● alpaka gives you access to all of your system’s computation resources

● alpaka eases programming for different device types

● alpaka enables simple data transfers between different devices

● alpaka makes your code reusable

● alpaka makes your code portable

Write once, scale everywhere!

ESC22 – Introduction to Software Portability Among Heterogeneous Architectures | 44

The alpaka Library

alpaka is free software (MPL 2.0). Find us on GitHub!

Our GitHub organization: https://www.github.com/alpaka-group

● Contains all alpaka-related projects, documentation, samples, …

● New contributors welcome!

The library: https://www.github.com/alpaka-group/alpaka

● Full source code

● Issue tracker

● Installation instructions

● Small examples

https://www.github.com/alpaka-group
https://www.github.com/alpaka-group/alpaka

ESC22 – Introduction to Software Portability Among Heterogeneous Architectures | 45

Heterogeneous Programming With the Caravan Ecosystem

I already have a CUDA program. Do I really need to port everything?

● No. Try our CUDA portability layer cupla.

● Kernels need to be ported to alpaka-style kernels

● cudaApiCall() becomes cuplaApiCall()

● https://github.com/alpaka-group/cupla

https://github.com/alpaka-group/cupla

ESC22 – Introduction to Software Portability Among Heterogeneous Architectures | 46

Heterogeneous Programming With the Caravan Ecosystem

How can I easily switch between different memory layouts?

● Example: From array-of-struct to struct-of-array and back

● Problem: Changing memory layout requires changing of algorithm

● Solution: LLAMA

● https://github.com/alpaka-group/llama

https://github.com/alpaka-group/llama

ESC22 – Introduction to Software Portability Among Heterogeneous Architectures | 47

Heterogeneous Programming With the Caravan Ecosystem

But I just want to do transform & reduce!

● Solution: vikunja

● More standard algorithms planned soon

● https://github.com/alpaka-group/vikunja

https://github.com/alpaka-group/vikunja

www.casus.science

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48

