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About Me

● Computer Scientist
● Email: j.stephan@hzdr.de
● GitHub: https://www.github.com/j-stephan

● PhD Student @ CASUS – Center for Advanced Systems Understanding
● Located in Görlitz, Germany
● Department of Helmholtz-Zentrum Dresden-Rossendorf (HZDR)
● Web page: https://www.casus.science

● Strong high-performance computing (HPC) focus
● Programming for heterogeneous hardware
● Designing and implementing abstraction layers
● Performance analysis

mailto:j.stephan@hzdr.de
https://www.github.com/j-stephan
https://www.casus.science/
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What is a heterogeneous system?



ESC22 – Introduction to Software Portability Among Heterogeneous Architectures | 4

Life After TBB

So far on ESC22

● Computer architectures

● Modern C++ programming

● Floating-point computations

● Parallel C++ programming with TBB
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Modern Heterogeneous Systems

● (Virtually) all modern desktops and laptops are heterogeneous systems
● Smartphones, too (probably)

● In science, we want to use all available computing power

● Problem: How to exploit the hardware?

Host
(also CPU)

CPU

NVIDIA GPU
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Illustrating the problem
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Your boss walks into your office...

“I need a simulation for our next paper!”

● Easily parallelizable algorithm

● Large amount of data

● Your workstation has a good CPU

● What do you do?
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Some time later...

“Hey, your workstation has a NVIDIA GPU, right?”

● CUDA and TBB require different API calls, memory management, etc.

● You want to run the TBB-accelerated code, too.

● What do you do?
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Three weeks later...

“Our IT department just installed new compute nodes!”

● Unfortunately (for you), they bought Intel GPUs.

● Intel GPUs are programmed using oneAPI DPC++ (a.k.a SYCL).

● Do you know oneAPI DPC++?

● What do you do?
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The Portability Problem

● Vendors supply their own toolchains for their special hardware.

● It is hard to program all of them efficiently.
● Different APIs
● Different performance characteristics
● …

● Maintenance & portability become time-consuming tasks.
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Choosing the right tool for the job
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Workload Patterns

CPU GPU AI FPGA

Scalar Vector Matrix Spatial
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CPUs

● General purpose tool

● Starting point and Host of any program

● Good for task parallelism and data parallelism with little data loads

● Bad for data parallelism with massive data loads
● Mitigated by (non-portable) SIMD instructions

CPU

Scalar
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GPUs

● Optimized for independent pixel processing

● Ideal for massively parallel workloads

● Bad for algorithms with much divergence (if … else)

● Good half-precision and single-precision floating-point performance

● (Historically) bad double-precision floating-point performance

● Okay integer performance

GPU

Vector
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AI Accelerators

● Optimized for AI training workloads

● Ideal for matrix-matrix or matrix-vector operations

● Good mixed-precision performance

● May support integer / float precisions not found on GPUs (Example: 4-bit integers)
● The supported precisions for floating point and integer vary between vendors and/or hardware generations
● Some common precisions may not be supported (Example: single-precision floating point on NVIDIA tensor cores)

AI

Matrix
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Field-Programmable Gate Arrays (FPGAs)

● Allows to use hardware specialized for use case

● Can support (almost) any-length integers

● Data parallelism achieved by multiplying hardware layout

● Task parallelism achieved by placing hardware layouts next to each other

● (User-)deterministic time behaviour
● Example: Image processing with exactly 300 MHz

● Constrained by chip limits
● Low frequency
● Limited disk space

● Hardware synthesis takes a long time FPGA

Spatial
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Controlling the heterogeneous landscape
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Original Situation

CPU GPU AI FPGA

Portable Program

= code path required
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Improved Situation

CPU GPU AI FPGA

Portable Program

= code path required

Abstraction Layer
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Available Libraries

Developed by Sandia National Laboratories (USA)

Developed by Lawrence Livermore National Laboratory (USA)

Designed by the Khronos industry consortium (USA)
Implemented by hardware vendors

Developed by Helmholtz-Zentrum Dresden-Rossendorf (Germany)
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Introduction to alpaka

alpaka – Abstraction Library for Parallel Kernel Acceleration

alpaka is…

● A parallel programming library: Accelerate your code by exploiting your hardware‘s parallelism!

● An abstraction library: Create portable code that runs on CPUs and GPUs!

● Free & open-source software
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Introduction to alpaka

Programming with alpaka

● C++ only!

● Header-only library: No additional runtime dependency introduced

● Modern library: alpaka is written entirely in C++17

● Supports a wide range of modern C++ compilers (g++, clang++, Apple LLVM, MS Visual Studio)

● Portable across operating systems: Linux, macOS, Windows are supported
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Introduction to alpaka

alpaka‘s purpose

Without alpaka

● Multiple hardware types commonly used (CPUs, GPUs, …)

● Increasingly heterogeneous hardware configurations available

● Platforms not inter-operable  parallel programs not easily portable→

alpaka: one API to rule them all

● Abstraction (not hiding!) of the underlying hardware & software platforms

● Code needs only minor adjustments to support different accelerators

User

CPU

alpaka

GPU
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Portable Heterogeneous Parallel Programming

alpaka enables portability!

● Idea: Write algorithms once…
● … independently of target architecture
● … independently of available programming models

● Decision on target platform made during compilation 
● Choosing another platform just requires another compilation pass

● alpaka defines an abstract programming model

● alpaka utilizes C++17 to support many architectures
● CUDA, HIP, OpenMP, TBB, …

User

CPU

alpaka

GPU
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The alpaka Library

alpaka’s design

Domain Host Device

Origin
alpaka
User

Concept
Device

Manager
Device Queue Event Buffer Task Kernel Accelerator

User
alpaka
User
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Portable Heterogeneous Parallel Programming

alpaka enables full utilization of heterogeneous systems!

● Algorithms are generally independent of chosen target architecture
auto const taskCpu = alpaka::createTaskKernel<AccCpu>(workDivCpu, kernel, …);
auto const taskGpu = alpaka::createTaskKernel<AccGpu>(workDivGpu, kernel, …);

● Optimization for specific architecture is still possible
// general case                                                              
template <typename TAcc>                                                     
void computationallyIntensiveFunction(TAcc const & acc) { … };               
                                                                             
// specialization for AccGpu                                                 
template <>                                                                  
void computationallyIntensiveFunction<AccGpu>(AccGpu const & acc) { … };     
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Changing the Back-end

Moving from CPU to GPU

alpaka allows for easy …
● … exchange of the accelerator
● … porting of programs across accelerators
● … experimentation with different devices
● … mixing of accelerator types

User

CPU

alpaka

GPU
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Programming Heterogeneous Systems

Heterogeneous Systems

● Real-world scenario: Use all available compute 
power

● Also real-world scenario: Multiple different 
hardware types available

● Requirement: Usage of one back-end per 
hardware platform

● Requirement: Back-ends need to be 
interoperable

Host

CPU

NVIDIA GPU
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Programming Heterogeneous Systems

Using multiple Platforms

● alpaka enables easy heterogeneous 
programming!

● Create one Accelerator per back-end

● Acquire at least one Device per 
Accelerator

● Create one Queue per Device

// Define Accelerators                               
using AccCpu = AccCpuOmp2Blocks<Dim, Idx>;           
using AccGpu = AccGpuCudaRt<Dim, Idx>;               
                                                     
// Acquire Devices                                   
auto devCpu = getDevByIdx<AccCpu>(0u);               
auto devGpu = getDevByIdx<AccGpu>(0u);               
                                                     
// Create Queues                                     
using QueueProperty = property::NonBlocking;          
using QueueCpu = Queue<AccCpu, QueueProperty>;       
using QueueGpu = Queue<AccGpu, QueueProperty>;       
                                                     
auto queueCpu = QueueCpu{devCpu};                    
auto queueGpu = QueueGpu{devGpu};                    
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Programming Heterogeneous Systems

Communication

● Buffers are defined and created 
per Device

● Buffers can be copied between 
different Devices / Queues

● Not restricted to a single 
platform!

● Restriction: CPU to GPU copies 
(and vice versa) require GPU 
queue

// Allocate buffers                                       
auto bufCpu = allocBuf<float, Idx>(devCpu, extent);       
auto bufGpu = allocBuf<float, Idx>(devGpu, extent);       
                                                          
/* Initialization … */                                    
                                                          
// Copy buffer from CPU to GPU - destination comes first  
memcpy(gpuQueue, bufGpu, bufCpu, extent);                 
                                                          
// Execute GPU kernel                                     
enqueue(gpuQueue, someKernelTask);                        
                                                          
// Copy results back to CPU and wait for completion       
memcpy(gpuQueue, bufCpu, bufGpu, extent);                
                                                          
// Wait for GPU, then execute CPU kernel                  
wait(cpuQueue, gpuQueue);                                
enqueue(cpuQueue, anotherKernelTask);                    
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Programming Heterogeneous Systems

Heterogeneous programming with alpaka

● alpaka gives you access to all of your system’s computation resources

● alpaka eases programming for different device types

● alpaka enables simple data transfers between different devices

● alpaka makes your code reusable

● alpaka makes your code portable

Write once, scale everywhere!
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The alpaka Library

alpaka is free software (MPL 2.0). Find us on GitHub!

Our GitHub organization: https://www.github.com/alpaka-group

● Contains all alpaka-related projects, documentation, samples, …

● New contributors welcome!

The library: https://www.github.com/alpaka-group/alpaka

● Full source code

● Issue tracker

● Installation instructions

● Small examples

https://www.github.com/alpaka-group
https://www.github.com/alpaka-group/alpaka
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Heterogeneous Programming With the Caravan Ecosystem

I already have a CUDA program. Do I really need to port everything?

● No. Try our CUDA portability layer cupla.

● Kernels need to be ported to alpaka-style kernels

● cudaApiCall() becomes cuplaApiCall()

● https://github.com/alpaka-group/cupla

https://github.com/alpaka-group/cupla
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Heterogeneous Programming With the Caravan Ecosystem

How can I easily switch between different memory layouts?

● Example: From array-of-struct to struct-of-array and back

● Problem: Changing memory layout requires changing of algorithm

● Solution: LLAMA

● https://github.com/alpaka-group/llama

https://github.com/alpaka-group/llama
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Heterogeneous Programming With the Caravan Ecosystem

But I just want to do transform & reduce!

● Solution: vikunja

● More standard algorithms planned soon

● https://github.com/alpaka-group/vikunja

https://github.com/alpaka-group/vikunja


www.casus.science
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