
Expressing parallelism

Felice Pantaleo
CERN Experimental Physics Department

felice@cern.ch

2

You will learn...
● Threads and Concurrency
● std::threads
● locks/mutual execution
● atomics
● Intel Threading Building Blocks
● Parallel execution with tbb
● Tasks parallelism

2

3

Threads
● A thread is an execution context, a set of register values
● Defines the instructions to be executed and their order
● A CPU core fetches this execution context and starts running

the instructions: the thread is running
● When the CPU needs to execute another thread, it switches the

context , i.e. saving the previous context and loading the new
one
– Context switching is expensive
– Avoid threads jumping from a CPU core to another

3

4

Threads enable concurrency
● Concurrency does not imply parallelism
● If your program contains independent parts, they are the perfect candidates

for running concurrently
● Restaurant for dinner:

– cooking food and preparing the tables are independent tasks and they can be
performed by different workers to gain a speed-up

● A & B are concurrent wrt to each other and are also parallel wrt to C, D, E,F

4

5

Critical Path
● T = 1 is the time to compute a red box
● Serial Time = 8
● Span = 6
● Maximum speed-up = 8/6 ~ 1.33
● Speed up with 2 cores = 1.33
● Speed up with 100 cores = 1.33

6

std::threads – Hello World
#include <thread>

#include <iostream>

int main()

{

}

compile with
g++ std_threads.cpp -pthread -o std_threads

7

std::threads – Hello World
#include <thread>

#include <iostream>

int main()

{

}

Define a fuction that prints Hello world
void f(int i){

 std::cout << “Hello world from thread” << i << std::endl;

}

8

std::threads – Hello World
#include <thread>

#include <iostream>

int main()

{

 auto f = [](int i){

 std::cout << "hello world from thread " << i << std::endl;

 };

//Construct a thread which runs the function f

 std::thread t0(f,0);

//and then destroy it by joining it

 t0.join();

}

9

Congratulations!
● You have just written your first concurrent program
● Let's add some more threads and look at the output

10

std::threads – Hello World
#include <thread>

#include <iostream>

int main()

{

 auto f = [](int i){

 std::cout << "hello world from thread " << i << std::endl;

 };

//Construct a thread which runs the function f

 std::thread t0(f,0); std::thread t1(f,1); std::thread t2(f,2);

//and then destroy it by joining it with the main thread

 t0.join(); t1.join(); t2.join();

}

11

Fork-join
● The construction of a thread is asynchronous, fork
● Threads execute independently
● join is the synchronization point with the main thread

12

Before we move on, measuring time
#include <chrono>

...

auto start = std::chrono::steady_clock::now();

 f(i);

auto stop = std::chrono::steady_clock::now();

std::chrono::duration<double> dur= stop - start;

std::cout << dur.count() << " seconds" << std::endl;

f() is the function that you want to measure
Be careful, asynchronous functions return immediately: remember to
synchronize before stopping the timer.

13

Exercise 1
● You want to sum the elements of a vector in parallel using 4

threads
● Accumulate the sum in the variable sum
● Let's start by creating a thread
● Brainstorming time!

14

Data Race
A race condition occurs when multiple tasks read from and
write to the same memory without proper synchronization.

● The “race” may finish correctly sometimes and therefore
complete without errors, and at other times it may finish
incorrectly.

● If a data race occurs, the behavior of the program is undefined.

15

std::mutex
● Avoiding that multiple threads access a shared variable
● Use it together with a scoped lock:

#include <mutex>

std::mutex myMutex;

...

{

 std::lock_guard<std::mutex> myLock(myMutex);

 //critical section begins here

 std::cout << "Only one thread at a time" << std::endl;

} // ends at the end of the scope of myLock

16

Some measurements
● Now you're ready to increase the number of threads!
● Time vs number of threads?
● Effect of privatization?

● Hint for creating multiple threads:
auto n = std::thread::hardware_concurrency();

std::vector<std::thread> v;

for (auto i = 0; i < n; ++i) {

 v.emplace_back(f,i);

}

for (auto& t : v) {

 t.join();

}

17

Exercise 2 - Numerical Integration
We know that:

– The integral can be
approximated as the sum of the
rectangles:

18

Numerical integration
int num_steps = 1<<20;
double pi = 0.;
double step = 1.0/(double) num_steps;
double sum = 0.;

for (int i=0; i< num_steps; i++){
 auto x = (i+0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
}
pi = step * sum;

std::cout << "result: " << std::setprecision (15) << pi << std::endl;

● Try to parallelize it
● Measure time vs number of threads, vs number of steps, play with parameters and check precision
● Try privatization
● What happens if one thread runs over more steps than the others?

Memory access patterns: cached
Effective parallel programming
requires that we have a sense of the
importance of locality.
For optimal CPU cache utilization,
the thread a should process element i
and i+1
• stride=1

19

CPU

CPU Thread 0 CPU Thread 1 CPU Thread 2 CPU Thread 3

20

False Sharing
● Problems of sharing arise when two threads access different words that

share the same cache line.
● The problem is that a cache line is the unit of information interchange

between processor caches.
● If one processor modifies a cache line and another processor reads the

same cache line, the line must be moved from one processor to the other,
even if the two processors are dealing with different words within the line.

● False sharing can hurt performance because cache lines can take hundreds
of clocks to move (going through higher level caches or main memory)

21

False Sharing
● Suppose that:

– a cache line is 64bytes
– two threads (x and y) run on

processors that share their cache
– we have two arrays int A[500], B[500]
– the end of A and the beginning of B are in the same cache line
– thread x modifies A[499], and loads the corresponding cache-line in cache
– thread y modifies B[0]

● The processor needs to flush the cache lines, reloading the cache for thread x and invalidating the cache
for thread y

● Solution: align/padding to cache-line size
● Try with:

#include <new>
struct alignas(std::hardware_destructive_interference_size) alignedInt {int x;}

22

Exercise 3 - π with Monte Carlo
● The area of the circle is π
● The area of the square is 4
● Generate N random x and y between

-1 and 1:
– if r < 1: the point is inside the circle

and increase Nin

– The ratio between Nin and N converges
to the ratio between the areas

23

std::atomic
● Atomic types:

– encapsulate a value whose access is guaranteed to not cause data races
– other threads will see the state of the system before the operation

started or after it finished, but cannot see any intermediate state
– can be used to synchronize memory accesses among different threads
– at the low level, atomic operations are special hardware instructions
– (hardware guarantees atomicity)

● The primary std::atomic template may be instantiated with any TriviallyCopyable type T
● Common architectures have atomic fetch-and-add instructions for integers
#include <atomic>

std::atomic<int> x = 0; int a = x.fetch_add(42);

● reads from a shared variable, adds 42 to it, and writes the result back: all in one
indivisible step

24

Trivially Copyable
● Trivially copyable
● The primary std::atomic template may be instantiated

with any TriviallyCopyable type T
– Continuous chunk of memory
– Copying the object means copying all bits (memcpy)
– No virtual functions, noexcept constructor

std::atomic<int> i; // OK

std::atomic<double> x; // OK

struct S { long x; long y; };

std::atomic<S> s; // OK!

25

std::atomic<T>

● read and write operations are always atomic
● std::atomic<T> provides operator overloads only for atomic operations (incorrect code does not compile)
std::atomic<int> x{0}

++x;

x++;

x += 1;

x |= 2;

x *= 2; //this is not atomic and will not compile

int y = x * 2; // atomic read of x

x = y + 1; // atomic write of x

x = x + 1; // atomic read and then atomic write

x = x * 2; // atomic read and then atomic write

int z = x.exchange(y); // Atomically: z = x; x = y;

26

Atomic references
● In real life, we usually want to perform atomic operations when the

object is shared among different threads, forgetting about its atomicity
in portion of the code where it is not contented

● The std::atomic_ref class template applies atomic operations to the
object it references

● For the lifetime of the atomic_ref object, the object it references is
considered an atomic object
struct T { float x; float y; } pippo;
std::atomic_ref<T> atomic_pippo(pippo);

27

Compare-and-swap (CAS)
Allows to create lockless more complex data structures
bool success = x.compare_exchange_weak(y, z);

28

Expressing Parallelism with
Intel Threading Building Blocks

30

Why TBB?
● Intel OneAPI Threading Building Blocks is a library which

allows to express parallelism on CPUs in a C++ program
● Parallelizing for loops can be tedious with std::threads
● One wants to achieve scalable parallelism, easily
● To use the TBB library, you specify tasks, not threads, and let

the library map tasks onto threads in an efficient manner

31

Why TBB?
● Direct programming with threads forces you to do the work to

efficiently map logical tasks onto threads
● TBB Runtime library maps tasks onto threads to maximize load

balancing and squeezing performance out of the processor
– Better portability
– Easier programming
– More understandable source code
– Better performance and scalability

32

TBB Threads
Open esc/hands-on/parallelcpp_tbb/hello_world_tbb.cpp
Compile:
g++ hello_world_tbb.cpp -ltbb

33

task_arena::constraints
It allows to specify the following restrictions:

● Preferred NUMA node

● Preferred core type
● The maximum number of logical threads scheduled per single core simultaneously

int concurrency_one_thread = oneapi::tbb::info::default_concurrency(
 oneapi::tbb::task_arena::constraints{}.set_max_threads_per_core(1)
);
oneapi::tbb::task_arena arena(concurrency_one_thread);
arena.execute([] { parallel_foo();});

● The level of task_arena concurrency

34

Thread pool

A number of threads will be reused throughout your application to
avoid the overhead of spawning them (or spawning too many)

35

Parallelizing for loops with tbb
for(int i =0; i<N; ++i) x[i]++;

becomes
oneapi::tbb::parallel_for(

 oneapi::tbb::blocked_range<int>(0,N,<G>),

 [&](const oneapi::tbb::blocked_range<int>& range)

 {

 for(int i = range.begin(); i< range.end(); ++i)

 {

 x[i]++;

 }

 }, <partitioner>);

36

Scalability
● A loop needs to last for at least 1M clock cycles for parallel_for to

become worth it
● If the performance of your application improves by increasing the

number of cores, the application is said to scale strongly. There is
usually a limit to the scaling.

● Usually, adding more cores than the limit does not only result in
performance improvements, but performance falls.
– Overhead in scheduling and synchronizing many small tasks starts dominating

● TBB uses the concept of Grain Size to keep data splitting to a
reasonable level

37

Grain Size
● If GrainSize is 1000 and the loop iterates over 2000 elements,

the scheduler can distribute the work at most to 2 processors
● With a GrainSize of 1, most of the time is spent in packaging

38

Automatic Partitioner
● The automatic partitioner is often more than enough to have

good performance
● Heuristics that:

– Limits overhead coming from small grain size
– Creates opportunities for load balancing given by not choosing a

grain size which is too large
● Sometimes controlling the grainSize can lead to performance

improvements

39

Partitioners
● affinity_partitioner can improve performance when:

– data in a loop fits in cache
– the ratio between computations and memory accesses is low

● simple_partitioner enables the manual ninja mode
– You need to specify manually the grain size G
– The default is 1, in units of loop iterations per chunk
– Rule of thumb: G iterations should take at least 100k clock cycles

40

Mutex Flavors
● Scalability

– Not scalable if the waiting threads consume excessive processor cycles and
memory bandwidth, reducing the speed of threads trying to do real work

● Fairness
– Serves threads in the order they arrived (queuing_mutex)
– Fair mutexes prevent thread starvation

● Yielding or Blocking
– Yield: repeatedly poll, if no work allowed temporarily yield the processor
– Block: yield the processor until the mutex permits progress

41

Mutex
● Header: #include <oneapi/tbb/mutex.h>
● Wrapper around OS calls:

– Portable across all operating systems supported by TBB
– Releases the lock if an exception is thrown from the protected region of code

● If the lock is lightly contended and the duration of the critical section is small, use
spin_mutex. If you expect high contention, use mutex which blocks after long waits.
– thread busy waits for lock to be released

oneapi::tbb::spin_mutex myMutex;

...

{

oneapi::tbb::spin_mutex::scoped_lock myLock(myMutex);

//critical section here

…

}

42

Exercises 2 and 3 with tbb
● Try replacing std::threads with a

oneapi::tbb::parallel_for in exercises 2 and 3
● Measure time to determine strong and weak scaling

43

Concurrent containers
● Concurrent containers allow concurrent thread-safe read-write access by multiple

threads
oneapi::tbb::concurrent_vector<T>

oneapi::tbb::concurrent_queue<T>

oneapi::tbb::concurrent_hashmap<Key,T,HashCompare>

● For example:

#include <oneapi/tbb/concurrent_vector.h>

…

oneapi::tbb::concurrent_vector<int> myVector;

… // later in a parallel section

myVector.push_back(x);

44

allocations
Always allocates on a separate cache line.
Two objects allocated by cache_aligned_allocator are
guaranteed to not have false sharing.
std::vector<T,cache_aligned_allocator<T> >;

45

Exercise 4 - Parallel Histogram
● Generate 500M floats normally distributed with average 0 and sigma 20
● Create a thread-safe histogram class with 100 bins of width 5 (first and

last bins contain overflow)
● Use parallel for to push these numbers in the histogram
● Measure strong scaling
● Measure how performance changes, when modifying the number of bins
● Can you think of another pattern for mitigating high contention cases?

46

Parallel Scheduler
● Efficient load balancing by work stealing
● Reduce context switching
● Preserve data locality
● Keep CPUs busy
● Start/terminating tasks is up to 2 orders of magnitude faster

than spawning/joining threads

47

Depth-first execute, breadth-first theft
● Strike when the

cache is hot
– The deepest tasks

are the most
recently created
tasks and,
therefore, the
hottest in the
cache

● Minimize space

48

Task Parallelism with TBB
● A task_group is a container of potentially concurrent and independent tasks
● A task can be created from a lambda or a functor
● A very stupid way to compute the Fibonacci sequence (a lot of duplicate calculations)

49

Your turn: BFS
● Calculate the shortest distance to travel from a vertex to all the

other vertices in a graph
● You can find sequential iterative and recursive implementations

in BFS.cpp
● Implement it with parallel_for and tasks

50

51

d=0

52

d=1

53

d=2

54

backup

55

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Memory access patterns: cached
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

