
Computer architecture evolution
and the performance challenge

Felice Pantaleo
CERN Experimental Physics Department

felice@cern.ch

2

Previously, in Moore's Paradise

● The main contribution to the gain in microprocessor
performance at this stage came by increasing the clock
frequency.

● Applications’ performance doubled every 18 months without
having to redesign the software or changing the source code

3

Von Neumann Architecture

4

Von Neumann Architecture
● The basic operation that every Processing Unit

(PU) has to process is called instruction and the
address in memory containing the instruction is
saved

● A Program Counter (PC) holds the address of the
next instruction

● fetch: the content of the memory stored at the
address pointed by the PC is loaded in the
Current Instruction Register (CIR) and the PC is
increased to point to the next instruction’s address

● decode: the content of the CIR is interpreted to
determine the actions that need to be performed

● execute: an Arithmetic Logic Unit performs the
decoded actions.

5

Moore's Law (ctd.)

6

Moore's Law (ctd.)

7

Moore's Law (ctd.)

8

Back on Earth
● The power dissipated by a processor scales as

● Q number of transistors
● C capacity
● V voltage across the gate
● f the clock frequency
● I current
● In the early 2000s, the layer of silicon dioxide insulating

the transistor’s gate from the channels through which
current flows was just five atoms thick and could not be
shrunk anymore

9

Power and Energy
Thermal Design Power (TDP)

● Characterizes sustained power consumption
● Used as target for power supply and cooling system
● Lower than peak power (usually 1.5X higher), higher

than average power consumption

● Clock rate can be reduced dynamically to limit
power consumption

● Energy per task is often a better measurement

10

“The party isn't exactly over, but the police have arrived, and the
music has been turned way down” (P. Kogge, IBM)

11

Evolution of system architecture
● Increased number of Processing Units
● More complex control

– Pipelining
– hardware threading
– out-of-order execution
– instruction-level parallelism

● Deeper memory hierarchy
● Accelerators
● Interconnects

12

What you will master soon

13

Latency vs Bandwidth

14

Serial computation
● Software traditionally written for serial computation:
● the sequence of instructions that forms the problem is
executed by one Processing Unit (PU)

● every instruction has to wait for the previous one to be
completed before its execution can start

● at any moment in time, only one instruction may execute

15

Parallel computation
● In parallel computation, if two instructions have

no data dependency, they can be executed in
parallel, at the same time, by two PUs

16

Pizza Wall
● How many cooks does a pizzeria need to achieve

the best production rate possible?
● If all the ingredients are in the same fridge and

there is only one oven? Maybe 1, 2, 64, infinity?

17

Mitigating the Pizza Wall
● Reuse of ingredients and tools which are used often:

put them on a small table close to you
● Increase the frequency of travels to the fridge
● Increase the amount of ingredients you transfer from

the fridge
● If ingredients are located all in the same box in the

fridge, you can carry more of them with a single
transfer

● Better organization of order of instructions, keeping
cooks busy

18

Memory Wall
● How many PUs does a program need to achieve

the best performance possible?

19

Mitigating the Memory Wall
● Reuse data and instructions: data and instructions which are used

often are stored in a on-chip memory called cache.
● Increase the memory transfer speed: this can be done by

increasing frequency, which is limited by the power wall.
● Increase the amount of data to transfer: memory transfers have

overheads, which can become negligible if more memory is
transferred in one instruction.

● Improve the access pattern to memory: if more processing units
are reading adjacent memory locations, they can all be fed by a
single memory transfer.

● Better organization of order of instructions, keeping PU busy
● Smarter prefetching

20

Parallel Computing

21

Embarrassingly parallel problems

yi=fi(xi)

22

Embarrassingly parallel problems (ctd.)
Examples:
● Linear Algebra
● Image Processing
● Monte Carlo Simulation
● Cryptomining
● Weather forecast
● Random number generation
● Encryption
● Software compilation

23

Terminology
● Granularity: size of tasks
● Scheduling: order of assignment of tasks
● Mapping: assignment of tasks to a PU
● Load balancing: the art of making the computation of multiple tasks end at the same

time
● Barrier: a checkpoint at which all the parallel workers should wait for the last one.
● Speedup: time of the serial application/time of the parallel application
● Efficiency: Speedup/# of PUs
● Race condition: When the result of execution depends on sequence

and/or timing of events. Result could be incorrect if this is not taken in consideration
● Critical section: Only one worker per time can enter.

24

Flynn's Taxonomy
Classification of computers describes four classes in both serial
and parallel contexts:
● SISD - Single Instruction stream - Single Data stream

– A single processor computer that executes one stream of instructions
on one set of data. Single-core processors belong to this class.

● SIMD - Single Instruction Stream - Multiple Data stream
– A multiprocessor where each processing unit executes the same

instruction stream as the others on its own set of data.
– A set of processors shares the same control unit, and their execution

differs only by the different data elements each processor operates on.

25

Flynn's Taxonomy (ctd.)
● MISD - Multiple Instruction stream - Single Data stream

– Each processing element of the multiprocessor executes its own
instructions, but operates on a shared data set.

● MIMD - Multiple Instruction stream - Multiple Data
stream
– Each processing element executes its own instruction stream on

its own set of data.
● SIMT - Single Instruction - Multiple Thread

– SIMD is combined with multithreading: we will see this with
GPUs

26

Patterns for Parallel Programming
Parallel programming is not easy:
Apparently simple problems can hide many traps!

27

Reduce

Reduction is a very common pattern in parallel computing:
● Large input data structure distributed across many PU
● Each PU computes a tally of its input
● These tally values are combined to produce the final result
Examples:
● The sum of the elements of an array
● The maximum/minimum element of an array
● Find the first occurrence of x in an array

28

count number of 5s
array[N]

numberOf5 = 0

for i in [0,N[:

 if array[i] == 5

 numberOf5++

return numberOf5

numberOf5 = 0

nWorkers = 4

count5(array, workerId):

 beg = workerId*N/nWorkers

 end = beg + N/nWorkers

 for i in [beg,end[:

 if array[i] == 5:

 numberOf5++

29

Data Hazards
Threads within a process share the same address space
but not their execution stack
Pro: Threads can communicate using shared memory
Cons: Data Hazards if threads are not synchronized
Data hazards usually occur when threads modify data
in different points in the instruction pipeline and the
order of reading and writing operation matters (data
dependence)
● Read-After-Write (RAW)
● Write-After-Read (WAR)
● Write-After-Write (WAW)

30

Data Hazards
Overlooking data hazards can lead to the corruption of the
shared state (race condition)
Tricky to debug since the result depends on the timing between
concurrent threads: unpredictable!
When a piece of code is clean of data hazards, it is said to be
thread-safe.
The easiest ways to avoid conflicts in critical sections is to
grant access one thread at a time: mutex (mutual exclusion)

31

count number of 5s
array[N]

numberOf5 = 0

for i in [0,N[:

 if array[i] == 5

 numberOf5++

return numberOf5

numberOf5 = 0

nWorkers = 4

count5(array, workerId):

 beg = workerId*N/nWorkers

 end = beg + N/nWorkers

 for i in [beg,end[:

 if array[i] == 5:
 lock()

 numberOf5++
 unlock()

32

Performance

33

Performance

34

Contention
● Conflicting Data Updates Cause Serialization

and Delays:
● Massively parallel execution cannot afford

serialization
● Contentions in updating critical data causes

serialization

35

Mitigating contention
Contention can be mitigated with:
● Privatization
● Transformation of the access pattern

● Avoid frequent transactions to/from the global main
memory and read/write the data locally as much as
possible before updating the global value

● Make use of registers and shared memory for aggregating
partial results

● Requires storage resources to keep copies of data structures

36

count number of 5s
array[N]

numberOf5 = 0

for i in [0,N[:

 if array[i] == 5

 numberOf5++

return numberOf5

numberOf5 = 0

nWorkers = 4

count5(array, workerId):

 privateResult = 0

 beg = workerId*N/nWorkers

 end = beg + N/nWorkers

 for i in [beg,end[:

 if array[i] == 5:

 privateResult++

 lock()

 numberOf5 += privateResult

 unlock()

37

Privatization

The T=8 version does not take half of the time w.r.t.
T=4... Why?

38

Amdahl's Law
The maximum theoretical throughput is limited
by Amdahl's Law:
● Every program contains a serial part
● Only one PU can execute the serial part
● The speedup using p PUs is given by

● If f is the fraction of the program that runs

serially, the parallel execution time is given by:

39

Amdahl's Law (ctd.)
The speed-up becomes

40

Mitigating Amdahl's Law:
Gustafson's Law
● Amdahl’s Law assumes that a problem can be split in a number of independent chunks n

that can be processed in parallel and that this number is fixed
● Many times, the increase of the size of a problem does not correspond to a growth of the

sequential part
– increasing the size of the problem does not change the time spent executing the sequential

part, and only affects the parallel portion
● Let f (n) be the sequential code fraction of the program

● f(n) decreases to 0 when n approaches infinity.
● The maximum speedup is then given by:

It's still worth to learn parallel computing: computations involving arbitrarily large data sets
can be efficiently parallelized!

41

Fork-join
When thinking about possible parallel solutions:
● How to partition the problem
● How to share information

42

Data Partitioning

y i=f i(range (x i ,δ))

43

Partitioning
● Static:

– all information available before computation starts
– use off-line algorithms to prepare before execution time
– Run as pre-processor, can be serial, can be slow and expensive

● Dynamic:
– information not known until runtime
– work changes during computation (e.g. adaptive methods)
– locality of objects can change (e.g. particles move)
– use on-line algorithms to make decisions mid-execution
– must run side-by-side with application
– should be parallel, fast, scalable.
– Incremental algorithm preferred (small changes in input result in small

changes in partitions)
Why? In order to minimize idle time.

44

Load balancing
Sometimes dividing the input data in two
does not mean that the load has been also
divided in two.
Example:
Total load: 100
● If 5 workers take 20

each
– Speedup 5

● If 1 worker takes 50
– Speedup 2

45

Partitioning and Load Balancing
● Assignment of application data to processors for parallel

computation
● Applied to grid points, elements, matrix rows, particles

Non-uniform data distributions
● Highly concentrated spatial

data areas
● Astronomy, medical imaging,

computer vision, rendering
If each thread processes the
input data of a given spatial
volume unit, some will do a lot
more work than others

46

Divide et Impera
When you don't have any idea on how to
approach the parallelization of a problem, try
Divide et Impera

47

Load Imbalance
Sometimes load imbalance could also be
caused by some underestimated
consideration

● Example:

int N = 1000;
for(int i=0; i<N; ++i){
...
}

48

Load Imbalance
Sometimes load imbalance could also be
caused by some underestimated
consideration

● Example:
i_start = my_id * (N/num_threads);
i_end = i_start + (N/num_threads);
if (my_id == (num_threads-1))

i_end = N;
for (i = i_start; i < i_end; i++) {
...
}

49

Load Imbalance
● The last thread executes the remainder

i_start = my_id * (N/num_threads);
i_end = i_start + (N/num_threads);
if (my_id == (num_threads-1))

i_end = N;
for (i = i_start; i < i_end; i++) {
...
}

● If the number of threads is 32, each thread will execute 31
instructions

● The last thread will execute 8 more instructions
● Try to extrapolate to a bigger number of iterations and of

threads!

50

Parallel computing
All exponential laws come to an end...
Parallel computing becomes useful when:
● The solution to our problem takes too much time

(Amdahl's Law)
● The size of our problem is big (Gustafson's Law)
● The solution of our problems is poor, we would like to have

a better one
Three steps to a better parallel software:

1.Restructure the mathematical formulation
2.Innovate at the algorithm and data structure level
3.Tune core software for the specific architecture

51

Microarchitecture and Metrics

52

CPU time

You want to minimize the CPU time and
understand what handles you have

53

Speculative execution
● Modern processors execute many

more instructions than the program
flow needs (Core Out Of Order
pipeline).

● The Front-end fetches the program
code decodes instructions into one
or more low-level hardware
operations called micro-ops (uOps).

● The uOps are then fed to the Back-
end in a process called allocation.

● Leaving the Retirement Unit means
that:
– the instructions are finally executed
– their results are correct and visible in

the architectural state as if they
execute in-order

54

Retired instructions
● Instructions that were

“proven” as indeed needed by
the program execution flow
are retired

● Instructions and uOps of
incorrectly predicted paths
are flushed

● Then the uOps associated
with the instruction to be
retired have completed
(together with older
instructions)

● Retirement of the correct
execution path instructions
can proceed

55

Clockticks per Instructions Retired (CPI)

● The CPI value of an application or function
is an indication of how much latency
affected its execution
– Higher CPI means: on average, it took more

clockticks for an instruction to retire.
– Latency in your system can be caused by cache

misses, I/O, or other bottlenecks
● CPI < 1: instruction bound code
● CPI > 1: stall cycle bound or memory bound.

56

CPI vs Retired instructions
● Optimizations will affect either CPI or the

number of instructions to execute, or both.
● Using CPI without considering the number of

instructions executed can lead to an incorrect
interpretation of your results.

57

Instructions pipeline

●

● The Front-end of the pipeline can
allocate four uOps per cycle

● The Back-end can retire four uOps per
cycle

● A pipeline slot represents the hardware
resources needed to process one uOp.

● For each CPU core, on each clock
cycle, there are four pipeline slots
available.

● During any cycle, a pipeline slot can
either be empty or filled with a uOp. If
a slot is empty during one clock cycle,
this is attributed to a stall. The next
step needed to classify this pipeline slot
is to determine whether the Front-end
or the Back-end portion of the pipeline
caused the stall

https://en.wikichip.org/w/images/e/ee/skylake_server_block_diagram.svg

https://en.wikichip.org/w/images/e/ee/skylake_server_block_diagram.svg

58

Front-end

● Feeds “decoded” instructions to the scheduler
● Affected by instruction non-locality (iCache-miss, iTLB misses) and mispredicted

branches
Main metrics:

● L1-icache-load-misses (icache.ifdata_stall) Cycles where a code
fetch is stalled due to L1 instruction cache miss.

● branch-misses (br_misp_retired.all_branches) This event counts all
mispredicted branch instructions retired.

60

Helping the Front-end
● Avoid complex branching patterns
● Keep code local (inline)
● Keep loop short (so they fit in µOp cache)

Back-end
Computational engine of
the CPU:
Affected by
• instruction dependency

• instruction
parallelism

• pipelining
• Memory access
• Latency of slow

instructions
• div sqrt

• Vectorization
Main Metrics:
uops_executed.stall_cycles
 This event counts cycles during which no uops were dispatched from the Reservation Station (RS)
uops_executed.thread
 Number of uops to be executed each cycle.
cycle_activity.stalls_mem_any
 Execution stalls while memory subsystem has an outstanding load.
arith.divider_active
 Cycles when divide unit is busy executing divide or square root operations. Accounts for integer
and floating-point operations. 61

?

Real-life latencies
• Most integer/logic instructions have a one-cycle execution latency:

• For example
• ADD, AND, SHL (shift left), ROR (rotate right)

• Amongst the exceptions:
• IMUL (integer multiply): 3
• IDIV (integer divide): 13 – 23

• Floating-point latencies are typically multi-cycle
• FADD (3), FMUL (5)

• Same for both x87 and SIMD double-precision variants
• Exception: FABS (absolute value): 1
• Many-cycle, no pipepine : FDIV (20), FSQRT (27)
• Other math functions: even more

• As of Haswell:
• FMA (5 cycles)

• As of Skylake:
• SIMD ADD, MUL, FMA: 4 cycles

http://www.agner.org/optimize/instruction_tables.pdf 62

http://www.agner.org/optimize/instruction_tables.pdf

63

Helping the Back-end
● Keep data at hand
● Vectorize
● Recast loop to help the compiler to vectorize
● Avoid divisions and sqrt!

64

Helping the compiler to vectorize
● Vectorization is enabled in gcc by the flags:

– -ftree-vectorize
– -O3

● Vectorizable:
– Countable innermost loops
– No variations in the control flow
– Contiguous memory access
– Independent memory access

● Avoid aliasing problems with restrict
● Use countable loops, with no side effects (break, continue,

non-inlined function calls)
● Avoid indirect memory access (x[y[i]])

65

Not vectorizable
while(x[i] != 42)
{

if(x[i] == 0)
x[i] = x[i-1]

}

66

Conclusion
● Think about the problem you are trying to solve
● Understand the structure of the problem
● Apply mathematical techniques to find solution
● Map the problem to an algorithmic approach
● Plan the structure of computation

– Be aware of in/dependence, interactions, bottlenecks
● Plan the organization of data, data structures, memory

– Be explicitly aware of locality, and minimize global data
● Finally, write some code! (this is the easy part)

67

References
● V. Innocente, ESC19 Architecture lecture
● John Hennessy, David Patterson, Computer

Architecture A Quantitative Approach

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	page8 (1)
	page8 (5)
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 60
	Architecture: Backend
	Real-life latencies
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67

