Computer architecture evolution and the performance challenge

Felice Pantaleo

CERN Experimental Physics Department

felice@cern.ch

Previously, in Moore's Paradise

- The main contribution to the gain in microprocessor performance at this stage came by increasing the clock frequency.
- Applications' performance doubled every 18 months without having to redesign the software or changing the source code

Von Neumann Architecture

Von Neumann Architecture

- The basic operation that every Processing Unit (PU) has to process is called instruction and the address in memory containing the instruction is saved
- A *Program Counter* (PC) holds the address of the next instruction
- *fetch*: the content of the memory stored at the address pointed by the PC is loaded in the Current Instruction Register (CIR) and the PC is increased to point to the next instruction's address
- *decode*: the content of the CIR is interpreted to determine the actions that need to be performed
- *execute*: an Arithmetic Logic Unit performs the decoded actions.

Moore's Law (ctd.)

100,000 -	I
	International In
	Intel Xeon
	Intel Xeon 4 com
	Intel Core I/ Extreme 4 cores 3
	Intel Core 2 Extreme 2 co
10,000 -	AMD Athlon 64, AMD Athlon, 2.6 (Intel Xeon EE 3.2 GHz
	Intel D850EMVR motherboard (3.06 GHz, Pentium 4 processor with Hyper-Threading Technology) 🗨 6,
	IBM Power4, 1.3 GHz
	Intel VC820 motherboard, 1.0 GHz Pentium III processor
1000 -	Professional Workstation XP1000, 667 MHz 21264A Digital AlphaServer 8400 6/575, 575 MHz 21264 0002
	AlphaServer 4000 5/600, 600 MHz 21164
	Digital Alphastation 5/500, 500 MHz
	Digital Alphastation 5/300, 300 MHz
	Digital Alphastation 4/266, 266 MHz
	IBM POWERstation 100, 150 MHz
100 -	Digital 3000 AXP/500 150 MHz
	HP 9000/750, 66 MHz - 180
	51
	IBM RS6000/540, 30 MHz 30 52%/vear
	MIPS M2000, 25 MHz 19
10	MIPS M/120, 16.7 MHz 13
10 -	Sun-4/260, 16.7 MHz 7/9
	VAX 8700, 22 MHz
	AX-11//80, 5 MHZ
	OFOV history
1.4	25%/year
10	
19	10 1900 1902 1964 1960 1988 1990 1992 1994 1996 1998 2000 2002

Moore's Law (ctd.)

Moore's Law (ctd.)

Back on Earth

- The power dissipated by a processor scales as $P = Q C V^2 f + V I_{\rm leakage}$
- Q number of transistors
- C capacity
- V voltage across the gate
- f the clock frequency
- *I* current
- In the early 2000s, the layer of silicon dioxide insulating the transistor's gate from the channels through which current flows was just five atoms thick and could not be shrunk anymore

Power and Energy

Thermal Design Power (TDP)

- Characterizes sustained power consumption
- Used as target for power supply and cooling system
- Lower than peak power (usually 1.5X higher), higher than average power consumption

- Clock rate can be reduced dynamically to limit power consumption
- Energy per task is often a better measurement

"The party isn't exactly over, but the police have arrived, and the music has been turned way down" (P. Kogge, IBM)

Evolution of system architecture

- Increased number of Processing Units
- More complex control
 - Pipelining
 - hardware threading
 - out-of-order execution
 - instruction-level parallelism
- Deeper memory hierarchy
- Accelerators
- Interconnects

What you will master soon

Latency vs Bandwidth

Serial computation

- Software traditionally written for serial computation:
- the sequence of instructions that forms the problem is executed by one Processing Unit (PU)
- every instruction has to wait for the previous one to be completed before its execution can start
- at any moment in time, only one instruction may execute

Parallel computation

• In parallel computation, if two instructions have no data dependency, they can be executed in parallel, at the same time, by two PUs

Pizza Wall

- How many cooks does a pizzeria need to achieve the best production rate possible?
- If all the ingredients are in the same fridge and there is only one oven? Maybe 1, 2, 64, infinity?

Mitigating the Pizza Wall

- Reuse of ingredients and tools which are used often: put them on a small table close to you
- Increase the frequency of travels to the fridge
- Increase the amount of ingredients you transfer from the fridge
- If ingredients are located all in the same box in the fridge, you can carry more of them with a single transfer
- Better organization of order of instructions, keeping cooks busy

Memory Wall

• How many PUs does a program need to achieve the best performance possible?

Mitigating the Memory Wall

- Reuse data and instructions: data and instructions which are used often are stored in a on-chip memory called cache.
- Increase the memory transfer speed: this can be done by increasing frequency, which is limited by the power wall.
- Increase the amount of data to transfer: memory transfers have overheads, which can become negligible if more memory is transferred in one instruction.
- Improve the access pattern to memory: if more processing units are reading adjacent memory locations, they can all be fed by a single memory transfer.
- Better organization of order of instructions, keeping PU busy
- Smarter prefetching

Parallel Computing

Embarrassingly parallel problems

 $y_i = f_i(x_i)$

Embarrassingly parallel problems (ctd.) Examples:

- Linear Algebra
- Image Processing
- Monte Carlo Simulation
- Cryptomining
- Weather forecast
- Random number generation
- Encryption
- Software compilation

Terminology

- Granularity: size of tasks
- Scheduling: order of assignment of tasks
- *Mapping*: assignment of tasks to a PU
- Load balancing: the art of making the computation of multiple tasks end at the same time
- Barrier: a checkpoint at which all the parallel workers should wait for the last one.
- Speedup: time of the serial application/time of the parallel application
- *Efficiency*: Speedup/# of PUs
- *Race condition*: When the result of execution depends on sequence and/or timing of events. Result could be incorrect if this is not taken in consideration
- Critical section: Only one worker per time can enter.

Flynn's Taxonomy

Classification of computers describes four classes in both serial and parallel contexts:

- **SISD** Single Instruction stream Single Data stream
 - A single processor computer that executes one stream of instructions on one set of data. Single-core processors belong to this class.
- SIMD Single Instruction Stream Multiple Data stream
 - A multiprocessor where each processing unit executes the same instruction stream as the others on its own set of data.
 - A set of processors shares the same control unit, and their execution differs only by the different data elements each processor operates on.

Flynn's Taxonomy (ctd.)

- **MISD** Multiple Instruction stream Single Data stream
 - Each processing element of the multiprocessor executes its own instructions, but operates on a shared data set.
- **MIMD** Multiple Instruction stream Multiple Data stream
 - Each processing element executes its own instruction stream on its own set of data.
- **SIMT** Single Instruction Multiple Thread
 - SIMD is combined with multithreading: we will see this with GPUs

Patterns for Parallel Programming

Parallel programming is not easy: Apparently simple problems can hide many traps!

Mattson, Sanders, Massingill, Patterns for Parallel Programming

Reduce

Reduction is a very common pattern in parallel computing:

- Large input data structure distributed across many PU
- Each PU computes a tally of its input
- These tally values are combined to produce the final result Examples:
- The sum of the elements of an array
- The maximum/minimum element of an array
- Find the first occurrence of x in an array

count number of 5s

array[N]

numberOf5 = 0

- for i in [0,N[:
 - if array[i] == 5

numberOf5++

return numberOf5

numberOf5 = 0
nWorkers = 4
count5(array, workerId):
 beg = workerId*N/nWorkers
 end = beg + N/nWorkers
 for i in [beg,end[:
 if array[i] == 5:
 numberOf5++

Data Hazards

Threads within a process share the same address space but not their execution stack

Pro: Threads can communicate using shared memory

Cons: Data Hazards if threads are not synchronized

Data hazards usually occur when threads modify data in different points in the instruction pipeline and the order of reading and writing operation matters (data dependence)

- Read-After-Write (RAW)
- Write-After-Read (WAR)
- Write-After-Write (WAW)

Data Hazards

Overlooking data hazards can lead to the corruption of the shared state (race condition)

- Tricky to debug since the result depends on the timing between concurrent threads: unpredictable!
- When a piece of code is clean of data hazards, it is said to be thread-safe.
- The easiest ways to avoid conflicts in critical sections is to grant access one thread at a time: *mutex* (mutual exclusion)

count number of 5s

array[N]

numberOf5 = 0

- for i in [0,N[:
 - if array[i] == 5
 - numberOf5++
- return numberOf5

numberOf 5 = 0nWorkers = 4count5(array, workerId): beg = workerId*N/nWorkers end = beg + N/nWorkersfor i in [beg,end[: if array[i] == 5: lock() numberOf5++ unlock()

Performance

Time

Performance

Time

Contention

- Conflicting Data Updates Cause Serialization and Delays:
- Massively parallel execution cannot afford serialization

Mitigating contention

Contention can be mitigated with:

- Privatization
- Transformation of the access pattern
- Avoid frequent transactions to/from the global main memory and read/write the data locally as much as possible before updating the global value
- Make use of registers and shared memory for aggregating partial results
- Requires storage resources to keep copies of data structures

count number of 5s

array[N]

numberOf5 = 0

- for i in [0,N[:
 - if array[i] == 5
 - numberOf5++
- return numberOf5

```
numberOf5 = 0
nWorkers = 4
count5(array, workerId):
 privateResult = 0
 beg = workerId*N/nWorkers
  end = beg + N/nWorkers
  for i in [beg,end[:
      if array[i] == 5:
         privateResult++
  lock()
  numberOf5 += privateResult
  unlock()
```

Privatization

The T=8 version does not take half of the time w.r.t. T=4... Why?

Amdahl's Law

The maximum theoretical throughput is limited by Amdahl's Law:

- Every program contains a serial part
- Only one PU can execute the serial part
- The speedup using p PUs is given by $S(p) = \frac{T_s}{T_p}$
- If f is the fraction of the program that runs serially, the parallel execution time is given by: (1 - f)t

$$T_p = fT_s + (1 - f)T_p = fT_s + -$$

Amdahl's Law (ctd.)

The speed-up becomes

39

Mitigating Amdahl's Law: Gustafson's Law

- Amdahl's Law assumes that a problem can be split in a number of independent chunks n that can be processed in parallel and that this number is fixed
- Many times, the increase of the size of a problem does not correspond to a growth of the sequential part
 - increasing the size of the problem does not change the time spent executing the sequential part, and only affects the parallel portion
- Let f(n) be the sequential code fraction of the program

$$S(n) = f(n) + p[1 - f(n)]$$

- f(n) decreases to 0 when n approaches infinity.
- The maximum speedup is then given by:

$$S_{max} \equiv \lim_{n \to \infty} S(n) = p$$

It's still worth to learn parallel computing: computations involving arbitrarily large data sets can be efficiently parallelized!

Fork-join

When thinking about possible parallel solutions:

- How to partition the problem
- How to share information

Data Partitioning

 $y_i = f_i(range(x_i, \delta))$

42

Partitioning

• Static:

- all information available before computation starts
- use off-line algorithms to prepare before execution time
- Run as pre-processor, can be serial, can be slow and expensive
- Dynamic:
 - information not known until runtime
 - work changes during computation (e.g. adaptive methods)
 - locality of objects can change (e.g. particles move)
 - use on-line algorithms to make decisions mid-execution
 - must run side-by-side with application
 - should be parallel, fast, scalable.
 - Incremental algorithm preferred (small changes in input result in small changes in partitions)

Why? In order to minimize idle time.

Load balancing

Sometimes dividing the input data in two does not mean that the load has been also

divided in two. Example:

Total load: 100

- If 5 workers take 20 each
 - Speedup 5
- If 1 worker takes 50
 - Speedup 2

Partitioning and Load Balancing

- Assignment of application data to processors for parallel computation
- Applied to grid points, elements, matrix rows, particles

Non-uniform data distributions

• Highly concentrated spatial

data areas

• Astronomy, medical imaging,

computer vision, rendering

If each thread processes the input data of a given spatial volume unit, some will do a lot more work than others

Divide et Impera

When you don't have any idea on how to approach the parallelization of a problem, try *Divide et Impera*

Load Imbalance

Sometimes load imbalance could also be caused by some underestimated consideration

• Example:

```
int N = 1000;
for(int i=0; i<N; ++i){
....
}
```

Load Imbalance

Sometimes load imbalance could also be caused by some underestimated consideration

• Example:

```
i_start = my_id * (N/num_threads);
i_end = i_start + (N/num_threads);
if (my_id == (num_threads-1))
    i_end = N;
for (i = i_start; i < i_end; i++) {
    ....}
```

Load Imbalance

- The last thread executes the remainder i_start = my_id * (N/num_threads); i_end = i_start + (N/num_threads); if (my_id == (num_threads-1)) i_end = N; for (i = i_start; i < i_end; i++) { ... }
- If the number of threads is 32, each thread will execute 31 instructions
- The last thread will execute 8 more instructions
- Try to extrapolate to a bigger number of iterations and of threads!

Parallel computing

All exponential laws come to an end...

Parallel computing becomes useful when:

- The solution to our problem takes too much time (Amdahl's Law)
- The size of our problem is big (Gustafson's Law)
- The solution of our problems is poor, we would like to have a <u>better one</u>

Three steps to a better parallel software:

- 1.Restructure the mathematical formulation
- 2.Innovate at the algorithm and data structure level
- 3. Tune core software for the specific architecture

Microarchitecture and Metrics

CPU time

You want to minimize the CPU time and understand what handles you have

 $Time_{CPU} = Instruction Count \times Cycles per Instruction \times Clock Cycle Time$

$$Time_{CPU} = \sum_{i} (IC_i \times CPI_i) \times Clock Cycle Time$$

Speculative execution

- Modern processors execute many more instructions than the program flow needs (Core Out Of Order pipeline).
- The Front-end fetches the program code decodes instructions into one or more low-level hardware operations called micro-ops (uOps).
- The uOps are then fed to the Backend in a process called allocation.
- Leaving the Retirement Unit means that:
 - the instructions are finally executed
 - their results are correct and visible in the architectural state as if they execute in-order

Retired instructions

- Instructions that were "proven" as indeed needed by the program execution flow are **retired**
- Instructions and uOps of incorrectly predicted paths are flushed
- Then the uOps associated with the instruction to be retired have completed (together with older instructions)
- Retirement of the correct execution path instructions can proceed

Clockticks per Instructions Retired (CPI)

- The CPI value of an application or function is an indication of how much **latency** affected its execution
 - Higher CPI means: on average, it took more clockticks for an instruction to retire.
 - Latency in your system can be caused by cache misses, I/O, or other bottlenecks
- CPI < 1: instruction bound code
- CPI > 1: stall cycle bound or memory bound.

CPI vs Retired instructions

- Optimizations will affect either CPI or the number of instructions to execute, or both.
- Using CPI without considering the number of instructions executed can lead to an incorrect interpretation of your results.

Instructions pipeline Front-End

cycle

available.

caused the stall

32K L1 Instruction Cache - Pre-decode - Instr Queue Decoders Branch Predictor 1.5K uOP Cache Store Load Reorder Allocate/Rename/Retire Buffers Buffers Buffers In-order • The Front-end of the pipeline can out-of-order Scheduler allocate four uOps per cycle Port 0 Port 1 Port 5 Port 2 Port 3 Port 4 • The Back-end can retire four uOps per ALU ALU ALU Load Load STD StAddr IMP StAddr V-Mul V-Add 256- FP Shuf V-Shuffle V-Shuffle 256- FP Bool 256- FP Add Fdiv 256- FP Blend • A pipeline slot represents the hardware 256- FP MUL Memory Control 256- FP Blend resources needed to process one uOp. 48 bytes/cycle Line Fill • For each CPU core, on each clock 256K L2 Cache (Unified) Buffers 32K L1 Data Cache cycle, there are four pipeline slots Back-End • During any cycle, a pipeline slot can Uop either be empty or filled with a uOp. If Allocate? a slot is empty during one clock cycle, No Yes this is attributed to a stall. The next step needed to classify this pipeline slot **Back End** Uop Ever is to determine whether the Front-end Stalls? **Retires?** or the Back-end portion of the pipeline Yes No Yes No Bad Back End Front End Retiring

Speculation

Bound

https://en.wikichip.org/w/images/e/ee/skylake server block diagram.svg

57

Bound

- Feeds "decoded" instructions to the scheduler
- Affected by instruction non-locality (iCache-miss, iTLB misses) and mispredicted branches

Main metrics:

- L1-icache-load-misses (icache.ifdata_stall) Cycles where a code fetch is stalled due to L1 instruction cache miss.
- branch-misses (br_misp_retired.all_branches) This event counts all mispredicted branch instructions retired.

Helping the Front-end

- Avoid complex branching patterns
- Keep code local (inline)
- Keep loop short (so they fit in µOp cache)

Back-end

Computational engine of the CPU:

Affected by

- instruction dependency
 - instruction parallelism
 - pipelining
- Memory access
- Latency of slow instructions
 - div sqrt
- Vectorization Main Metrics:

uops_executed.stall_cycles

This event counts cycles during which no uops were dispatched from the Reservation Station (RS) uops_executed.thread

Number of uops to be executed each cycle.

cycle_activity.stalls_mem_any

Execution stalls while memory subsystem has an outstanding load.

arith.divider_active

Cycles when divide unit is busy executing divide or square root operations. Accounts for integer and floating-point operations.

Real-life latencies

- Most integer/logic instructions have a one-cycle execution latency:
 - For example
 - ADD, AND, SHL (shift left), ROR (rotate right)
 - Amongst the exceptions:
 - IMUL (integer multiply): 3
 - IDIV (integer divide): 13 23
- Floating-point latencies are typically multi-cycle
 - FADD (3), FMUL (5)
 - Same for both x87 and SIMD double-precision variants
 - Exception: FABS (absolute value): 1
 - Many-cycle, no pipepine : FDIV (20), FSQRT (27)
 - Other math functions: even more
- As of Haswell:
 - FMA (5 cycles)
- As of Skylake:
 - SIMD ADD, MUL, FMA: 4 cycles

 $http://www.agner.org/optimize/instruction_tables.pdf$

Helping the Back-end

- Keep data at hand
- Vectorize
- Recast loop to help the compiler to vectorize
- Avoid divisions and sqrt!

Helping the compiler to vectorize

- Vectorization is enabled in gcc by the flags:
 - -ftree-vectorize
 - -03
- Vectorizable:
 - Countable innermost loops
 - No variations in the control flow
 - Contiguous memory access
 - Independent memory access
- Avoid aliasing problems with restrict
- Use countable loops, with no side effects (break, continue, non-inlined function calls)
- Avoid indirect memory access (x[y[i]])

Not vectorizable

while (x[i] != 42){ if(x[i] == 0)x[i] = x[i-1]}

Conclusion

- Think about the problem you are trying to solve
- Understand the structure of the problem
- Apply mathematical techniques to find solution
- Map the problem to an algorithmic approach
- Plan the structure of computation
 - Be aware of in/dependence, interactions, bottlenecks
- Plan the organization of data, data structures, memory
 Be explicitly aware of locality, and minimize global data
- Finally, write some code! (this is the easy part)

References

- V. Innocente, ESC19 Architecture lecture
- John Hennessy, David Patterson, Computer Architecture A Quantitative Approach