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Previously, in Moore's Paradise

● The main contribution to the gain in microprocessor 
performance at this stage came by increasing the clock 
frequency. 

● Applications’ performance doubled every 18 months without 
having to redesign the software or changing the source code
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Von Neumann Architecture
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Von Neumann Architecture
● The basic operation that every Processing Unit 

(PU) has to process is called instruction and the 
address in memory containing the instruction is 
saved 

● A Program Counter (PC) holds the address of the 
next instruction

● fetch: the content of the memory stored at the 
address pointed by the PC is loaded in the 
Current Instruction Register (CIR) and the PC is 
increased to point to the next instruction’s address

● decode: the content of the CIR is interpreted to 
determine the actions that need to be performed

● execute: an Arithmetic Logic Unit performs the 
decoded actions.
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Moore's Law (ctd.)
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Moore's Law (ctd.)
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Moore's Law (ctd.)
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Back on Earth
● The power dissipated by a processor scales as

● Q number of transistors
● C capacity
● V voltage across the gate
● f the clock frequency
● I current
● In the early 2000s, the layer of silicon dioxide insulating 

the transistor’s gate from the channels through which 
current flows was just five atoms thick and could not be 
shrunk anymore
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Power and Energy
Thermal Design Power (TDP)

● Characterizes sustained power consumption
● Used as target for power supply and cooling system
● Lower than peak power (usually 1.5X higher), higher 

than average power consumption

● Clock rate can be reduced dynamically to limit 
power consumption

● Energy per task is often a better measurement
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“The party isn't exactly over, but the police have arrived, and the 
music has been turned way down” (P. Kogge, IBM)
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Evolution of system architecture
● Increased number of Processing Units
● More complex control

– Pipelining
– hardware threading 
– out-of-order execution 
– instruction-level parallelism 

● Deeper memory hierarchy
● Accelerators
● Interconnects
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What you will master soon
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Latency vs Bandwidth
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Serial computation
● Software traditionally written for serial computation:
● the sequence of instructions that forms the problem is 
executed by one Processing Unit (PU)

● every instruction has to wait for the previous one to be 
completed before its execution can start

● at any moment in time, only one instruction may execute
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Parallel computation
● In parallel computation, if two instructions have 

no data dependency, they can be executed in 
parallel, at the same time, by two PUs



16

Pizza Wall
● How many cooks does a pizzeria need to achieve 

the best production rate possible?
● If all the ingredients are in the same fridge and 

there is only one oven? Maybe 1, 2, 64, infinity?
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Mitigating the Pizza Wall
● Reuse of ingredients and tools which are used often: 

put them on a small table close to you
● Increase the frequency of travels to the fridge
● Increase the amount of ingredients you transfer from 

the fridge
● If ingredients are located all in the same box in the 

fridge, you can carry more of them with a single 
transfer

● Better organization of order of instructions, keeping 
cooks busy
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Memory Wall
● How many PUs does a program need to achieve 

the best performance possible? 
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Mitigating the Memory Wall
● Reuse data and instructions: data and instructions which are used 

often are stored in a on-chip memory called cache.
● Increase the memory transfer speed: this can be done by 

increasing frequency, which is limited by the power wall.
● Increase the amount of data to transfer: memory transfers have 

overheads, which can become negligible if more memory is 
transferred in one instruction.

● Improve the access pattern to memory: if more processing units 
are reading adjacent memory locations, they can all be fed by a 
single memory transfer.

● Better organization of order of instructions, keeping PU busy
● Smarter prefetching
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Parallel Computing
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Embarrassingly parallel problems

yi=fi(xi)
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Embarrassingly parallel problems (ctd.)
Examples:
● Linear Algebra
● Image Processing
● Monte Carlo Simulation
● Cryptomining 
● Weather forecast
● Random number generation
● Encryption
● Software compilation



23

Terminology
● Granularity: size of tasks
● Scheduling: order of assignment of tasks
● Mapping: assignment of tasks to a PU
● Load balancing: the art of making the computation of multiple tasks end at the same 

time
● Barrier: a checkpoint at which all the parallel workers should wait for the last one.
● Speedup: time of the serial application/time of the parallel application
● Efficiency: Speedup/# of PUs
● Race condition: When the result of execution depends on sequence

and/or timing of events. Result could be incorrect if this is not taken in consideration
● Critical section: Only one worker per time can enter.
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Flynn's Taxonomy
Classification of computers describes four classes in both serial 
and parallel contexts:
● SISD - Single Instruction stream - Single Data stream

–  A single processor computer that executes one stream of instructions 
on one set of data. Single-core processors belong to this class.

● SIMD - Single Instruction Stream - Multiple Data stream 
– A multiprocessor where each processing unit executes the same 

instruction stream as the others on its own set of data. 
– A set of processors shares the same control unit, and their execution 

differs only by the different data elements each processor operates on.
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Flynn's Taxonomy (ctd.)
● MISD - Multiple Instruction stream - Single Data stream 

– Each processing element of the multiprocessor executes its own 
instructions, but operates on a shared data set.

● MIMD - Multiple Instruction stream - Multiple Data 
stream
–  Each processing element executes its own instruction stream on 

its own set of data.
● SIMT - Single Instruction - Multiple Thread

– SIMD is combined with multithreading: we will see this with 
GPUs
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Patterns for Parallel Programming
Parallel programming is not easy:
Apparently simple problems can hide many traps! 
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Reduce

Reduction is a very common pattern in parallel computing:
● Large input data structure distributed across many PU
● Each PU computes a tally of its input
● These tally values are combined to produce the final result
Examples:
● The sum of the elements of an array
● The maximum/minimum element of an array
● Find the first occurrence of x in an array
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count number of 5s
array[N]

numberOf5 = 0

for i in [0,N[:

   if array[i] == 5

       numberOf5++

return numberOf5

numberOf5 = 0

nWorkers = 4

count5(array, workerId):

  beg = workerId*N/nWorkers

  end = beg + N/nWorkers

  for i in [beg,end[:

         if array[i] == 5:

            numberOf5++
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Data Hazards
Threads within a process share the same address space 
but not their execution stack
Pro: Threads can communicate using shared memory
Cons: Data Hazards if threads are not synchronized
Data hazards usually occur when threads modify data 
in different points in the instruction pipeline and the 
order of reading and writing operation matters (data 
dependence)
● Read-After-Write (RAW)
● Write-After-Read (WAR)
● Write-After-Write (WAW)
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Data Hazards
Overlooking data hazards can lead to the corruption of the 
shared state (race condition)
Tricky to debug since the result depends on the timing between 
concurrent threads: unpredictable!
When a piece of code is clean of data hazards, it is said to be 
thread-safe.
The easiest ways to avoid conflicts in critical sections is to 
grant access one thread at a time: mutex (mutual exclusion)
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count number of 5s
array[N]

numberOf5 = 0

for i in [0,N[:

   if array[i] == 5

       numberOf5++

return numberOf5

numberOf5 = 0

nWorkers = 4

count5(array, workerId):

  beg = workerId*N/nWorkers

  end = beg + N/nWorkers

  for i in [beg,end[:

         if array[i] == 5:
            lock()

            numberOf5++ 
            unlock()  
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Performance
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Performance
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Contention
● Conflicting Data Updates Cause Serialization 

and Delays:
● Massively parallel execution cannot afford 

serialization
● Contentions in updating critical data causes 

serialization
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Mitigating contention
Contention can be mitigated with:
● Privatization
● Transformation of the access pattern

● Avoid frequent transactions to/from the global main 
memory and read/write the data locally as much as 
possible before updating the global value

● Make use of registers and shared memory for aggregating 
partial results

● Requires storage resources to keep copies of data structures
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count number of 5s
array[N]

numberOf5 = 0

for i in [0,N[:

   if array[i] == 5

       numberOf5++

return numberOf5

numberOf5 = 0

nWorkers = 4

count5(array, workerId):

  privateResult = 0

  beg = workerId*N/nWorkers

  end = beg + N/nWorkers

  for i in [beg,end[:

         if array[i] == 5:

            privateResult++ 

     lock()

     numberOf5 += privateResult

     unlock()

    



37

Privatization

The T=8 version does not take half of the time w.r.t. 
T=4... Why?
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Amdahl's Law
The maximum theoretical throughput is limited 
by Amdahl's Law:
● Every program contains a serial part
● Only one PU can execute the serial part
● The speedup using p PUs is given by

 
●  If f  is the fraction of the program that runs 

serially, the parallel execution time is given by:  



39

Amdahl's Law (ctd.)
The speed-up becomes

 



40

Mitigating Amdahl's Law: 
Gustafson's Law
● Amdahl’s Law assumes that a problem can be split in a number of independent chunks n 

that can be processed in parallel and that this number is fixed
● Many times, the increase of the size of a problem does not correspond to a growth of the 

sequential part
– increasing the size of the problem does not change the time spent executing the sequential 

part, and only affects the parallel portion
● Let f (n) be the sequential code fraction of the program

● f(n) decreases to 0 when n approaches infinity. 
● The maximum speedup is then given by:

It's still worth to learn parallel computing: computations involving arbitrarily large data sets 
can be efficiently parallelized!
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Fork-join
When thinking about possible parallel solutions:
● How to partition the problem
● How to share information
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Data Partitioning

y i=f i(range (x i ,δ))
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Partitioning
● Static:

– all information available before computation starts
– use off-line algorithms to prepare before execution time
– Run as pre-processor, can be serial, can be slow and expensive

● Dynamic:
– information not known until runtime
– work changes during computation (e.g. adaptive methods)
– locality of objects can change (e.g. particles move)
– use on-line algorithms to make decisions mid-execution
– must run side-by-side with application
– should be parallel, fast, scalable. 
– Incremental algorithm preferred (small changes in input result in small 

changes in partitions)
Why? In order to minimize idle time.



44

Load balancing
Sometimes dividing the input data in two 
does not mean that the load has been also 
divided in two.
Example:
Total load: 100
● If 5 workers take 20 

each
– Speedup 5

● If 1 worker takes 50
– Speedup 2
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Partitioning and Load Balancing
● Assignment of application data to processors for parallel 

computation
● Applied to grid points, elements, matrix rows, particles

Non-uniform data distributions
● Highly concentrated spatial

data areas
● Astronomy, medical imaging,

computer vision, rendering
If each thread processes the 
input data of a given spatial 
volume unit, some will do a lot 
more work than others
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Divide et Impera
When you don't have any idea on how to 
approach the parallelization of a problem, try 
Divide et Impera
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Load Imbalance
Sometimes load imbalance could also be 
caused by some underestimated 
consideration

● Example:

int N = 1000;
for(int i=0; i<N; ++i){
...
}
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Load Imbalance
Sometimes load imbalance could also be 
caused by some underestimated 
consideration

● Example:
i_start = my_id * (N/num_threads);
i_end = i_start + (N/num_threads);
if (my_id == (num_threads-1)) 

i_end = N;
for (i = i_start; i < i_end; i++) {
...
}
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Load Imbalance
● The last thread executes the remainder

i_start = my_id * (N/num_threads);
i_end = i_start + (N/num_threads);
if (my_id == (num_threads-1)) 

i_end = N;
for (i = i_start; i < i_end; i++) {
...
}

● If the number of threads is 32, each thread will execute 31 
instructions

● The last thread will execute 8 more instructions
● Try to extrapolate to a bigger number of iterations and of 

threads!
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Parallel computing
All exponential laws come to an end...
Parallel computing becomes useful when:
● The solution to our problem takes too much time 

(Amdahl's Law)
● The size of our problem is big (Gustafson's Law)
● The solution of our problems is poor, we would like to have 

a better one
Three steps to a better parallel software:

1.Restructure the mathematical formulation
2.Innovate at the algorithm and data structure level 
3.Tune core software for the specific architecture



51

Microarchitecture and Metrics
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CPU time

You want to minimize the CPU time and 
understand what handles you have
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Speculative execution
● Modern processors execute many 

more instructions than the program 
flow needs (Core Out Of Order 
pipeline). 

● The Front-end fetches the program 
code decodes instructions into one 
or more low-level hardware 
operations called micro-ops (uOps). 

● The uOps are then fed to the Back-
end in a process called allocation.

● Leaving the Retirement Unit means 
that:
– the instructions are finally executed 
– their results are correct and visible in 

the architectural state as if they 
execute in-order
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Retired instructions
● Instructions that were 

“proven” as indeed needed by 
the program execution flow 
are retired

● Instructions and uOps of 
incorrectly predicted paths 
are flushed 

● Then the uOps associated 
with the instruction to be 
retired have completed 
(together with older 
instructions)

● Retirement of the correct 
execution path instructions 
can proceed 
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Clockticks per Instructions Retired (CPI)

● The CPI value of an application or function 
is an indication of how much latency 
affected its execution
– Higher CPI means: on average, it took more 

clockticks for an instruction to retire. 
– Latency in your system can be caused by cache 

misses, I/O, or other bottlenecks
● CPI < 1: instruction bound code
● CPI > 1: stall cycle bound or memory bound.
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CPI vs Retired instructions
● Optimizations will affect either CPI or the 

number of instructions to execute, or both. 
● Using CPI without considering the number of 

instructions executed can lead to an incorrect 
interpretation of your results.
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Instructions pipeline 

●

● The Front-end of the pipeline can 
allocate four uOps per cycle

● The Back-end can retire four uOps per 
cycle 

● A pipeline slot represents the hardware 
resources needed to process one uOp. 

● For each CPU core, on each clock 
cycle, there are four pipeline slots 
available. 

● During any cycle, a pipeline slot can 
either be empty or filled with a uOp. If 
a slot is empty during one clock cycle, 
this is attributed to a stall. The next 
step needed to classify this pipeline slot 
is to determine whether the Front-end 
or the Back-end portion of the pipeline 
caused the stall

https://en.wikichip.org/w/images/e/ee/skylake_server_block_diagram.svg

https://en.wikichip.org/w/images/e/ee/skylake_server_block_diagram.svg
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Front-end

● Feeds “decoded” instructions to the scheduler
● Affected by instruction non-locality (iCache-miss, iTLB misses) and mispredicted 

branches
Main metrics:

● L1-icache-load-misses (icache.ifdata_stall ) Cycles where a code 
fetch is stalled due to L1 instruction cache miss.

● branch-misses (br_misp_retired.all_branches) This event counts all 
mispredicted branch instructions retired.
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Helping the Front-end
● Avoid complex branching patterns
● Keep code local (inline)
● Keep loop short (so they fit in µOp cache)



Back-end
Computational engine of 
the CPU:
Affected by 
• instruction dependency

• instruction 
parallelism

• pipelining
• Memory access
• Latency of slow 

instructions
• div sqrt

• Vectorization
Main Metrics:
uops_executed.stall_cycles                 
     This event counts cycles during which no uops were dispatched from the Reservation Station (RS) 
uops_executed.thread                       
     Number of uops to be executed each cycle.
cycle_activity.stalls_mem_any              
     Execution stalls while memory subsystem has an outstanding load.
arith.divider_active                       
     Cycles when divide unit is busy executing divide or square root operations. Accounts for integer 
and floating-point operations. 61

?



Real-life latencies
• Most integer/logic instructions have a one-cycle execution latency:

• For example 
• ADD, AND, SHL (shift left), ROR (rotate right)

• Amongst the exceptions:
• IMUL (integer multiply): 3
• IDIV (integer divide): 13 – 23

• Floating-point latencies are typically multi-cycle
• FADD (3), FMUL (5)

• Same for both x87 and SIMD double-precision variants
• Exception: FABS (absolute value): 1
• Many-cycle, no pipepine : FDIV (20), FSQRT (27)
• Other math functions: even more 

• As of Haswell:
• FMA (5 cycles)

• As of Skylake:
• SIMD ADD, MUL, FMA: 4 cycles

http://www.agner.org/optimize/instruction_tables.pdf 62

http://www.agner.org/optimize/instruction_tables.pdf
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Helping the Back-end
● Keep data at hand 
● Vectorize 
● Recast loop to help the compiler to vectorize
● Avoid divisions and sqrt! 
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Helping the compiler to vectorize
● Vectorization is enabled in gcc by the flags:

– -ftree-vectorize
– -O3

● Vectorizable:
– Countable innermost loops
– No variations in the control flow
– Contiguous memory access
– Independent memory access

● Avoid aliasing problems with restrict
● Use countable loops, with no side effects (break, continue, 

non-inlined function calls )
● Avoid indirect memory access (x[y[i]])
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Not vectorizable
while(x[i] != 42)
{

if(x[i] == 0) 
x[i] = x[i-1]

}
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Conclusion
● Think about the problem you are trying to solve
● Understand the structure of the problem
● Apply mathematical techniques to find solution
● Map the problem to an algorithmic approach
● Plan the structure of computation

– Be aware of in/dependence, interactions, bottlenecks
● Plan the organization of data, data structures, memory

– Be explicitly aware of locality, and minimize global data
● Finally, write some code! (this is the easy part )
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