
ESC22 1

Why memory management matters

Hennessy, Patterson “Computer Architecture: A Quantitative Approach”

ESC22 2

Introduction

CPU
Core

I-L1 D-L1

Core
I-L1 D-L1

L2

Core
I-L1 D-L1

Core
I-L1 D-L1

L2

L3

CPU

CPUCPU

CPU

interconnect

Memory

Memory

Memory

Memory

● Typical, simplified,
CPU and system
layout
– Non Uniform

Memory Access

ESC22 3

What's the ideal memory?

● Access time of SRAM, $/GiB and capacity of disk
● The ideal situation can be approximated with a hierarchy

of different memory types

1st-level cache

2nd-level cache

3rd-level cache
memory

Memory technology Typical access time $ per GiB
SRAM 0.5 ns – 2.5 ns 500 – 1000
DRAM 50 ns – 70 ns 3 – 6
Magnetic disk 5 ms – 20 ms 0.01 – 0.02

Patterson, Hennessy “Computer Organization and Design: The Hardware/Software Interface”

ESC22 4

Hierarchy levels
● The data is present in the

highest level
– hit

hit rate = hits / accesses
● The data is not present in

the highest level
– miss: data is looked for in the

lower level
– miss penalty: the cost of

getting the data
– likely causes stalls in the

execution
● Data is moved in blocks

(cache lines)
Patterson, Hennessy “Computer Organization and Design: The Hardware/Software Interface”

ESC22 5

Locality principle

● Data
– Multiple accesses to variable len
– Scanning of array str

● Instructions
– Repetition of the instructions corresponding to the

expressions *str++ e ++len
– Execution of consecutive instructions

int strlen(char const* str)
{
 int len = 0;
 while (*str++) ++len;
 return len;
}

ESC22 6

Locality principle
● In a limited time interval a program accesses only a small

part of its whole address space
● Temporal locality

– Memory locations recently accessed tend to be accessed
again in the near future

● e.g. instructions and counters in a loop
● Spatial locality

– Memory locations near those recently accessed tend to be
accessed in the near future

● e.g. sequential access to instructions in a program or to data in
an array

● Hardware components like caches and pipelines are
justified by the locality principle

ESC22 7

Cache effect
● The efficiency of a

program does not depend
only on the computational
complexity of an
algorithm...

Be friendly to the cache

Patterson, Hennessy “Computer Organization and Design: The Hardware/Software Interface”

ESC22 8

Size of a type
● Determined statically (i.e. at compile time)
● Queried with the sizeof operator

– returns multiples of sizeof(char), which by definition is 1
– typically a char is 1 byte, 8 bits

● For primitive types
– on my laptop

Type sizeof

bool 1
char 1
short 2
int 4
long 8
long long 8
float 4
double 8
long double 16
void* 8

ESC22 9

Layout
● Consider

struct S
{
 char c1;
 int n;
 char c2;
};

static_assert(sizeof(S) == 12);

● The size is influenced by alignment constraints
– the address of a variable of a certain type is typically a

multiple of the size of that type
– e.g. an int can reside only at an address multiple of 4

ESC22 10

Does it matter?
● Try yourself, for example sorting a vector of structs with

the same fields but different layouts

struct P
{
 char c1;
 int n;
 char c2;
};

static_assert(sizeof(P) == 12);

std::vector<P> v = …;
std::sort(v.begin(), v.end(), [](P const&, P const&) {…});

struct P
{
 int n;
 char c1;
 char c2;
};

static_assert(sizeof(P) == 8);

ESC22 11

Cold data
● Consider

● Data is brought into the cache, but it's not used
– NB the “usefulness” depends on the specific operation

struct S
{
 int n;
 float f;
 double d;
};

static_assert(sizeof(S) == 16);

optimal layout

std::vector<S> v = …;
std::sort(v.begin(), v.end(), [](S const& l, S const& r) { return l.n < r.n; });

the order depends only on S::n

cache line (64 bytes)

ESC22 12

Does it matter?
● Try yourself, for example sorting a vector of structs with a

field of changing size which is not used
– EXTSIZE can be passed with -DEXTSIZE=nn to the

compilation command

struct S
{
 int n;
 char ext[EXTSIZE]
};

std::vector<S> v = …;
std::sort(v.begin(), v.end(), [](S const& l, S const& r) { return l.n < r.n; });

ESC22 13

Alternative design techniques
● Externalize cold data from the data structure

● Try yourself

using Ext = char[EXTSIZE];
struct Particle {
 Vec position_;
 Ext ext_;
 void translate(Vec const& t) {
 position_ += t;
 }
};

using Ext = char[EXTSIZE];
struct ParticleExt { Ext ext; };
struct Particle {
 Vec position_;
 std::unique_ptr<ParticleExt> ext_;
 void translate(Vec const& t) {
 position_ += t;
 }
};

using Particles = vector<Particle>;
void translate(Particles& ps, Vec const& t) {
 for_each(ps.begin(), ps.end(),
 [=](Particle& p) { p.translate(t); }
);
}

no impact on client code

ESC22 14

Alternative design techniques
● Structure of Arrays instead of Array of Structures

struct Particle {
 Vec position;
 Ext ext;
 void translate(Vec const& t) {
 position += t;
 }
};

using Particles = std::vector<Particle>;

struct Particles {
 std::vector<Vec> positions;
 std::vector<Ext> exts;
};
void translate(Vec& position, Vec const& t) {
 position += t;
}

Vec

Ext

Particle

Vec

Ext

Particle

Vec

Ext

Particle

Vec

Ext

Particle

Vec

Ext

Particle

Vec

Ext

Particle

Vec

Ext

Particle

Pa
rt
ic
le
s

Pa
rt
ic
le
s

Vec Vec Vec Vec Vec Vec VecPositions

Ext Ext Ext Ext Ext Ext ExtExts

● The technique can be brought to the extreme, down to
the primitive types

ESC22 15

Alternative design techniques
● Structure of Arrays

● Try yourself

struct Particle {
 Vec position;
 Ext ext;
 void translate(Vec const& t) {
 position += t;
 }
};

Particles v;
v[i].position;

struct Particles {
 vector<Vec> positions;
 vector<Ext> exts;
};
void translate(Vec& position, Vec const& t) {
 position += t;
}

Particles v;
v.positions[i];

void translate(Particles& ps, Vec const& t) {
 std::for_each(ps.begin(), ps.end(),
 [&](Particle& part) { part.translate(t); }
);
}

void translate(Particles& ps, Vec const& t) {
 auto& positions = ps.positions;
 std::for_each(positions.begin(), positions.end(),
 [&](Vec& pos) { translate(pos, t); }
);
}

some impact on client code

ESC22 16

Hands-on
● Inspect, build, run, measure, also through perf

– sort_packed.cpp

– sort_cold.cpp

– aos.cpp

– aos_impr.cpp

– soa.cpp

