Efficient floating point arithmetic

Efficient School of Computing, Bertinoro, 2022
Wahid Redjeb

wahid.redjeb@cern.ch

Why Floating-Point Arithmetic?

e Floating point instead of fixed point
o They give you a wider range
o You can represent very big numbers as well as very small
numbers
e All of you are using floating point numbers
o They need some attention, to avoid big failure in your code
e Itis important to understand how they work
o Finding the best way to solve a problem
m How do you find the“best” approach to solve your
problem?
m Sometime you want something precise, some other
time you want something fast

Thinking of floating point numbers

e Sometime they are considered:
o Not well defined
o Full of mysteries and undefined behaviour
e But actually you can:
o Write proof, like in standard math!
o You can determine if your algorithm is going to fail
o Orifitis going to work

e New hardware new challenges!
o Parallelism make floating point calculation less deterministic!

Defining the floating-point system.

Some desirable properties for floating-points

e Speed
e Accuracy
o We want to be fast, but we don’t want a wrong answer

e Range
o We want represent very small and very big numbers
e Portability

o The code we write have to run on all the machine
e Something easy
o We don’t want an extremely complicated set of rules

J-M Muller sequence

1130 3000 n | Exact value

Un = 111 — o =+ T T 3185
4 [9.3783783783783783784
5| 7.8011527377521613833
o - 10071-}-1 + 6) 6n+1 + Ay - 571-!—1 6 | 7.1544144809752493535
bn = 100" + 8- 67 + 7 - 5" 11 | 6.2744385982163279138
12 | 6.2186957398023977883
* ifa#0—>converges to 100 16 | 6.0947394393336811283

e ifa=0,0 #0—>convergesto6

17| 6.0777223048472427363

e uw=2,u1=4—>50=0,0=-3,y=4 18 | 6.0639403224998087553

° should converge to 6! 19 | 6.0527217610161521934

_ _ , 20 | 6.0435521101892688678

e ...but so.metlmes, things QOn t work as expected 21 | 6.0360318810818567300
o Try it youself! There is a sequence, that

should converge (o 6. 22 | 6.0298473250239018567

cd hands-on/floatingpoints/ 23 | 6.0247496523668478987

g++ muller.cc -o muller 30 | 6.0067860930312057585

/muller 31 | 6.0056486887714202679

32
2
-4

J-M Muller sequence

1130 3000
+

Up—1 Up—1Un—2

Un = 111 —

& 1007 4.8 et . BT
oy -]_0071 + {3 . 671 _I_ ,-}, . 5n

"l.l» ’,'L -

e if o #0 —> converges to 100
e ifa=0,0 #0—>convergesto6

e uwW=2,u1=4—-0e=0,0=-3,y=4
o should converge to 6!

e ... but sometimes, things don’t work as expected
o Try it youself! There is a sequence, that should
converge to 6.

cd hands-on/floatingpoints/
g++ muller_quad.cc -o muller_quad -lquad

./muller_quad
32

2

-4

n

Exact value

18.5

9.3783783783783783784

7.8011527377521613833

7.1544144809752493535

6.2744385982163279138

6.2186957398023977833

6.0947394393336811283

6.0777223048472427363

6.0639403224998087553

6.0527217610161521934

6.0435521101892688678

6.0360318810818567800

6.0298473250239018567

6.0247496523668478987

6.0067860930312057585

6.0056486887714202679

Building a floating-point system - Some properties

Floating-points don’t behave as real numbers!
e All floating-points are rational numbers
Common rules of arithmetic, in general, are not valid for floating-points
o Distributivity, associativity
e There are a finite number of floating points!
o Doesn’t matter how many bits you can store, you'll always have a finite
number of floating points
o There are rational numbers that are not floating-points!
And irrational numbers can not be represented by floating-points

IEEE 754-2008 standard

e We need something that tells us some rules for building a floating-point systems

O O 0 O O O

Standardize formats
Conversions between different formats
Conversion between floating-points and integers
Standardize some operations
Rounding modes
Special values
m Zero, Infinity, subnormals, NaN (not a Number)
e NaN — 0/0, infinity / 0, infinity + infinity
Exceptions
m Underflow
e Value is less than the smallest non-zero floating-point number
e Return0
m Overflow
e \Value is greater than the largest floating-point number
e Return infinity
m Division by zero

Building a floating-point system - Value of a floating-point number

A floating point number is characterized by the following numbers

e Aradix (base) g
e Asignbit, s €{0,71}
e Exponente
o Integersuchthate = <e<e
e A precision p

max

Building a floating-point system - Storage Format

max

e
+ 1

min

w p-1
signI exponent (8 bits) “ fraction (23 bits)]
0j0j1)1)1y1/1(0f(0OJ0f1{0|0|0|0O(0O(O[O|O|OJ0OJOJOj0O{0O|O|OJOJOJO|O|O| FP32
31 30 £, 2422 (bit index) 0
Hidden bit ==
IEEE Name | Precision N bits Exponentw | Fraction p e . € ax
Binary32 Single 32 8 24 -126 +127
Binary64 Double 64 11 53 -1022 +1023
Binary128 Quad 128 15 113 -16382 | +16383
Exponent: E - - e . + 1,whbits

10

Building a floating-point system - Value of a floating-point number

A floating point number is characterized by the following numbers

e Aradix (base) 8
e Asign,s €{0,1}
e Exponente
o Integersuchthate = <e=<e
e A precision p

max

The value of a floating-point number is given by
e |ts format
e The digits in the number
o x;suchthat 0<isp and Os<x,<§

We can express its value:

p—1
o (_)Sﬁe Z%ﬁ_z
1=0

11

Building a floating-point system - Value of a floating-point number

p—il .
o (_)Sﬂe sz_ﬁ—z
=0

Let’s try to represent the number 0.5 (in binary radix g =2)

12

Building a floating-point system - Value of a floating-point number

p—il .
o (_)Sﬂe sz_ﬁ—z
=0

Let’s try to represent the number 0.5 (in binary radix g =2)

e e=-1-2"x1:2° > (x,=1)

13

Building a floating-point system - Value of a floating-point number

p—il .
o (_)Sﬂe sz_ﬁ—z
=0

Let’s try to represent the number 0.5 (in binary radix g =2)

e e=-1-2"x1:2° > (x,=1)
e e=0-2°x1-2" > (x,=1,x,=1)

14

Building a floating-point system - Value of a floating-point number

p—i1 . p—1
z=(-)°) z:p~° m=Y 2 0<m<p
1=0 =0

Let’s try to represent the number 0.5 (in binary radix g =2)

e=-1-2"x1-29
e=0—-20x1-2" -
e=1-2"x1-27% - (x,

— (X, =1)
— (x,=0,x,=1) Multiple (m, e) representation
0, x

1

15

Value of a floating-point number - Uniqueness

p—i1 . p—1
z=(-)°) z:p~° m=Y 2 0<m<p
1=0 =0

e In order to have a unique representation we want to normalize the floating-point
number
o We can choose to represent the floating-point number with a (m,e)
representation, such that e is minimum (e, . <e<e
m 1<s|ml<B
m That also means to require x, # 0, first bit = 1

max)

e If minimizing the exponent resultsine <e_.
o thenx,mustbe0,e=e_ ., first bit=0
e These numbers are called subnormal numbers

16

Value of a floating-point number - Normals and Subnormals

p—i1 . p—1
z=(-)°) z:p~° m=Y 2 0<m<p
1=0 =0

To summarize, we can have three different cases:

m=0 —>x,=X=...= X, 1= 0 —> Value: 0
e m#0andx,#0—>Normal number
o 1=sm<p
e m#0 butx, =0—>Subnormal number

o 0<m<1ande=emm

17

Value of a floating-point number - Some additional points

w p-1
sign exponent (8 bits) fraction (23 bits)
[

ofol1|1]1{1]1|o]0lo|1|o|0|olo]olo]olo]olo]olo]ololo|ofo]lofo]ofo] Fp32
31 30 212 (bit index) 0
Hidden bit ==

e Exponent: E = e - e + 1,w
bits e Many more normal numbers than
® Chx T "Cnm *t 1 subnormal numbers
o Let's justassume x, =1
e Use special exponent to trigger
special treatment for subnormals
© e=emin-1

18

Value of a floating-point number - Some additional points

w p-1
sign exponent (8 bits) fraction (23 bits)
[

Ojof1f{1f1f1y1)0j0}J0]1j0j0|0O|O|OjO[O{O{O{OJOJOJ0OJOJOJOJ0OJ0J0J0O]|0O| FP32

31 30 2922 (bit index) 0
Hidden bit ==
e Exponentt E = e - e+ 1,W
bits e Many more normal numbers than
® Chx T "Cnm *t 1 subnormal numbers
o Let's justassume x, =1
\ e Use special exponent to trigger
o _ _ special treatment for subnormals
e In principle the exponent is a signed o e=e -1
min

integer -126 <e < +127
o But, it is easier to compare floating
point numbers with an unsigned
exponent
o We don't store the exponent, but
something else

o e=(E,+127,),
o E=(e,),-127,,

19

> cd escZ22/hands-on/floatingpoints/
> g++ float-rep.c -o float-rep
> . /float-rep

e Play a bit with the program!
e Try to extract the floating point representation for the number 17.625
e Try to extract the base 10 value of the value

o 0 10000010 00011100000000000000000

20

IEEE 754-2008 - Rounding Modes

e The standard defines 5 rounding modes:
o Round to nearest - Ties to even
m Round to nearest, in case of a tie, the breaking rule is to select the
result with an even significand
m ltis the default rounding mode!
o Round to nearest - Ties away from zero
m Round to nearest, in case of a tie, round to the nearest value above
(if positive) or below (if negative)
o Round towards 0 - Direct rounding
o Round towards +<« - Direct rounding
o Round towards -« - Direct rounding

21

IEEE 754-2008 - Rounding Modes

IEEE 754-2008 requires these operations to be correctly rounded

@)

O O O O O O

Addition

Subtraction

Multiplication

Division

Fused multiply add (FMA)
Square root

Comparison

22

e For floating points operation we use:
o @ for addition
o o for subtraction
o @ for multiplication
o @ for division
e 1 (x) isthe result of an operation using the the current rounding mode

23

Rounding - Error measures - ULP

p—1

e Unit in the last place (ULP) m = inﬁ_i 0<m<8

e Place value of the least bit of the significand of x =0

e Represent the distance between two floating points

e If x is the infinite-precise result and vy is the rounded results

o Ix - vyl < 0.5ulpl(y)
nextafter(pi,-inf float pi
m v
3.14159250 3.14159274 3 14159298
l 3.1415926218 3.14159286022 l

%

Tools

#include <limits> //std::numeric_limits
float x = //value;

float ulp = std::nextafter(x,std::numeric_limits<float>::max())-x; 24

Math with floating-point numbers

Addition and multiplication are guaranteed to be commutative
BUT associativity and distributivity are in general lost
© (a ® b) ® cmaynotbeequaltoa © (b @ c)
m Similar for e,2,2
O a ® (b ® c) maynotbeequalto (a © b) ©@ (a @ c)
0 (12a)®a may not be equal to a

Write a program to sum all the numbers from 1 to N in single
precision

Write a program to sum all the numbers from N to 1 in single
precision

You see any difference?

What hapboens if vou use double precision?

T

. _n-(n+1)
Note that: 2= 3

1=0)

25

Fused Multiply-add instruction (FMA)

Standardized by IEEE-754-2008
Allows to compute (a x b) + c in a single instruction
Only one rounding instead of two
May produce faster and accurate calculation
o Matrix multiplication
o Polynomial evaluation

BUT
e FMA may change floating point results
o FMA(a*b+c) might be different from (a®b) +ec
e The compiler is allowed to rearrange the terms of an expression to generate a single
instruction: Contractions

IMPORTANT!
double a, b, ¢, d; double a,b,c,d; Different compllers might have contractions
enabled or disabled!
a = b*c + d a = bj
b *= c; e |f you want to be fully reproducible
c - g o Disable contractions

o use std::fma explicitly
] -02 -mfma

Tools: There are compiler switches and #pragmas
@ -fpp-contract=off|fast
® #pragma STDC FP_CONTRACT ON|OFF
26

Rounding - Approximation error

#include <cmath>

int main () {

printf ("%1.17g\n", std::sin(M PI));
}

e ThevalueofM_PIislessthantby ~1.2x10*°
[wa@T470]$./a.out

¢ sin(M_PI) # O
1.2246467991473532e-16
e Try yourself!
o Editapprox_err.cc _ _
Is 0.1 a floating point? https://www.iro.umontreal.ca/~mign
Is 0.01 a floating point? otte/IFT2425/Disasters.html

is0.01=0.1*0.1 7
You can use ulps to understand the differences!

27

https://www.iro.umontreal.ca/~mignotte/IFT2425/Disasters.htm
https://www.iro.umontreal.ca/~mignotte/IFT2425/Disasters.htm

Rounding - Associativity and Catastrophic Cancellation

#include <cstdio>

int main () {

const double a = +1.0E+300;

const double b = -1.0E+300;

const double ¢ = 1.0; e Catastrophic cancellation occurs when two

double x = (a +b) + c ; nearly equal floating-point numbers are subtracted.

double vy = a + (b + c); o If x=Yy, their significands are nearly identical.
o When they are subtracted, only a few

low-order digits remain. l.e., the result has
printf("x = %1.109\n", x); very few significant digits left.
printf("y = %$1.10g\n", vy);

return 0O;

}

[wa@T470 ~]$./a.out
x =1
y = 0

28

Rounding - Catastrophic Cancellation - Quadratic Equation

ax®> +br+c=0

== (—b + Vb — 4ac) /(2a)

e Write a program that gives you back the roots of the quadratic equation with single
precision
o a=5"10%
o b=100
o c¢=5%103
e \What happens?
e How can we treat the problem?

29

Rounding - Catastrophic Cancellation - Quadratic Equation

2 .
axr® + br + c = O b+ Vb? — dac
T = 2a
b
= =l
‘2(1(o
e Let's rewrite the b
solutions Ty =—-——(1-v1-9)

e Let's define [1 =4ac/b? 2a

e When b?>>4ac — [] << 1
o (1 —+/1-0) contains a possible cancellation!
e \We can remove one cancellation rationalizing the

expression
o Multiply by 1 + /1 — 4 numerator and . el =4 =]
denominator T o v1—-4

e Now no catastrophic cancellation can occur! 54 (1)

BNl

30

Rounding - Sterbenz’s Lemma

Provided a floating-point system and subnormal numbers, if a and b are floating
points numbers such that:

b/2 < a < 2b
Then:

aeb = a-b

Thus:
There is no rounding error associated with a©b

e The Sterbenz lemma asserts that if x and y are sufficiently close floating-point numbers
then their difference x — y is computed exactly by floating-point arithmetic

x © y = f1(x - y) with norounding needed.

31

Error Free Transformation - EFT

Error-free transformation is a concept that makes it possible to compute accurate results
within a floating point arithmetic. (Error-free transformations in real and complex floating point
arithmetic - Stef Graillat and Valérie Ménissier-Morain)

e Algorithms that transforms a set of floating-point numbers in a new set of
floating-point numbers without any loss of information
o Useful for computing round-off errors
o Obtain accurate operations
e There EFT for

o Addition

o Multiplication

o Splitting

o Derived: Combination of the previous ones

f(x,y) —> (s,t)

32

Addition EFT - Fast2Sum

Fast2Sum algorithm

a , b floating-points numbers such that
a+b = s+t,where s=a®b and t

Requires |alz1Db]| /are floating points
1. s ~a%b]

2. t ~bS(sea)
3. return (s,t)

Intuitive explanation — Rigorous proof on Handbook of Floating Point
arithmetic
e a>b
o s = a + (partofb that contributed to the sum)
o s © a=partofb thatcontributed to the sum
o be(s®a)= Rounding error

NOTE: This algorithm requires a branching

33

Addition EFT - TwoSum

TwoSum algorithm

, b floating-points numbers
s —a®b

z —(s®a)

t « (a®(s9z)®(boz)
return (s,t)

B W DNPR

a+b = s+t,where s=a®b and t

/ are floating points

e No branching
o But 6 floating-points instead of 3

e TwoSum usually faster

34

Addition EFT - Precise Multiplication

TwoProduct algorithm

b floating-points numbers
- s+t, where s=a®b and t are

a,

1. s <a®b axb

2. t -FMA(a,b,-8) /ﬂoatingpoints
3.

return (s,t) —

35

Condition numbers

e Given a x number you wantto compute f(x) = vy
o But there is the rounding in place
m Most of the time you have X = x + Ax
B f(x + Ax) =y + Ay
e \We can compute the following number

Ag '
c- 3 _lz-f @)

= 1Az T o
2z ~ Tf(@)]
~n(z) with z=1
Example: 1 e Small condition number means:
C'=— —F0 o Small Ax produces small Ay

Inx

o Well Conditioned

e Big condition number means:
o Small Ax produces big Ay
o lll conditioned

36

Summation Techniques - Condition Number

> sl

=0

I Z -T'i.l
i

Condition number for addition C.,,, =

e Numerator without cancellations
e Denominator contains cancellations

e If Cis big — you want to tackle the problem carefully
o Using higher precision
o We need to apply some techniques to obtain a results as if we were in higher
precision but without actually using higher precision

37

Summation Techniques - Compensated Sum

e Developed by William Kahan
e Exploits TwoSum/Fast2Sum algorithms
Use the knowledge on the exact rounding error to recover the

©)

summation!

S <—XO
t <0

for

i
y
2. =z
t
s

Kahan sum

return s

= 1 ton -1

Xgm b |
I
-8 + ¥y |

~(z - 8) + vy |
HZ\

This is the simplest version of the Kahan
summation
There are a lot of different variations

Apply correction

Calculate new sum

Update correction (contribution of y)
Update sum

38

Dot product techniques - Condition Number and Traditional algorithm

Condition number for dot product Ciast prodiiet = T
| 2= i - yil

e If Cis not too large —> Traditional algorithms can be used
e If Cis large more accurate techniques are needed

Compute C while you are computing the dot product

Traditional Algorithm

S <—O

for i = i ton -1
1. 8 « 8 & (Xi®Yi)
end

return s

39

Dot product techniques - Condition Number and Traditional algorithm

Condition number for dot product Ciast prodiiet = T
| 2= i - yil

e If Cis not too large —> Traditional algorithms can be used
e If Cis large more accurate techniques are needed

Compute C while you are computing the dot product

Traditional Algorithm

s <0

for i = i ton -1 | Looks familiar?
1. 8 —« 8 ® (Xi®Yi)]

end

return s

40

Dot product techniques - Condition Number and Traditional algorithm

Condition number for dot product

E:LH'HJ

1=()

Cdot. product = m
i

e If Cis not too large —> Traditional algorithms can be used
e If Cis large more accurate techniques are needed

Compute C while you are computing the dot product

Traditional Algorithm
s <0

for i = i ton -1

1. s -8 @ (x2%y,)
end

return s

Traditional Algorithm
s <0

for i = 41 ton -1 :
1. s « FMA(x,,y,,s)
end

return s

e You can use FMA in traditional
algorithms
o Even with one less rounding
o Butit does not improve the
accuracy

41

Dot product techniques - Compensated Dot Product

e Dot product is just the combination of an addition and a multiplication
o We already have some EFT for them!
o Just apply them!

Dot2Product Algorithm
Dot2 (x, vy, N)

[p, s] = TwoProduct (xo, yo);
for 1 = 1 to N
[h, r] = TwoProduct (x

L V)
[p, gl = TwoSum (p, h);
s = s ® (g ® r);
end
p = p ®s;

end

42

Compilers options!

e There are many compiler options which affect floating point results!

e Some of them can be enabled/disabled by other options!

e Different compilers might have different options!

e gcc default mode is “Strict IEEE 754 mode”

) -01, -02, -03, -Ofast , -ffast-math,

https://gcc.gnu.org/onlinedocs/gcc-

12.2.0/gcc/Optimize-Options.html

Tool for inspecting assembly code
http://gcc.qgodbolt.org

-funsafe-math-optimizations

43

https://gcc.gnu.org/onlinedocs/gcc-12.2.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-12.2.0/gcc/Optimize-Options.html
http://gcc.godbolt.org

Take Away Message

e Floating points arithmetic needs some attention
e It depends on the problem you are trying to solve
o The accuracy you want to achieve
o Tradeoff between accuracy and speed
e There are some techniques to achieve accuracy without increasing the precision
o Depends again on your problem
m Condition number
e Compilers can help you speeding up your math
o But again, be careful, sometime you can lose accuracy
o In general, try to avoid square roots, division or trigonometric function
m [ry to use linear algebra when possible
e Reproducibility of the results
o Keep in mind that floating point arithmetic is different from real number
arithmetic
o Associativity, Distributivity are in general loss in floating point arithmetics

44

| "
e https://link.springer.com/book/10.1007/978-0-8176-4705-6 —

e Floating point workshop @ CERN by Jeffrey Arnold

e D. Goldberg, What every computer scientist should
know about floating-point arithmetic, ACM Computing
Surverys, 23(1):5-47, March 1991

e |EEE, IEEE Standard for Floating-Point Arithmetic,
IEEE Computer Society, August 2008.

45

https://link.springer.com/book/10.1007/978-0-8176-4705-6
https://cds.cern.ch/search?f=490__a&p=CERN%20openlab%20Mini-Workshop%20on%20Floating-Point%20Computation

