Efficient floating point arithmetic

Efficient School of Computing, Bertinoro, 2022 Wahid Redjeb

wahid.redjeb@cern.ch

Why Floating-Point Arithmetic?

- Floating point instead of fixed point
 - They give you a wider range
 - You can represent very big numbers as well as very small numbers
- All of you are using floating point numbers
 - They need some attention, to avoid big failure in your code
- It is important to understand how they work
 - Finding the best way to solve a problem
 - How do you find the best approach to solve your problem?
 - Sometime you want something precise, some other time you want something fast

Thinking of floating point numbers

- Sometime they are considered:
 - Not well defined
 - Full of mysteries and undefined behaviour
- But actually you can:
 - Write proof, like in standard math!
 - You can determine if your algorithm is going to fail
 - Or if it is going to work
- New hardware new challenges!
 - Parallelism make floating point calculation less deterministic!

Defining the floating-point system.

Some desirable properties for floating-points

- Speed
- Accuracy
 - We want to be fast, but we don't want a wrong answer
- Range
 - We want represent very small and very big numbers
- Portability
 - The code we write have to run on all the machine
- Something easy
 - We don't want an extremely complicated set of rules

J-M Muller sequence

$$u_n = 111 - \frac{1130}{u_{n-1}} + \frac{3000}{u_{n-1}u_{n-2}}$$

$$u_n = \frac{\alpha \cdot 100^{n+1} + \beta \cdot 6^{n+1} + \gamma \cdot 5^{n+1}}{\alpha \cdot 100^n + \beta \cdot 6^n + \gamma \cdot 5^n}$$

- if $\alpha \neq 0$ —> converges to 100
- if $\alpha = 0$, $\alpha \neq 0$ —> converges to 6
- u0 = 2, $u1 = -4 \rightarrow \alpha = 0$, $\Box = -3$, $\gamma = 4$ • should converge to 6!
- ... but sometimes, things don't work as expected
 - Try it youself! There is a sequence, that should converge to 6.

```
cd hands-on/floatingpoints/
g++ muller.cc -o muller
./muller
32
2
-4
```

.0040	г . 1
n	Exact value
3	18.5
4	9.3783783783783783784
5	7.8011527377521613833
6	7.1544144809752493535
11	6.2744385982163279138
12	6.2186957398023977883
16	6.0947394393336811283
17	6.0777223048472427363
18	6.0639403224998087553
19	6.0527217610161521934
20	6.0435521101892688678
21	6.0360318810818567800
22	6.0298473250239018567
23	6.0247496523668478987
30	6.0067860930312057585
31	6.0056486887714202679

J-M Muller sequence

$$u_n = 111 - \frac{1130}{u_{n-1}} + \frac{3000}{u_{n-1}u_{n-2}}$$

$$u_n = \frac{\alpha \cdot 100^{n+1} + \beta \cdot 6^{n+1} + \gamma \cdot 5^{n+1}}{\alpha \cdot 100^n + \beta \cdot 6^n + \gamma \cdot 5^n}$$

- if $\alpha \neq 0$ —> converges to 100
- if $\alpha = 0$, $\square \neq 0$ —> converges to 6
- u0 = 2, $u1 = -4 \rightarrow \alpha = 0$, $\Box = -3$, $\gamma = 4$ • should converge to 6!
- ... but sometimes, things don't work as expected
- Try it youself! There is a sequence, that should converge to 6.

```
cd hands-on/floatingpoints/
g++ muller_quad.cc -o muller_quad -lquad
./muller_quad
32
2
-4
```

n	Exact value
3	18.5
4	9.3783783783783783784
5	7.8011527377521613833
6	7.1544144809752493535
11	6.2744385982163279138
12	6.2186957398023977883
16	6.0947394393336811283
17	6.0777223048472427363
18	6.0639403224998087553
19	6.0527217610161521934
20	6.0435521101892688678
21	6.0360318810818567800
22	6.0298473250239018567
23	6.0247496523668478987
30	6.0067860930312057585
31	6.0056486887714202679

Building a floating-point system - Some properties

- Floating-points don't behave as real numbers!
- All floating-points are rational numbers
- Common rules of arithmetic, in general, are not valid for floating-points
 - Distributivity, associativity
- There are a finite number of floating points!
 - Doesn't matter how many bits you can store, you'll always have a finite number of floating points
 - There are rational numbers that are not floating-points!
 - And irrational numbers can not be represented by floating-points

IEEE 754-2008 standard

- We need something that tells us some rules for building a floating-point systems
 - Standardize formats
 - Conversions between different formats
 - Conversion between floating-points and integers
 - Standardize some operations
 - Rounding modes
 - Special values
 - Zero, Infinity, subnormals, NaN (not a Number)
 - NaN \rightarrow 0/0, infinity / 0, infinity + infinity
 - Exceptions
 - Underflow
 - Value is less than the smallest non-zero floating-point number
 - Return 0
 - Overflow
 - Value is greater than the largest floating-point number
 - Return infinity
 - Division by zero

A floating point number is characterized by the following numbers

- A radix (base)
- A sign bit, s ∈ {0,1}
- Exponent e
 - Integer such that $e_{min} \le e \le e_{max}$
- A precision p

Building a floating-point system - Storage Format

IEEE Name	Precision	N bits	Exponent w	Fraction p	e _{min}	e _{max}
Binary32	Single	32	8	24	-126	+127
Binary64	Double	64	11	53	-1022	+1023
Binary128	Quad	128	15	113	-16382	+16383

$$\bullet \quad e_{\text{max}} = -e_{\text{min}} + 1$$

A floating point number is characterized by the following numbers

- A radix (base) β
- A sign, $s \in \{0, 1\}$
- Exponent e
 - Integer such that $e_{min} \le e \le e_{max}$
- A precision p

The <u>value</u> of a floating-point number is given by

- Its format
- The digits in the number
 - ∘ x_i such that $0 \le i \le p$ and $0 \le x_i < \beta$

We can express its value:

$$x = (-)^{s} \beta^{e} \sum_{i=0}^{p-1} x_{i} \beta^{-i}$$

$$x = (-)^{s} \beta^{e} \sum_{i=0}^{p-1} x_{i} \beta^{-i}$$

Let's try to represent the number 0.5 (in binary radix β = 2)

$$x = (-)^{s} \beta^{e} \sum_{i=0}^{p-1} x_{i} \beta^{-i}$$

Let's try to represent the number 0.5 (in binary radix $\beta = 2$)

•
$$e = -1 \rightarrow 2^{-1} \times 1 \cdot 2^{0} \rightarrow (x_{0} = 1)$$

$$x = (-)^{s} \beta^{e} \sum_{i=0}^{p-1} x_{i} \beta^{-i}$$

Let's try to represent the number 0.5 (in binary radix $\beta = 2$)

- $e = -1 \rightarrow 2^{-1} \times 1 \cdot 2^{0} \rightarrow (x_{0} = 1)$ $e = 0 \rightarrow 2^{0} \times 1 \cdot 2^{-1} \rightarrow (x_{0} = 1, x_{1} = 1)$

$$x = (-)^{s} \beta^{e} \sum_{i=0}^{p-1} x_{i} \beta^{-i} \qquad m = \sum_{i=0}^{p-1} x_{i} \beta^{-i} \quad 0 \le m < \beta$$

$$m = \sum_{i=0}^{p-1} x_i \beta^{-i} \quad 0 \le m < \beta$$

Let's try to represent the number 0.5 (in binary radix $\beta = 2$)

- $\begin{array}{lll} \bullet & e = -1 \longrightarrow 2^{-1} \ x \ 1 \cdot 2^0 \longrightarrow (x_0 = 1 \) \\ \bullet & e = 0 \longrightarrow 2^0 \ x \ 1 \cdot 2^{-1} \longrightarrow (x_0 = 0, \ x_1 = 1) \\ \bullet & e = 1 \longrightarrow 2^1 \ x \ 1 \cdot 2^{-2} \longrightarrow (x_0 = 0, \ x_1 = 0, \ x_2 = 1) \end{array}$

Multiple (m, e) representation

Value of a floating-point number - Uniqueness

$$x = (-)^{s} \beta^{e} \sum_{i=0}^{p-1} x_{i} \beta^{-i} \qquad m = \sum_{i=0}^{p-1} x_{i} \beta^{-i} \quad 0 \le m < \beta$$

- In order to have a unique representation we want to <u>normalize</u> the floating-point number
 - We can choose to represent the floating-point number with a (m,e) representation, such that e is minimum $(e_{min} \le e \le e_{max})$
 - $\blacksquare \quad 1 \le |m| < \beta$
 - That also means to require $x_0 \neq 0$, first bit = 1
 - ullet If minimizing the exponent results in e < e_{min}
 - then x_0 must be 0, $e = e_{min}$, first bit = 0
 - These numbers are called **<u>subnormal</u>** numbers

Value of a floating-point number - Normals and Subnormals

$$x = (-)^{s} \beta^{e} \sum_{i=0}^{p-1} x_{i} \beta^{-i}$$

$$x = (-)^{s} \beta^{e} \sum_{i=0}^{p-1} x_{i} \beta^{-i} \qquad m = \sum_{i=0}^{p-1} x_{i} \beta^{-i} \quad 0 \le m < \beta$$

To summarize, we can have three different cases:

- $m = 0 \longrightarrow x_0 = x_1 = \dots = x_{p-1} = 0 \longrightarrow Value: \pm 0$
- $m \neq 0$ and $x_0 \neq 0$ —> Normal number \circ 1 \leq m $< \beta$
- $m \neq 0$ but $x_0 = 0$ —-> Subnormal number
 - \circ 0 < m < 1 and e = e_{min}

Value of a floating-point number - Some additional points

- Exponent: E = e e_{min} + 1, W
 bits
- $\bullet \quad e_{\max} = -e_{\min} + 1$

- Many more normal numbers than subnormal numbers
 - \circ Let's just assume $x_0 = 1$
- Use special exponent to trigger special treatment for subnormals

$$\circ$$
 e = e_{min} - 1

Value of a floating-point number - Some additional points

- Exponent: E = e e_{min} + 1, w
 bits
- $\bullet \quad e_{\max} = -e_{\min} + 1$

- In principle the exponent is a signed integer -126 < e < +127
 - But, it is easier to compare floating point numbers with an unsigned exponent
 - We don't store the exponent, but something else
- $e = (E_{10} + 127_{10})_2$
- $\cdot E = (e_2)_{10} 127_{10}$

- Many more normal numbers than subnormal numbers
 - \circ Let's just assume $x_0 = 1$
- Use special exponent to trigger special treatment for subnormals

$$\circ$$
 e = e_{min} - 1

Exercise!

```
> cd esc22/hands-on/floatingpoints/
> g++ float-rep.c -o float-rep
> ./float-rep
```

- Play a bit with the program!
- Try to extract the floating point representation for the number 17.625
- Try to extract the base 10 value of the value

IEEE 754-2008 - Rounding Modes

- The standard defines 5 rounding modes:
 - Round to nearest Ties to even
 - Round to nearest, in case of a tie, the breaking rule is to select the result with an even significand
 - It is the default rounding mode!
 - Round to nearest Ties away from zero
 - Round to nearest, in case of a tie, round to the nearest value above (if positive) or below (if negative)
 - Round towards 0 Direct rounding
 - Round towards +∞ Direct rounding
 - Round towards -∞ Direct rounding

IEEE 754-2008 - Rounding Modes

- IEEE 754-2008 **requires** these operations to be correctly rounded
 - Addition
 - Subtraction
 - Multiplication
 - o Division
 - Fused multiply add (FMA)
 - Square root
 - Comparison

Notation

- For floating points operation we use:
 - ⊕ for addition
 - for subtraction
 - ⊗ for multiplication
 - for division
- fl(x) is the result of an operation using the the current rounding mode

Rounding - Error measures - ULP

Unit in the last place (ULP)

 $m = \sum_{i=0}^{p-1} x_i \beta^{-i} \quad 0 \le m < \beta$

- Place value of the least bit of the significand of x
- Represent the distance between two floating points
- If x is the infinite-precise result and y is the rounded results

$$\circ$$
 |x - y| \leq 0.5·ulp(y)

Tools

```
#include <limits> //std::numeric_limits
float x = //value;
float ulp = std::nextafter(x,std::numeric_limits<float>::max())-x;
```

Math with floating-point numbers

- Addition and multiplication are guaranteed to be commutative
- **BUT** associativity and distributivity are in general lost
 - \circ (a \oplus b) \oplus c may not be equal to a \oplus (b \oplus c)
 - Similar for ⊖,⊗,⊘
 - \circ a \otimes (b \oplus c) may not be equal to (a \otimes b) \oplus (a \oplus c)
 - o (1∅a)⊗a may not be equal to a
 - Write a program to sum all the numbers from 1 to N in single precision
 - Write a program to sum all the numbers from N to 1 in single precision
 - You see any difference?
 - What happens if you use double precision?

Note that:
$$\sum_{i=0}^{n} i = \frac{n \cdot (n+1)}{2}$$

Fused Multiply-add instruction (FMA)

- Standardized by IEEE-754-2008
- Allows to compute (a x b) + c in a single instruction
- Only one rounding instead of two
- May produce faster and accurate calculation
 - Matrix multiplication
 - Polynomial evaluation

BUT

- FMA may change floating point results
 - FMA (a *b+c) might be different from (a⊗b) +⊕c
- The compiler is allowed to rearrange the terms of an expression to generate a single instruction: Contractions

<u>IMPORTANT!</u>

Different compilers might have contractions enabled or disabled!

- If you want to be fully reproducible
 - Disable contractions
 - use std::fma explicitly
 - -02 -mfma

Tools: There are compiler switches and #pragmas

- -fpp-contract=off|fast
- #pragma STDC FP_CONTRACT ON OFF

Rounding - Approximation error

```
#include <cmath>
int main () {
printf("%1.17g\n", std::sin(M_PI));
}
```

- The value of M_PI is less than π by ~1.2x10⁻¹⁶
- $sin(M_PI) \neq 0$

```
[wa@T470]$ ./a.out
```

1.2246467991473532e-16

- Try yourself!
 - o Edit approx_err.cc
- Is 0.1 a floating point?
- Is 0.01 a floating point?
- is 0.01 = 0.1*0.1?
- You can use ulps to understand the differences!

https://www.iro.umontreal.ca/~mignotte/IFT2425/Disasters.html

Rounding - Associativity and Catastrophic Cancellation

```
#include <cstdio>
int main () {
   const double a = +1.0E+300;
   const double b = -1.0E + 300;
   const double c = 1.0;
   double x = (a + b) + c;
   double y = a + (b + c);
   printf("x = %1.10q\n", x);
   printf("y = %1.10q\n", y);
return 0;
 [wa@T470 ~]$ ./a.out
 x = 1
 v = 0
```

- Catastrophic cancellation occurs when two nearly equal floating-point numbers are subtracted.
 - If $x \approx y$, their significands are nearly identical.
 - When they are subtracted, only a few low-order digits remain. I.e., the result has very few significant digits left.

Rounding - Catastrophic Cancellation - Quadratic Equation

$$ax^{2} + bx + c = 0$$
 \longrightarrow $x_{\pm} = \left(-b \pm \sqrt{b^{2} - 4ac}\right)/(2a)$

- Write a program that gives you back the roots of the quadratic equation with single precision
 - \circ a = 5*10⁻⁴
 - o b = 100
 - \circ c = 5*10⁻³
- What happens?
- How can we treat the problem?

Rounding - Catastrophic Cancellation - Quadratic Equation

$$ax^2 + bx + c = 0 \longrightarrow$$

$$x_{\pm} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
$$= -\frac{b}{2a} (1 \mp \sqrt{1 - \frac{4ac}{b^2}})$$

- Let's rewrite the solutions
- Let's define \Box = 4ac / b^2

$$x_{+} = -\frac{b}{2a}(1 - \sqrt{1-\delta})$$

- When $b^2 >> 4ac \rightarrow \Box << 1$ $\circ (1 - \sqrt{1 - \delta})$ contains a possible cancellation!
- We can remove one cancellation rationalizing the expression
 - Multiply by $1 + \sqrt{1 \delta}$ numerator and denominator
- Now no catastrophic cancellation can occur!

$$x_{+} = -\frac{b}{2a} \left(\frac{1 - (1 - \delta)}{1 + \sqrt{1 - \delta}} \right)$$
$$= -\frac{2c}{b} \left(\frac{1}{1 + \sqrt{1 - \delta}} \right)$$

Rounding - Sterbenz's Lemma

Provided a floating-point system and subnormal numbers, if ${\tt a}$ and ${\tt b}$ are floating points numbers such that:

$$b/2 \le a \le 2b$$

Then:

$$a \ominus b = a - b$$

Thus:

There is no rounding error associated with a⊖b

• The Sterbenz lemma asserts that if x and y are sufficiently close floating-point numbers then their difference x – y is computed exactly by floating-point arithmetic

 $x \ominus y = fl(x - y)$ with no rounding needed.

Error Free Transformation - EFT

Error-free transformation is a concept that makes it possible to compute accurate results within a floating point arithmetic. (*Error-free transformations in real and complex floating point arithmetic - Stef Graillat and Valérie Ménissier-Morain*)

- Algorithms that transforms a set of floating-point numbers in a new set of floating-point numbers without any loss of information
 - Useful for computing round-off errors
 - Obtain accurate operations
- There EFT for
 - Addition
 - Multiplication
 - Splitting
 - Derived: Combination of the previous ones

$$f(x,y) \rightarrow (s,t)$$

Addition EFT - Fast2Sum

```
Fast2Sum algorithm a,b \text{ floating-points numbers such that} a+b=s+t, \text{ where } s=a\theta b \text{ and } t a+b=s+t, \text{ where } s=a\theta b \text{ and } t are \text{ floating points} 1. \quad s \leftarrow a\theta b 2. \quad t \leftarrow b\theta (s\theta a) 3. \quad \text{return } (s,t)
```

Intuitive explanation → <u>Rigorous proof on Handbook of Floating Point</u> <u>arithmetic</u>

- a > b
 - o s = a + (part of b that contributed to the sum)
 - o s ⊖ a = part of b that contributed to the sum
 - o b⊖(s⊖a) = Rounding error

NOTE: This algorithm requires a branching

Addition EFT - TwoSum

```
TwoSum algorithm

a,b floating-points numbers

1. s \leftarrow a^{\oplus}b

2. z \leftarrow (s^{\ominus}a)

3. t \leftarrow (a^{\ominus}(s^{\ominus}z)^{\oplus}(b^{\ominus}z)

4. return (s,t)
```

a+b = s+t, where s=a\theta b and t are floating points

- No branching
 - But 6 floating-points instead of 3
- TwoSum usually faster

Addition EFT - Precise Multiplication

```
TwoProduct algorithm
```

a, b floating-points numbers

- 1. $s \leftarrow a \otimes b$
- 2. $t \leftarrow FMA(a,b,-s)$
- 3. return (s,t)

axb = s+t, where s=a⊗b and t are floating points

Condition numbers

- Given a x number you want to compute f(x) = y
 - But there is the rounding in place
 - Most of the time you have $\ddot{x} = x + \Delta x$
 - $f(x + \Delta x) = y + \Delta y$
- We can compute the following number

$$C = \frac{\left|\frac{\Delta y}{y}\right|}{\left|\frac{\Delta x}{x}\right|} = \frac{\left|x \cdot f'(x)\right|}{\left|f(x)\right|}$$

- Small condition number means:
 - Small ∆x produces small ∆y
 - **Well Conditioned**
- Big condition number means:
 - Small Δx produces big Δy
 - **III conditioned**

Summation Techniques - Condition Number

Condition number for addition
$$C_{sum} = \frac{\sum\limits_{i=0}^{|x_i|} |x_i|}{|\sum\limits_{i} x_i|}$$

- Numerator without cancellations
- Denominator contains cancellations
- If C is big → you want to tackle the problem carefully
 - Using higher precision
 - We need to apply some techniques to obtain a results as if we were in higher precision but without actually using higher precision

Summation Techniques - Compensated Sum

- Developed by William Kahan
- Exploits TwoSum/Fast2Sum algorithms
 - Use the knowledge on the exact rounding error to recover the summation!

Dot product techniques - Condition Number and Traditional algorithm

Condition number for dot product

$$C_{\text{dot product}} = \frac{\sum_{i=0}^{n} |x_i \cdot y_i|}{|\sum_{i} x_i \cdot y_i|}$$

- If C is not too large —> Traditional algorithms can be used
- If C is large more accurate techniques are needed

Compute C while you are computing the dot product

```
Traditional Algorithm

s ←0

for i = i to n -1 :

1. s ← s ⊕ ( x<sub>i</sub>⊗y<sub>i</sub>)

end

return s
```

Dot product techniques - Condition Number and Traditional algorithm

Condition number for dot product

$$C_{\text{dot product}} = \frac{\sum_{i=0}^{n} |x_i \cdot y_i|}{|\sum_{i} x_i \cdot y_i|}$$

- If C is not too large —> Traditional algorithms can be used
- If C is large more accurate techniques are needed

Compute C while you are computing the dot product

Dot product techniques - Condition Number and Traditional algorithm

Condition number for dot product

$$C_{\text{dot product}} = \frac{\sum_{i=0}^{n} |x_i \cdot y_i|}{|\sum_{i} x_i \cdot y_i|}$$

- If C is not too large —> Traditional algorithms can be used
- If C is large more accurate techniques are needed

Compute C while you are computing the dot product

```
Traditional Algorithm s \leftarrow 0 for i = i to n - 1:

1. s \leftarrow s \oplus (x_i \otimes y_i) end return s

Traditional Algorithm s \leftarrow 0 for i = i to n - 1:

1. s \leftarrow FMA(x_i, y_i, s) end return s
```

- You can use FMA in traditional algorithms
 - Even with one less rounding
 - But it does not improve the accuracy

Dot product techniques - Compensated Dot Product

- Dot product is just the combination of an addition and a multiplication
 - We already have some EFT for them!
 - Just apply them!

```
Dot2Product Algorithm
Dot2 (x, y, N)
  [p, s] = TwoProduct (x<sub>0</sub>, y<sub>0</sub>);
  for i = 1 to N
    [h, r] = TwoProduct (x<sub>i</sub>, y<sub>i</sub>);
    [p, q] = TwoSum (p, h);
    s = s ⊕ (q ⊕ r);
  end
  p = p ⊕ s;
end
```

Compilers options!

- There are many compiler options which affect floating point results!
- Some of them can be enabled/disabled by other options!
- Different compilers might have different options!
- gcc default mode is "Strict IEEE 754 mode"
- -O1, -O2, -O3, -Ofast , -ffast-math, -funsafe-math-optimizations

https://gcc.gnu.org/onlinedocs/gcc-12.2.0/qcc/Optimize-Options.html

Tool for inspecting assembly code http://gcc.godbolt.org

Take Away Message

- Floating points arithmetic needs some attention
- It depends on the problem you are trying to solve
 - The accuracy you want to achieve
 - Tradeoff between accuracy and speed
- There are some techniques to achieve accuracy without increasing the precision
 - Depends again on your problem
 - Condition number
- Compilers can help you speeding up your math
 - But again, be careful, sometime you can lose accuracy
 - In general, try to avoid square roots, division or trigonometric function
 - Try to use linear algebra when possible
- Reproducibility of the results
 - Keep in mind that floating point arithmetic is different from real number arithmetic
 - Associativity, Distributivity are in general loss in floating point arithmetics

Reference

https://link.springer.com/book/10.1007/978-0-8176-4705-6

- Floating point workshop @ CERN by Jeffrey Arnold
- D. Goldberg, What every computer scientist should know about floating-point arithmetic, ACM Computing Surverys, 23(1):5-47, March 1991
- IEEE, IEEE Standard for Floating-Point Arithmetic, IEEE Computer Society, August 2008.