
Efficient floating point arithmetic

Efficient School of Computing, Bertinoro, 2022
Wahid Redjeb
wahid.redjeb@cern.ch

1

Why Floating-Point Arithmetic?

● Floating point instead of fixed point
○ They give you a wider range
○ You can represent very big numbers as well as very small

numbers
● All of you are using floating point numbers

○ They need some attention, to avoid big failure in your code
● It is important to understand how they work

○ Finding the best way to solve a problem
■ How do you find the“best” approach to solve your

problem?
■ Sometime you want something precise, some other

time you want something fast
●

2

Thinking of floating point numbers

● Sometime they are considered:
○ Not well defined
○ Full of mysteries and undefined behaviour

● But actually you can:
○ Write proof, like in standard math!
○ You can determine if your algorithm is going to fail
○ Or if it is going to work

● New hardware new challenges!
○ Parallelism make floating point calculation less deterministic!

3

Defining the floating-point system.

Some desirable properties for floating-points

● Speed
● Accuracy

○ We want to be fast, but we don’t want a wrong answer
● Range

○ We want represent very small and very big numbers
● Portability

○ The code we write have to run on all the machine
● Something easy

○ We don’t want an extremely complicated set of rules

4

J-M Muller sequence

● if 𝛂 ≠0 —> converges to 100
● if 𝛂 = 0, ẟ ≠ 0 —> converges to 6

● u0 = 2 , u1 = -4 → 𝛂 = 0, ẟ = -3, ɣ = 4
○ should converge to 6!

● … but sometimes, things don’t work as expected
○ Try it youself! There is a sequence, that

should converge to 6.
cd hands-on/floatingpoints/
g++ muller.cc -o muller
./muller
32
2
-4

5

J-M Muller sequence

● if 𝛂 ≠0 —> converges to 100
● if 𝛂 = 0, ẟ ≠ 0 —> converges to 6

● u0 = 2 , u1 = -4 → 𝛂 = 0, ẟ = -3, ɣ = 4
○ should converge to 6!

6

● … but sometimes, things don’t work as expected
○ Try it youself! There is a sequence, that should

converge to 6.
cd hands-on/floatingpoints/
g++ muller_quad.cc -o muller_quad -lquad
./muller_quad
32
2
-4

Building a floating-point system - Some properties

● Floating-points don’t behave as real numbers!
● All floating-points are rational numbers
● Common rules of arithmetic, in general, are not valid for floating-points

○ Distributivity, associativity
● There are a finite number of floating points!

○ Doesn’t matter how many bits you can store, you’ll always have a finite
number of floating points

○ There are rational numbers that are not floating-points!
○ And irrational numbers can not be represented by floating-points

7

● We need something that tells us some rules for building a floating-point systems
○ Standardize formats
○ Conversions between different formats
○ Conversion between floating-points and integers
○ Standardize some operations
○ Rounding modes
○ Special values

■ Zero, Infinity, subnormals, NaN (not a Number)
● NaN → 0/0, infinity / 0, infinity + infinity

○ Exceptions
■ Underflow

● Value is less than the smallest non-zero floating-point number
● Return 0

■ Overflow
● Value is greater than the largest floating-point number
● Return infinity

■ Division by zero

IEEE 754-2008 standard

8

Building a floating-point system - Value of a floating-point number

A floating point number is characterized by the following numbers

● A radix (base) 𝛃
● A sign bit, s ∈ {0,1}
● Exponent e

○ Integer such that emin ≤ e ≤ emax
● A precision p

9

Building a floating-point system - Storage Format

Hidden bit == 1

w p - 1

IEEE Name Precision N bits Exponent w Fraction p emin emax

Binary32 Single 32 8 24 -126 +127

Binary64 Double 64 11 53 -1022 +1023

Binary128 Quad 128 15 113 -16382 +16383

● Exponent: E = e - e
min

 + 1, w bits
● e

max
 = -e

min
 + 1

E10

10

Building a floating-point system - Value of a floating-point number

A floating point number is characterized by the following numbers

● A radix (base) 𝛃
● A sign, s ∈ {0,1}
● Exponent e

○ Integer such that emin ≤ e ≤ emax
● A precision p

The value of a floating-point number is given by
● Its format
● The digits in the number

○ xi such that 0 ≤ i ≤ p and 0 ≤ xi < 𝛃

We can express its value:

11

Building a floating-point system - Value of a floating-point number

Let’s try to represent the number 0.5 (in binary radix 𝜷 = 2)

12

Building a floating-point system - Value of a floating-point number

Let’s try to represent the number 0.5 (in binary radix 𝜷 = 2)

● e = -1 → 2-1 x 1 ᐧ 20 → (x0 = 1)

13

Building a floating-point system - Value of a floating-point number

Let’s try to represent the number 0.5 (in binary radix 𝜷 = 2)

● e = -1 → 2-1 x 1 ᐧ 20 → (x0 = 1)
● e = 0 → 20 x 1 ᐧ 2-1 → (x0 = 1, x1 = 1)

14

Building a floating-point system - Value of a floating-point number

Let’s try to represent the number 0.5 (in binary radix 𝜷 = 2)

● e = -1 → 2-1 x 1 ᐧ 20 → (x0 = 1)
● e = 0 → 20 x 1 ᐧ 2-1 → (x0 = 0, x1 = 1)
● e = 1 → 21 x 1 ᐧ 2-2 → (x0 = 0, x1 = 0, x2 = 1)
● …

Multiple (m, e) representation

15

Value of a floating-point number - Uniqueness

● In order to have a unique representation we want to normalize the floating-point
number
○ We can choose to represent the floating-point number with a (m,e)

representation, such that e is minimum (emin ≤ e ≤ emax)
■ 1 ≤ |m| < 𝛃
■ That also means to require x0 ≠ 0, first bit = 1

● If minimizing the exponent results in e < emin
○ then x0 must be 0, e = emin , first bit = 0

● These numbers are called subnormal numbers

16

Value of a floating-point number - Normals and Subnormals

To summarize, we can have three different cases:

● m = 0 —-> x0 = x1= … = xp-1 = 0 —> Value: ±0
● m ≠ 0 and x0 ≠ 0 —> Normal number

○ 1 ≤ m < 𝜷
● m ≠ 0 but x0 = 0 —-> Subnormal number

○ 0 < m < 1 and e = emin

17

Value of a floating-point number - Some additional points

Hidden bit == 1

w p - 1

● Exponent: E = e - e
min

 + 1, w
bits

● e
max

 = -e
min

 + 1
● Many more normal numbers than

subnormal numbers
○ Let’s just assume x0 = 1

● Use special exponent to trigger
special treatment for subnormals
○ e = emin - 1

18

Value of a floating-point number - Some additional points

Hidden bit == 1

w p - 1

● Many more normal numbers than
subnormal numbers
○ Let’s just assume x0 = 1

● Use special exponent to trigger
special treatment for subnormals
○ e = emin - 1

● In principle the exponent is a signed
integer -126 < e < +127
○ But, it is easier to compare floating

point numbers with an unsigned
exponent

○ We don’t store the exponent, but
something else

● e = (E10 + 12710)2
● .E = (e2)10 - 12710

● Exponent: E = e - e
min

 + 1, w
bits

● e
max

 = -e
min

 + 1

19

Exercise!

> cd esc22/hands-on/floatingpoints/
> g++ float-rep.c -o float-rep
> ./float-rep

● Play a bit with the program!
● Try to extract the floating point representation for the number 17.625
● Try to extract the base 10 value of the value

○ 0 10000010 00011100000000000000000

20

IEEE 754-2008 - Rounding Modes

● The standard defines 5 rounding modes:
○ Round to nearest - Ties to even

■ Round to nearest, in case of a tie, the breaking rule is to select the
result with an even significand

■ It is the default rounding mode!
○ Round to nearest - Ties away from zero

■ Round to nearest, in case of a tie, round to the nearest value above
(if positive) or below (if negative)

○ Round towards 0 - Direct rounding
○ Round towards +∞ - Direct rounding
○ Round towards -∞ - Direct rounding

21

IEEE 754-2008 - Rounding Modes

● IEEE 754-2008 requires these operations to be correctly rounded
○ Addition
○ Subtraction
○ Multiplication
○ Division
○ Fused multiply add (FMA)
○ Square root
○ Comparison

22

Notation

● For floating points operation we use:
○ ⊕ for addition
○ ⊖ for subtraction
○ ⊗ for multiplication
○ ⊘ for division

● fl(x) is the result of an operation using the the current rounding mode

23

Rounding - Error measures - ULP

● Unit in the last place (ULP)
● Place value of the least bit of the significand of x
● Represent the distance between two floating points
● If x is the infinite-precise result and y is the rounded results

○ |x - y| ≤ 0.5ᐧulp(y)

Tools

#include <limits> //std::numeric_limits
float x = //value;
float ulp = std::nextafter(x,std::numeric_limits<float>::max())-x; 24

Math with floating-point numbers

● Addition and multiplication are guaranteed to be commutative
● BUT associativity and distributivity are in general lost

○ (a ⊕ b) ⊕ c may not be equal to a ⊕ (b ⊕ c)
■ Similar for ⊖,⊗,⊘

○ a ⊗ (b ⊕ c) may not be equal to (a ⊗ b) ⊕ (a ⊕ c)
○ (1⊘a)⊗a may not be equal to a

● Write a program to sum all the numbers from 1 to N in single
precision

● Write a program to sum all the numbers from N to 1 in single
precision

● You see any difference?
● What happens if you use double precision?

Note that:

25

Fused Multiply-add instruction (FMA)

● Standardized by IEEE-754-2008
● Allows to compute (a x b) + c in a single instruction
● Only one rounding instead of two
● May produce faster and accurate calculation

○ Matrix multiplication
○ Polynomial evaluation

BUT
● FMA may change floating point results

○ FMA(a*b+c) might be different from (a⊗b)+⊕c
● The compiler is allowed to rearrange the terms of an expression to generate a single

instruction: Contractions

double a, b, c, d;

a = b*c + d

double a,b,c,d;

a = b;

b *= c;

c += d;

IMPORTANT!
Different compilers might have contractions
enabled or disabled!

Tools: There are compiler switches and #pragmas
● -fpp-contract=off|fast
● #pragma STDC FP_CONTRACT ON|OFF

● If you want to be fully reproducible
○ Disable contractions
○ use std::fma explicitly

■ -02 -mfma

26

Rounding - Approximation error

#include <cmath>

int main () {

printf("%1.17g\n", std::sin(M_PI));

}

[wa@T470]$./a.out

1.2246467991473532e-16

● The value of M_PI is less than π by ~1.2x10-16
● sin(M_PI) ≠ 0

● Try yourself!
○ Edit approx_err.cc

● Is 0.1 a floating point?
● Is 0.01 a floating point?
● is 0.01 = 0.1*0.1 ?
● You can use ulps to understand the differences!

27

https://www.iro.umontreal.ca/~mign
otte/IFT2425/Disasters.html

https://www.iro.umontreal.ca/~mignotte/IFT2425/Disasters.htm
https://www.iro.umontreal.ca/~mignotte/IFT2425/Disasters.htm

Rounding - Associativity and Catastrophic Cancellation

#include <cstdio>

int main () {

 const double a = +1.0E+300;

 const double b = -1.0E+300;

 const double c = 1.0;

 double x = (a + b) + c ;

 double y = a + (b + c);

 printf("x = %1.10g\n", x);

 printf("y = %1.10g\n", y);

return 0;

}

[wa@T470 ~]$./a.out
x = 1
y = 0

● Catastrophic cancellation occurs when two
nearly equal floating-point numbers are subtracted.
○ If x ≈ y, their significands are nearly identical.
○ When they are subtracted, only a few

low-order digits remain. I.e., the result has
very few significant digits left.

28

Rounding - Catastrophic Cancellation - Quadratic Equation

● Write a program that gives you back the roots of the quadratic equation with single
precision
○ a = 5*10-4

○ b = 100
○ c = 5*10-3

● What happens?
● How can we treat the problem?

29

Rounding - Catastrophic Cancellation - Quadratic Equation

30

● Let’s rewrite the
solutions

● Let’s define ẟ = 4ac / b2

● When b2 >> 4ac → ẟ << 1
○ contains a possible cancellation!

● We can remove one cancellation rationalizing the
expression

○ Multiply by numerator and
denominator

● Now no catastrophic cancellation can occur!

Rounding - Sterbenz’s Lemma

Provided a floating-point system and subnormal numbers, if a and b are floating
points numbers such that:

 b/2 ≤ a ≤ 2b
Then:

 a⊖b = a−b
Thus:
There is no rounding error associated with a⊖b

● The Sterbenz lemma asserts that if x and y are sufficiently close floating-point numbers
then their difference x − y is computed exactly by floating-point arithmetic

x ⊖ y = fl(x − y) with no rounding needed.

31

Error Free Transformation - EFT

Error-free transformation is a concept that makes it possible to compute accurate results
within a floating point arithmetic. (Error-free transformations in real and complex floating point
arithmetic - Stef Graillat and Valérie Ménissier-Morain)

● Algorithms that transforms a set of floating-point numbers in a new set of
floating-point numbers without any loss of information
○ Useful for computing round-off errors
○ Obtain accurate operations

● There EFT for
○ Addition
○ Multiplication
○ Splitting
○ Derived: Combination of the previous ones

f(x,y) —> (s,t)

32

Addition EFT - Fast2Sum

Fast2Sum algorithm

a,b floating-points numbers such that

Requires |a|≥|b|
1. s ←a⊕b
2. t ←b⊖(s⊖a)
3. return (s,t)

 a+b = s+t, where s=a⊕b and t
are floating points

Intuitive explanation → Rigorous proof on Handbook of Floating Point
arithmetic
● a > b

○ s = a + (part of b that contributed to the sum)
○ s ⊖ a = part of b that contributed to the sum
○ b⊖(s⊖a)= Rounding error

NOTE: This algorithm requires a branching

33

Addition EFT - TwoSum

TwoSum algorithm

a,b floating-points numbers
1. s ←a⊕b
2. z ←(s⊖a)
3. t ← (a⊖(s⊖z)⊕(b⊖z)
4. return (s,t)

 a+b = s+t, where s=a⊕b and t
are floating points

● No branching
○ But 6 floating-points instead of 3

● TwoSum usually faster

34

Addition EFT - Precise Multiplication

TwoProduct algorithm

a,b floating-points numbers
1. s ←a⊗b
2. t ←FMA(a,b,-s)
3. return (s,t)

 axb = s+t, where s=a⊗b and t are
floating points

35

Condition numbers

● Given a x number you want to compute f(x) = y
○ But there is the rounding in place

■ Most of the time you have ẍ = x + Δx
■ f(x + Δx) = y + Δy

● We can compute the following number

Example: ● Small condition number means:
○ Small Δx produces small Δy
○ Well Conditioned

● Big condition number means:
○ Small Δx produces big Δy
○ Ill conditioned

36

Summation Techniques - Condition Number

Condition number for addition

● Numerator without cancellations
● Denominator contains cancellations
● If C is big → you want to tackle the problem carefully

○ Using higher precision
○ We need to apply some techniques to obtain a results as if we were in higher

precision but without actually using higher precision

37

Summation Techniques - Compensated Sum

● Developed by William Kahan
● Exploits TwoSum/Fast2Sum algorithms

○ Use the knowledge on the exact rounding error to recover the
summation!

Kahan sum
s ←x

0
t ←0
for i = i to n -1 :
1. y ←x

i
- t

2. z ←s + y
3. t ←(z - s) + y
4. s ← z
end
return s

● This is the simplest version of the Kahan
summation

● There are a lot of different variations

● Apply correction
● Calculate new sum
● Update correction (contribution of y)
● Update sum

38

Dot product techniques - Condition Number and Traditional algorithm

Condition number for dot product

● If C is not too large —> Traditional algorithms can be used
● If C is large more accurate techniques are needed

Compute C while you are computing the dot product

Traditional Algorithm
s ←0
for i = i to n -1 :
1. s ← s ⊕ (x

i
⊗y

i
)

end
return s

39

Dot product techniques - Condition Number and Traditional algorithm

Condition number for dot product

● If C is not too large —> Traditional algorithms can be used
● If C is large more accurate techniques are needed

Compute C while you are computing the dot product

Traditional Algorithm
s ←0
for i = i to n -1 :
1. s ← s ⊕ (x

i
⊗y

i
)

end
return s

Looks familiar?

40

Dot product techniques - Condition Number and Traditional algorithm

Condition number for dot product

● If C is not too large —> Traditional algorithms can be used
● If C is large more accurate techniques are needed

Compute C while you are computing the dot product

Traditional Algorithm
s ←0
for i = i to n -1 :
1. s ← s ⊕ (x

i
⊗y

i
)

end
return s

Traditional Algorithm
s ←0
for i = i to n -1 :
1. s ← FMA(x

i
,y

i
,s)

end
return s

● You can use FMA in traditional
algorithms

○ Even with one less rounding
○ But it does not improve the

accuracy

41

Dot product techniques - Compensated Dot Product

● Dot product is just the combination of an addition and a multiplication
○ We already have some EFT for them!
○ Just apply them!

Dot2Product Algorithm
Dot2 (x, y, N)
 [p, s] = TwoProduct (x

0
, y

0
);

 for i = 1 to N
[h, r] = TwoProduct (x

i
, y

i
);

[p, q] = TwoSum (p, h);
s = s ⊕ (q ⊕ r);

 end
 p = p ⊕ s;
end

42

Compilers options!

● There are many compiler options which affect floating point results!
● Some of them can be enabled/disabled by other options!
● Different compilers might have different options!

● gcc default mode is “Strict IEEE 754 mode”
● -O1, -O2, -O3, -Ofast , -ffast-math, -funsafe-math-optimizations

https://gcc.gnu.org/onlinedocs/gcc-
12.2.0/gcc/Optimize-Options.html

Tool for inspecting assembly code
http://gcc.godbolt.org

43

https://gcc.gnu.org/onlinedocs/gcc-12.2.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-12.2.0/gcc/Optimize-Options.html
http://gcc.godbolt.org

Take Away Message

● Floating points arithmetic needs some attention
● It depends on the problem you are trying to solve

○ The accuracy you want to achieve
○ Tradeoff between accuracy and speed

● There are some techniques to achieve accuracy without increasing the precision
○ Depends again on your problem

■ Condition number
● Compilers can help you speeding up your math

○ But again, be careful, sometime you can lose accuracy
○ In general, try to avoid square roots, division or trigonometric function

■ Try to use linear algebra when possible
● Reproducibility of the results

○ Keep in mind that floating point arithmetic is different from real number
arithmetic

○ Associativity, Distributivity are in general loss in floating point arithmetics

44

Reference

45

● https://link.springer.com/book/10.1007/978-0-8176-4705-6

● Floating point workshop @ CERN by Jeffrey Arnold

● D. Goldberg, What every computer scientist should
know about floating-point arithmetic, ACM Computing
Surverys, 23(1):5-47, March 1991

● IEEE, IEEE Standard for Floating-Point Arithmetic,
IEEE Computer Society, August 2008.

https://link.springer.com/book/10.1007/978-0-8176-4705-6
https://cds.cern.ch/search?f=490__a&p=CERN%20openlab%20Mini-Workshop%20on%20Floating-Point%20Computation

