

Search for Dark Matter Candidate with the ATLAS detector

Marie-Hélène Genest (LMU Munich) On behalf of the ATLAS Collaboration RICAP 2011

Bundesministerium für Bildung und Forschung

GEFÖRDERT VOM

Spin 0 Spin 1/2 Ш Ш П U U C C ~d~~e squarks \sim quarks S S brief reminder of e sleptons leptons Ve V_{μ} Spin 1 Spin 1/2 \widetilde{g} Gauge Ζ \boldsymbol{g} gluino bosons $\widetilde{\chi}_{3}^{0}$ $\widetilde{\chi}_4^0$ $\widetilde{\chi}_1^0$ $\widetilde{\chi}_2^0$ Neutralinos Spin 0 $\widetilde{\chi}_2^{\pm}$ Higgs Charginos A bosons

- SM particles have R = +1
- SUSY particles have R = -1

The lightest sparticle (LSP) is stable: Dark matter candidate!

Typical signature

- Pair of gluinos/squarks produced by strong interactions
- Their decays give high- p_T jets and charginos/neutralinos
- Charginos/neutralinos decays can give leptons and the decay chain stops when the LSP is produced (R-parity conserving scenarios)
- The pair of stable LSP produced escapes the detector undetected leading to high transverse missing energy

multi-Jets + n leptons + E_{T}^{miss}

Standard Model backgrounds (tt, W+jets, Z+jets, QCD jets and dibosons)

Data accumulated in 2010

Excellent LHC performance

- Very good detector efficiency:
 - Inner tracking detectors: 99.1% to 100%
 - Calorimeters: 90.7% to 100%
 - Muon detectors: 96.2% to 99.8%

ATLAS public results of R-parity conserving SUSY searches

ed today	one lepton, jets, and missing transverse momentum	ArXiV:1102.2357 Phys. Rev. Lett. 106, 131802 (2011)
Cover	jets and missing transverse momentum	ArXiV:1102.5290, submitted to PLB
	Multilepton final state with jets and missing transverse momentum	ATLAS-CONF-2011-039
	b-tagged jets and missing transverse momentum	ArXiV:1103.4344, submitted to PLB
	Dilepton final states with missing transverse momentum	ArXiV:1103.6214, submitted EPJLC Same-flavour: ArXiV:1103.6208, accepted EPJLC

7

Some useful variables

- $\Delta \phi$ (jets, E^{miss})
 - Cutting on $\Delta \phi$ eliminates events in which E_t^{miss} is closely related to one of the leading jets (QCD)
- Effective mass m_{eff} (scalar sum of sel. jets & leptons p_T and E_T^{miss})
 - peaks at a value which is correlated with the mass of the pair of SUSY particles produced in the *pp* interaction
- The transverse mass m_{T} $m_{T}^{2} \equiv 2|\mathbf{p}_{T}^{\ell}||E_{T}^{miss}| 2\mathbf{p}_{T}^{\ell} \cdot E_{T}^{\vec{m}iss}$
 - useful to remove BG in which a W decays leptonically

jet

Δφ

The 0-lepton channel

Select events with jets, missing transverse momentum and no lepton (veto e/μ)

arXiV:1102.5290 submitted to PLB

Defining the signal regions

Defining the signal regions

		А	В	С	D	
Pre-selection	Number of required jets	≥ 2	≥ 2	≥ 3	≥ 3	
	Leading jet $p_{\rm T}$ [GeV]	> 120	> 120	> 120	> 120	
	Other jet(s) $p_{\rm T}$ [GeV]	> 40	> 40	> 40	> 40	Trigger requirements
	$E_{\rm T}^{\rm miss}$ [GeV]	> 100	> 100	> 100	> 100	
Final selection	$\Delta \phi(\text{jet}, \vec{P}_{\text{T}}^{\text{miss}})_{\text{min}}$	> 0.4	> 0.4	> 0.4	> 0.4	Reject the OCD BG
	$E_{\rm T}^{\rm miss}/m_{\rm eff}$	> 0.3	_	> 0.25	> 0.25	
	m _{eff} [GeV]	> 500	_	> 500	> 1000	
	m_{T2} [GeV]	—	> 300	_	-	Optimize for SUSY

Stranverse mass m_{T_2} :

- The sum of the transverse missing momentum of the two neutralinos is know: $\vec{q}_T^{(1)} + \vec{q}_T^{(2)} = E_T^{miss}$

- Using this constraint, calculate the stransverse mass as:

$$m_{T2}(\vec{p}_T^{(1)}, \vec{p}_T^{(2)}, \vec{p}_T) \equiv \min_{\vec{q}_T^{(1)} + \vec{q}_T^{(2)} = E_T^{miss}} \{ \max(m_T(\vec{p}_T^{(1)}, \vec{q}_T^{(1)}), m_T(\vec{p}_T^{(2)}, \vec{q}_T^{(2)})) \}$$
 11

Main backgrounds

W+jets: τν decay or missed e/μ Z+jets: νν decay Top pair production: τ decay of a W MC@NLO Cross-check on data:

Z(II)+jets control sample with leptons removed to recalculate the missing transverse momentum

decay

Results

95% CL limits on cross section · acceptance · efficiency: 1.3 pb (A), 0.35 pb (B), 1.1 pb (C) and 0.11 pb (D)

Exclusion plot

The limit does not depend strongly on $tan\beta$, A0 or $sign(\mu)$

The 1-lepton channel

Select events with jets, missing transverse momentum and exactly one lepton (e/μ)

ArXiV:1102.2357 Phys. Rev. Lett. 106, 131802 (2011)

Defining the signal region

The isolated one-lepton requirement suppresses QCD multijet and allows a lepton-based trigger

- Exactly one lepton (e/ μ) with pT>20 GeV
- At least 3 jets with pT>60,30,30 GeV
- $\Delta \phi$ (jets, E_T^{miss})>0.2
- $E_{T}^{miss}/m_{eff}^{} > 0.25$
- m_T>100 GeV
- m_{eff} > 500 GeV

gluino/squark cascade decay with intermediate steps Reduce the QCD BG further Suppresses W+jets and tt **Optimize for SUSY**

Main backgrounds: W+jets and tt

m_{eff} [GeV]

95% CL limits on cross section · acceptance · efficiency: 0.065 pb (electron), 0.073 pb (muon)

- 1. Unified gaugino(scalar) mass m₄₂(m_o)
- 3. Ratio of H,, H, vevs $tan\beta$
- 4. Trilinear coupling A_o
- 5. Higgs mass term sgn(μ)

0- and 1-lepton combination

How to use the data

- For each signal region and analysis channel, the efficiency x acceptance is provided
- The LHA SUSY files are provided
 - → validate your setup
 - \rightarrow interpret the data in your model

Summary and outlook

- The search is on!
- ATLAS has already produced many results (in some scenarios the most stringent limits to date) in various channels and more are in the pipeline
- Already more than 350 pb⁻¹ recorded in 2011 with a new record luminosity of 1.1x10³³ cm⁻²s⁻¹!
- In 2011: more than 1 fb⁻¹ of data with luminosities on the order of 10³³ cm⁻²s⁻¹
- Sensitivity beyond 1 TeV already for 2011

This year is the SUSY year!

Many more results...

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults

Backup slides

Details of the results

	Signal region A	Signal region B	Signal region C	Signal region D
Total SM	$118 \pm 25[u] {}^{+32}_{-23}[j] \pm$	$12[\mathcal{L}] 10.0 \pm 4.3[u] {}^{+4.0}_{-1.9}[j] \pm 1.0[\mathcal{L}]$	$88 \pm 18[u]^{+26}_{-18}[j] \pm 9[\mathcal{L}]$	$2.5 \pm 1.0[u] {}^{+1.0}_{-0.4}[j] \pm 0.2[\mathcal{L}]$
Data	87	11	66	2
		Electron channel	Signal region	
		Observed events	1	
		Fitted top events	$1.34 \pm 0.52 \ (1.29)$	
		Fitted W/Z events	$0.47 \pm 0.40 \ (0.46)$	
		Fitted QCD events	$0.0^{+0.3}_{-0.0}$	
		Fitted sum of background events	1.81 ± 0.75	
		Muon channel	Signal region	
		Observed events	1	
		Fitted top events	$1.76 \pm 0.67 \ (1.39)$	
		Fitted W/Z events	$0.49 \pm 0.36 \ (0.71)$	
		Fitted QCD events	$0.0^{+0.5}_{-0.0}$	
		Fitted sum of background events	2.25 ± 0.94	
				25

SUSY production at LHC

SUSY production at LHC

The cross sections for SUSY processes are way higher at LHC High-impact results possible with first data!

Object identification

- Jets (anti-Kt, R=0.4): p₁>20 GeV, |η|<2.5
 - Reject events compatible with noise or cosmics
 - Remove if ΔR (jet,electron)<0.2
- Electrons: p₁>20 GeV, |η|<2.47
 - Outside problematic regions of the calorimeter
 - Remove if ΔR (jet,electron)<0.4
- Muons: p_T >20 GeV, $|\eta|$ <2.4, Sum p_T of tracks (ΔR <0.2) < 1.8 GeV
 - Remove if ΔR (jet,muon)<0.4
- Missing transverse momentum (E_{τ}^{miss}):
 - sum over the transverse momentum of all jets (up to |η|<4.9), electrons, muons and all calorimeter clusters not associated to such objects

 $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$

φ: azimuthal angle around the beam pipe η= -ln tan(θ/2) where θ is the polar angle

E_T^{miss} performance

QCD background: 1-lepton channel

Evaluated using the 'matrix method' which plays on the difference in isolation between the leptons in QCD events with respect to signal leptons

- *Loose* control sample with isolation criteria relaxed with respect to the *tight* SUSY selections
- Define two categories: QCD leptons (Q) and non-QCD leptons ($\not Q$)

 \wedge

 $-\,\epsilon$ is the probability that a loose lepton is also tight

$$\begin{split} N_{tight}^{obs} &= N_{tight}^{\mathcal{Q}} + N_{tight}^{Q} \\ N_{loose\ not\ tight}^{obs} &= \left(1/\epsilon_{\mathcal{Q}} - 1\right) N_{tight}^{\mathcal{Q}} + \left(1/\epsilon_{Q} - 1\right) N_{tight}^{Q} \end{split}$$

The quantities in red are measured: solve the equations and extract the number of QCD events

$\frac{\text{electron channel}}{N^Q} < 0.3$	$\frac{\text{muon channel}}{N^Q} < 0.5$
T tight < 0.0	r tight < 0.0

Systematic uncertainties in the 1lepton channel

- Background:
 - MC modeling of the E^{miss} and m_T distributions (variation of MC generator and internal generator parameters)
 - Finite statistics in the control regions
 - Experimental uncertainties dominated by the jet energy scale, b-tagging and luminosity uncertainties
- Signal:
 - Variation of the factorization and renormalization scales in Prospino
 - PDF uncertainties (eigenvector sets provided by CTEQ6)
 - Calculated separately for each production process

Limit setting

$$L(\boldsymbol{n}, \boldsymbol{\theta}^{0} | \boldsymbol{\mu}, \boldsymbol{b}, \boldsymbol{\theta}) = P_{\text{SR}} \times P_{\text{CR}} \times P_{\text{Syst}}$$

$$= P(n_{S}|\lambda_{S}(\mu, \boldsymbol{b}, \boldsymbol{\theta})) \times \prod_{i \in CS} P(n_{i}|\lambda_{i}(\mu, \boldsymbol{b}, \boldsymbol{\theta})) \times P_{Syst}(\boldsymbol{\theta}^{0}, \boldsymbol{\theta})$$

The statistical treatment is based on the profile LLR, defined in the usual way as

$$\Lambda(\mu) \equiv \Lambda(\mu, \boldsymbol{n}, \boldsymbol{\theta}^0) \equiv -2\left(\ln L(\boldsymbol{n}, \boldsymbol{\theta}^0 | \mu, \hat{\boldsymbol{b}}, \hat{\boldsymbol{\theta}}) - \ln L(\boldsymbol{n}, \boldsymbol{\theta}^0 | \hat{\mu}, \hat{\boldsymbol{b}}, \hat{\boldsymbol{\theta}}\right)$$

where $\hat{\mu}$, \hat{b} , $\hat{\theta}$ maximize the likelihood function, and \hat{b} , $\hat{\theta}$ maximize the likelihood for the specific, fixed value of the signal strength μ , and the data n, θ^0 .

- The 1-sigma exclusion band has the same meaning as in a typical Higgs analysis, which show the upper limit on the x-section (but here the x-section is mapped on the m0,m12 plane): any observation of number of events in the signal region that agrees with the bkg only prediction within 68% CL, gives an observed exclusion limit that lies within the 1-sigma uncertainty band.

- It can also be seen to correspond roughly to the 68% and 99% CL exclusion lines. The limit and bands have been obtained directly with toy MC. The coverage is therefore guaranteed to be exact.